Diagrammatic algebra in representation theory

Lecture notes and Problem sheet 4, 05-05-2025

Extra material and preliminaries of representation theory of algebra

Problems coming from Chris Bowman'’s book Diagrammatic algebra are referenced as the prelim-
inary January version of the book available to the participants of the course by sending out an
email to me: langlois@uni-bonn.de

Some refresher of finite-dimensional algebras over fields

This is a small compendium of results for finite-dimensional algebras. In general, we will not
need that much so they will only be stated here without proof. References for this are the ap-
pendix of the book of Mathas [Mat99] and the classic of Curtis—Reiner [ CR66].

Let A be a finite-dimensional algebra over a field F. We will assume everything is over C
to not trouble ourselves. Let M be a finite-dimensional A-module. We say M is a simple (or
irreducible) if M is a proper and has no non-trivial proposer submodule. A filtration of M is a
sequence of A-submodules of A

0=MycCcM;CM;C---CMCMy,1 =M.

A composition series of M is a filtration of M where each composition factor M;/M;_; is a simple
A-module.

Lemma 1. Every A-module M has a composition series.
Proof. Induction on the dimension of M. O
In particular, A viewed as an A-module on itself also has a composition series.

Lemma 2. Suppose L is a simple A-module. Then L ~ A/m for a maximal ideal m and L is a composition
factor of the A-module A.

One of the key results in the representation theory of finite-dimensional algebras is that those
composition series are well-defined and that, even though you will be able to filter a module in
many ways, its composition factors are unique up to reordering.

Theorem 3 (Jordan-Holder). Suppose that M is an A-module and that
0=M;C---CMyCMy,1 =M, 0=N;C:---CN;CNj, 1 =M
are two composition series of M. Then k = | and for each simple module A-module L
{i| L~ M /Mi}l =[{i |L~N;1/N}l.
Remark 4. The Jordan—Hélder Theorem does not hold for Z-modules.

In particular, the Jordan-Holder Theorem lets us define the composition multiplicities [M : L]
of L in M as the number of composition factors of M that are isomorphic to L.

Extra material on the course

Since I departed slightly from Chris’s convention for cellularity (and also used left-module to
keep in line with the general notion), I will provide some course notes. Feel free to follow Chris’
convention instead of mine. They are slightly less general, but most cellular algebras of relevance
fall in Chris” convention. I follow here mostly the original paper of Graham and Lehrer [GL96 ]
with some proofs taken from the book of Mathas [Mat99]. Whatchout if you are to look into the
book of Mathas: he considers right-modules and his order is the reverse of the other sources
(and mine in particular).
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We begin with the original definition of cellular algebras due to Graham-Lehrer. Here, we
put R a commutative ring with unit and our algebra are associative and unital.

Definition 5 ([ GL96, Definition 1.1]). A cellular algebra is an R-algebra together with a cell datum
(A, P,C,*) where

o A =(A,x)isaposet;
o foreach A € A, P(A) is a finite set;

o C:[ | 1ca P(A)xP(A) = Ais an injective map whose image is an R-basis of A. We write C(B, T) =
C gT for B, T € P(A). This basis is called the cellular basis of A;

e x: A — A is an anti-involution,

and the following relations are respected

aCpr = Z ré,Cd. mod A (1)
SeP())
(Cir)' = Crp (2)

where A~" is generated by {Cng' |p< A, B, T € P(p)}.
It will be useful to combine (1) and (2):
Cpra= Z rfyChy mod A 3)
UeP())

The whole point of the definition is that this gives us, on the nose, a family of modules
coming from the P(A). We fix for the next part, a cellular algebra over a field R(= C) with cell
datum (A, P, C,»).

Definition 6. We define the (left) cell module VA for A € A to be the free vector space with basis
{vg | B € P(A)} and action given by
avg = Z g VB
SeP())
where 14, is determined by aCpyp.

More precisely, we define Vf\ as the R-submodule of A*/A=* with basis {C }/B\T + AV |Be
P(M)}. It is a left A-module by (1), and furthermore it is independent of T so we can identify it
with V4.

Observe that we can use the anti-involution to define right A-modules.

We now want to define the bilinear form. We will use a technical lemma to make sure it is
well-defined.

Lemma 7. Suppose B, T € P(A). Then there exists an elements rgr € R such that, for any S, U € P(1)
C?TCQU = T’BTC§\U mod A<*,

Proof. We simply simplify the product in two ways, first with (1) and then with (3); what will
remain is simply one coefficients rgr. O

This allows us to give a bilinear form (—,—),.
Definition 8. Define a bilinear form (-, ), : V* x VA — R on the basis of V* by
<UB, ”UT>/\ =TBT mod A</\,

and extending linearly.

Alexis Langlois-Rémillard 2 Universitdt Bonn



Diagrammatic algebra in representation theory

The form is symmetric and associative.
Proposition 9. Let A€ A, B,T € P(A),ac Aandv,w € VA,
1. {(v,w), ={(w,v),.
2. {av,w), =(v,a*w),.
3. Cé\Tv ={v,v1)\VB.

