
Diagrammatic algebra in representation theory

Lecture notes and Problem sheet 4, 05-05-2025

Extra material and preliminaries of representation theory of algebra
Problems coming from Chris Bowman’s bookDiagrammatic algebra are referenced as the prelim-
inary January version of the book available to the participants of the course by sending out an
email to me: langlois@uni-bonn.de

Some refresher of finite-dimensional algebras over fields
This is a small compendium of results for finite-dimensional algebras. In general, we will not
need that much so they will only be stated here without proof. References for this are the ap-
pendix of the book of Mathas [Mat99] and the classic of Curtis–Reiner [CR66].

Let A be a finite-dimensional algebra over a field F. We will assume everything is over C
to not trouble ourselves. Let M be a finite-dimensional A-module. We say M is a simple (or
irreducible) if M is a proper and has no non-trivial proposer submodule. A filtration of M is a
sequence of A-submodules of A

0 =M0 ⊂M1 ⊂M1 ⊂ · · · ⊂Mk ⊂Mk+1 =M.

A composition series of M is a filtration of M where each composition factor Mi/Mi−1 is a simple
A-module.

Lemma 1. Every A-moduleM has a composition series.

Proof. Induction on the dimension ofM.

In particular, A viewed as an A-module on itself also has a composition series.

Lemma 2. Suppose L is a simpleA-module. Then L ' A/m for a maximal idealm and L is a composition
factor of the A-module A.

Oneof the key results in the representation theory of finite-dimensional algebras is that those
composition series are well-defined and that, even though you will be able to filter a module in
many ways, its composition factors are unique up to reordering.

Theorem 3 (Jordan–Hölder). Suppose thatM is an A-module and that

0 =M1 ⊂ · · · ⊂Mk ⊂Mk+1 =M, 0 =N1 ⊂ · · · ⊂Nl ⊂Nl+1 =M

are two composition series of M. Then k = l and for each simple module A-module L

|{i | L 'Mi+1/Mi}| = |{i | L 'Ni+1/Ni}|.

Remark 4. The Jordan–Hölder Theorem does not hold for Z-modules.

In particular, the Jordan–Hölder Theorem lets us define the composition multiplicities [M : L]
of L inM as the number of composition factors ofM that are isomorphic to L.

Extra material on the course
Since I departed slightly from Chris’s convention for cellularity (and also used left-module to
keep in line with the general notion), I will provide some course notes. Feel free to follow Chris’
convention instead ofmine. They are slightly less general, butmost cellular algebras of relevance
fall in Chris’ convention. I follow here mostly the original paper of Graham and Lehrer [GL96]
with some proofs taken from the book of Mathas [Mat99]. Whatchout if you are to look into the
book of Mathas: he considers right-modules and his order is the reverse of the other sources
(and mine in particular).
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We begin with the original definition of cellular algebras due to Graham–Lehrer. Here, we
put R a commutative ring with unit and our algebra are associative and unital.

Definition 5 ([GL96, Definition 1.1]). A cellular algebra is an R-algebra together with a cell datum
(Λ, P ,C,∗) where

• Λ = (Λ,�) is a poset;

• for each λ ∈Λ, P (λ) is a finite set;

• C :
⊔

λ∈Λ P (λ)×P (λ)→ A is an injective map whose image is an R-basis ofA. We writeC(B,T ) =
Cλ
BT for B,T ∈ P (λ). This basis is called the cellular basis of A;

• ∗ : A→ A is an anti-involution,

and the following relations are respected

aCλ
BT ≡

∑
S∈P (λ)

raSBC
λ
ST mod A<λ (1)

(Cλ
BT )
∗ = Cλ

TB, (2)

where A≺λ is generated by {Cµ
B′T ′ | µ ≺ λ,B′ ,T ′ ∈ P (µ)}.

It will be useful to combine (1) and (2):

Cλ
BT a ≡

∑
U∈P (λ)

raBUC
λ
BU mod A<λ (3)

The whole point of the definition is that this gives us, on the nose, a family of modules
coming from the P (λ). We fix for the next part, a cellular algebra over a field R(= C) with cell
datum (Λ, P ,C,∗).