Proof. Since everything can be done on the basis v = v, w = vy and extended linearly, i) follows
easily by application of #; ii) follows from the definition of the bilinear form by choosing the
parentheses: <av5,vU>,\C£‘]V = aCSASC?]U = (Cg‘sa*)C{}U = Cg\s(a*C{}U) = <v5,vU>,\C§‘U. Finally,
the last is precisely the definition of the bilinear form.

U

Lemma 10. Suppose v e V* and a € ASF. Then A < y = av = 0.
Proof. Apply iii) of the previous proposition. O

Definition 11. Lef Rad ) = (v € V* | (v,w), = 0,Yw € V*} be the radical of the bilinear form. Denote
also L := V4/Rad,.

We denote A° = {1 € A |Rad, = V1.
Proposition 12. Let R be a field'; then Rad , is the unique maximal submodule of V* and L* is simple.
Proof. In class. O

Proposition 13. Let R be a field and let A,y € A°. Let M be a proposer submodule of V* and suppose
that o : VA — V#/M is an A-modules morphism.

1. Ifo#0then p< A
2. Ifu=Athen o(v)=M+r,v forallve VA,

Proof. Use the strategy of the proof of Proposition 12 to use that there exists elements v,w € V*
such that (v,w) = 1 and then use v to generate all vz € V. So for vg we get o (vg) = o(agv) =
ago(v) + M and then A < p implies ago(v) = 0 by Lemma 10. If A = p, then express ap =
Y_vep(y) TuCpr and thus Proposition 12iii) implies o (vg) = o(v)ap+M = }_yep(r) o (v)Cpyo(v)
(o(v),y)vpfory =} yepryruvy, and o = (o (v), ). O

Corollary 14. The L* are pairwise non-isomorphic.
Proof. In class. O
We now prove a technical lemma giving a filtration of the cellular algebra.

Lemma 15. Suppose that A is finite with O =Ty C Iy C --- C Ty = A is a maximal chains of ideal of A.
Then we can find a total ordering Aq,..., Ay such that T; = {Ay,..., A;}. Then

0=Al) = A) - > AT}) = A
is a filtration of A with composition factors A(T;)/A(Ti_;) = VA* @ Vi,

Proof. Since the chain of ideal is maximal, that means I \ I;_; = {u} for a certain . So we can

find a total ordering. As a consequence, A< ¢ A(T;_;) and the basis {Cz/a\iT +A(l;41)| B, T € P(A))}
is a basis of the two-sided ideal A(I;)/A(I_1). The isomorphisms of A-bimodule is then simpl

sending Cpi + A(Ti_1) — vp ® vy + A< where vy ® vy =~ Cpi. O

1]ust a reminder.
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Then, the factors at level Aof the filtration are isomorphic to direct sum of |P(1)| left-module
VA, This means that, when extended to composition series, the composition factors of A are
composition factors of V.

With this, we can already give one of the simple modules of A.

Lemma 16. When A is maximal, then V ~ L*,

Proof. We need to prove that Rad) = 0. Suppose v € Rad). We write it v = ) pcp(y)rpvp. Fix
T € P(}) and write a(vT) = }_pep(y) ché\T € A. In particular, a(vT) € ASA, and it is in A<* if and
only if v = 0. Since v is in the radical, we have (v,w), forall w € V. Therefore by the definition
of the bilinear form we have, for U, S € P(1)

veRad
Chsa(vT) = Z r8CiysCar = Z rp(vs,vp)1Cur = (v5,¥),Cr = 0 mod A™*
BeP(A) BeP(})

Then a(vT)a € A<} for all a € A<* and since ) is maximal, that means a(vT)-1 € A<*sox =0. [

Theorem 17 (Graham-Lehrer). Suppose that R is a field and that A is finite. Then {L* | A € A%} isa
complexe set of pairwise inequivalent simple modules.

Proof. Done in class. See either [Mat99, Theorem 2.16] or [Bow25, Theorem 6.2.20] for proof.
In Chris” proof, the chain of ideals comes from Lemma 15. O

This seems all dandy and fine, but sometimes it will be hard to find AL, Still, we have reduced
a dfficult problem of abstract algebra into a much more manageable linear algebra problem.

Next lecture (13-05-2025) we will see that there is even more to those cellular algebras, and
that they will also let us state meaningful results on the, much more elusive, indecomposable
modules.

Problem sheet 4
0. (Drill)

1. Prove that the algebra of nxn matrices is cellular with respect to the cellular datum A = {n},
P(n) = {1,...,n} C;; = E;j, the elementary matrices. (it amounts to checking that AE;; =

Yt Eij)
2. Define V1%, the right A-cell module.

jr

3. Fill the details of Lemma 7.

1. Chapter 6.3 Read Chapter 6.3 of Chris’ book to get an example of a different kind of cellular
algebra.

2. Chapter6.4 Read Chapter 6.4 of Chris”book. This gives a cell structure on FS3. In particular,
it does not suppose the field has characteristic 0.

3. Some funwith TL We call the matrices G, = ({(v,w) ), ,cv+ the Gram matrices of the bilinear
form.

Compute all the Gram matrices for TL, (B) for n = 2, 3,4, 5. Exhibit the values of § where the
algebra is not semisimple.

4. Gram determinant (Difficult) Find a recursion formula for the Gram determinant of Temper-
ley-Lieb algebra.
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