Definition 6. We define the (left) cell module V λ for λ ∈ Λ to be the free vector space with basis
{vB | B ∈ P (λ)} and action given by

avB =
∑

S∈P (λ)
raBB′vB′

where raBB′ is determined by aCλ
BB.

More precisely, we define V λ
T as the R-submodule of A�λ/A≺λ with basis {Cλ

BT +A≺λ | B ∈
P (λ)}. It is a left A-module by (1), and furthermore it is independent of T so we can identify it
with V λ.

Observe that we can use the anti-involution to define right A-modules.
We now want to define the bilinear form. We will use a technical lemma to make sure it is

well-defined.

Lemma 7. Suppose B,T ∈ P (λ). Then there exists an elements rBT ∈ R such that, for any S,U ∈ P (λ)

Cλ
STC

λ
BU ≡ rBTC

λ
SU mod A≺λ.

Proof. We simply simplify the product in two ways, first with (1) and then with (3); what will
remain is simply one coefficients rBT .

This allows us to give a bilinear form 〈−,−〉λ.

Definition 8. Define a bilinear form 〈−,−〉λ : V λ ×V λ→ R on the basis of V λ by

〈vB,vT 〉λ = rBT mod A≺λ,

and extending linearly.
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The form is symmetric and associative.

Proposition 9. Let λ ∈Λ, B,T ∈ P (λ), a ∈ A and v,w ∈ V λ.

1. 〈v,w〉λ = 〈w,v〉λ.

2. 〈av,w〉λ = 〈v,a∗w〉λ.

3. Cλ
BT v = 〈v,vT 〉λvB.

Proof. Since everything can be done on the basis v = vS ,w = vU and extended linearly, i) follows
easily by application of ∗; ii) follows from the definition of the bilinear form by choosing the
parentheses: 〈avS ,vU 〉λCλ

UV ≡ aCλ
SSC

λ
UU ≡ (Cλ

SSa
∗)Cλ

UU ≡ Cλ
SS(a

∗Cλ
UU ) ≡ 〈vS ,vU 〉λC

λ
SU . Finally,

the last is precisely the definition of the bilinear form.

Lemma 10. Suppose v ∈ V λ and a ∈ A�µ. Then λ ≺ µ⇒ av = 0.

Proof. Apply iii) of the previous proposition.

Definition 11. Let Radλ = {v ∈ V λ | 〈v,w〉λ = 0,∀w ∈ V λ} be the radical of the bilinear form. Denote
also Lλ := V λ/Radλ.

We denote Λ0 = {λ ∈Λ | Radλ , V λ}.

Proposition 12. Let R be a field1; then Radλ is the unique maximal submodule of V λ and Lλ is simple.

Proof. In class.

Proposition 13. Let R be a field and let λ,µ ∈ Λ0. Let M be a proposer submodule of V µ and suppose
that σ : V λ→ V µ/M is an A-modules morphism.

1. If σ , 0 then µ � λ.

2. If µ = λ then σ (v) =M + rσv for all v ∈ V λ.

Proof. Use the strategy of the proof of Proposition 12 to use that there exists elements v,w ∈ V λ

such that 〈v,w〉 = 1 and then use v to generate all vB ∈ V λ. So for vB we get σ (vB) = σ (aBv) =
aBσ (v) + M and then λ ≺ µ implies aBσ (v) = 0 by Lemma 10. If λ = µ, then express aB =∑

U∈P (λ) rUCBT and thus Proposition 12 iii) implies σ (vB) = σ (v)aB+M =
∑

U∈P (λ) rUσ (v)CBUσ (v) =
〈σ (v), y〉vB for y =

∑
U∈P (λ) rUvU , and rσ = 〈σ (v), y〉λ.

Corollary 14. The Lλ are pairwise non-isomorphic.

Proof. In class.

We now prove a technical lemma giving a filtration of the cellular algebra.

Lemma 15. Suppose that Λ is finite with ∅ = Γ0 ⊂ Γ1 ⊂ · · · ⊂ Γk = Λ is a maximal chains of ideal of Λ.
Then we can find a total ordering λ1, . . . ,λk such that Γi = {λ1, . . . ,λi}. Then

0 = A(Γ0) ↪→ A(Γ1) ↪→ ·· · ↪→ A(Γk) = A

is a filtration of A with composition factors A(Γi)/A(Γi−1) ' V λi∗ ⊗R V λi .

Proof. Since the chain of ideal is maximal, that means Γi \ Γi−1 = {µ} for a certain µ. So we can
find a total ordering. As a consequence, A≺λi ⊂ A(Γi−1) and the basis {Cλi

BT +A(Γi+1) | B,T ∈ P (λi)}
is a basis of the two-sided ideal A(Γi)/A(Γi−1). The isomorphisms of A-bimodule is then simpl
sending Cλi

BT +A(Γi−1) 7→ vB ⊗ vT +A≺λi where vB ⊗ vT ' Cλi
BT .

1Just a reminder.
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Then, the factors at level λof the filtration are isomorphic to direct sum of |P (λ)| left-module
V λ. This means that, when extended to composition series, the composition factors of A are
composition factors of V λ.

With this, we can already give one of the simple modules of A.

Lemma 16. When λ is maximal, then V λ ' Lλ.

Proof. We need to prove that Radλ = 0. Suppose v ∈ Radλ. We write it v =
∑

B∈P (λ) rBvB. Fix
T ∈ P (λ) and write a(vT ) =∑

B∈P (λ) rBc
λ
BT ∈ A. In particular, a(vT ) ∈ A�Λ, and it is in A≺λ if and

only if v = 0. Since v is in the radical, we have 〈v,w〉λ for all w ∈ V λ. Therefore by the definition
of the bilinear form we have, for U,S ∈ P (λ)

Cλ
USa(vT ) =

∑
B∈P (λ)

rBC
λ
USC

λ
BT ≡

∑
B∈P (λ)

rB〈vS ,vB〉λCUT = 〈vS ,v〉λCλ
UT

v∈Radλ= 0 mod A≺λ

Then a(vT )a ∈ A≺λ for all a ∈ A�λ and since λ is maximal, that means a(vT )·1 ∈ A≺λ so x = 0.

Theorem 17 (Graham–Lehrer). Suppose that R is a field and that Λ is finite. Then {Lλ | λ ∈Λ0} is a
complexe set of pairwise inequivalent simple modules.

Proof. Done in class. See either [Mat99, Theorem 2.16] or [Bow25, Theorem 6.2.20] for proof.
In Chris’ proof, the chain of ideals comes from Lemma 15.

This seems all dandy andfine, but sometimes itwill be hard to findΛ0. Still, we have reduced
a dfficult problem of abstract algebra into a much more manageable linear algebra problem.

Next lecture (13-05-2025) we will see that there is even more to those cellular algebras, and
that they will also let us state meaningful results on the, much more elusive, indecomposable
modules.

Problem sheet 4
0. (Drill)

1. Prove that the algebra of n×nmatrices is cellularwith respect to the cellular datumΛ = {n},
P (n) = {1, . . . ,n} Cij = Eij , the elementary matrices. (it amounts to checking that AEij =∑

i′ r
a
ii′Ei′j)

2. Define V λ∗, the right A-cell module.

3. Fill the details of Lemma 7.

1. Chapter 6.3 Read Chapter 6.3 of Chris’ book to get an example of a different kind of cellular
algebra.

2. Chapter 6.4 ReadChapter 6.4 of Chris’ book. This gives a cell structure onFS3. In particular,
it does not suppose the field has characteristic 0.

3. Some funwithTL Wecall thematricesGλ = (〈v,w〉λ)v,w∈V λ theGrammatrices of the bilinear
form.

Compute all the Grammatrices for TLn(β) for n = 2,3,4,5. Exhibit the values of β where the
algebra is not semisimple.

4. Gramdeterminant (Difficult) Find a recursion formula for theGramdeterminant of Temper-
ley–Lieb algebra.
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