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Introduction

Warning

This is a work in progress. You can let me know of typos and mistake by mail at
langlois@uni-bonn.de.
The last version will be available at https://alexisl-r.github.io/teaching/
S2025_Bonn_Diagrammatic/.
This version: May 19, 2025.

These notes complement the course “Diagrammatic algebra in representation the-
ory” given at the University of Bonn during the Summer Semester 2025.

Mostly, the course follows the book “Diagrammatic algebra” ofChris Bowman [Bow25].
Exceptionally, we followed

• D. Ridout and Y. Saint-Aubin. “Standard modules, induction and the structure
of the Temperley-Lieb algebra”. Adv. Theor. Math. Phys. 18 (2014), pp. 957–1041.
arXiv: 1204.4505

for dealing with Temperley–Lieb algebras and supplemented some general theory of
finite-dimensional algebra from the references

• A. Mathas. Iwahori-Hecke algebras and Schur algebras of the symmetric group. Vol. 15.
American Mathematical Soc., 1999

• C.W.Curtis and I. Reiner. Representation theory of finite groups and associative algebras.
Vol. 356. American Mathematical Soc., 1966

• I Assem, D Simson, and A Skowroński. Elements of Representation Theory of Associa-
tive Algebras. Volume 1. Techniques of Representation Theory. Vol. 65. London Mathe-
matical Society Student Texts. New York: Cambridge University Press, 1997. DOI:
10.1017/CBO9780511614309

When the lectures followed Chris’ book, no note are included, but the chapters are
given. Problem sheets are also available on the webpage (and included at the end as
extra).

Alexis Langlois-Rémillard,
May 19, 2025
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Lecture 1

Introduction -- symmetric group -- presentation by generators and relations
-- Coxeter groups -- other diagrammatic constructions

This lecture followed roughly Chapters 1 and 2 (Sections 1.4, 2.1, 2.2, 2.4, 2.5, 2.6)
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Lecture 2

Temperley--Lieb algebra -- dimension -- Proof of the equivalence between the
diagrammatic and the generators and relations presentations.

The lecture followed, up to a 90∘ shift for the diagrams, the reference was Ridout–
Saint-Aubin (first sections).

D. Ridout and Y. Saint-Aubin. “Standard modules, induction and the structure of
the Temperley-Lieb algebra”. Adv. Theor. Math. Phys. 18 (2014), pp. 957–1041. arXiv:
1204.4505.

The relevant part of the book were Sections 5.1, 5.2, 6.1.
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Lecture 3

End of the equivalence proof for TL -- Motivation from physics -- generalisations
of TL

This lecture gave some physical motivation to consider Temperley–Lieb algebras and
other diagrammatics.

2025-05-17: My manuscript notes are online at the page course, they will be TEXed
here soon.
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Lecture 4

Refresher on finite-dimensional algebra representation theory -- Cellular algebra
-- Cell modules -- Simple modules in cellular algebras

This lecture presented cellular theory in a bit more details than the book and using a
more standard definition of cellularity. I reserved the version of the book for weighted
cellular algebra (Chapter 5). In particular, this allows us to treat Temperley–Lieb alge-
bras TL𝑛(𝛽) at 𝛽 = 0, which I find is an interesting example.

The relevant parts of the book were Sections 6.1, 6.2, 6.3

Extra material and preliminaries of representation theory
of algebra
This is a small compendiumof results for finite-dimensional algebras. In general, wewill
not need that much so they will only be stated here without proof. References for this
are the appendix of the book ofMathas [Mat99] and the classic of Curtis–Reiner [CR66].

Let 𝐴 be a finite-dimensional algebra over a field F. We will assume everything is
over C to not trouble ourselves. Let 𝑀 be a finite-dimensional 𝐴-module. We say 𝑀 is
a simple (or irreducible) if 𝑀 is a proper and has no non-trivial proposer submodule. A
filtration of 𝑀 is a sequence of 𝐴-submodules of 𝐴

0 = 𝑀0 ⊂ 𝑀1 ⊂ 𝑀1 ⊂ ⋯ ⊂ 𝑀𝑘 ⊂ 𝑀𝑘+1 = 𝑀.

A composition series of 𝑀 is a filtration of 𝑀 where each composition factor 𝑀𝑖/𝑀𝑖−1 is a
simple 𝐴-module.

Lemma 1. Every 𝐴-module 𝑀 has a composition series.

Proof. Induction on the dimension of 𝑀.

In particular, 𝐴 viewed as an 𝐴-module on itself also has a composition series.

Lemma 2. Suppose 𝐿 is a simple 𝐴-module. Then 𝐿 ≃ 𝐴/𝔪 for a maximal ideal 𝔪 and 𝐿 is a
composition factor of the 𝐴-module 𝐴.

One of the key results in the representation theory of finite-dimensional algebras is
that those composition series are well-defined and that, even though you will be able to
filter a module in many ways, its composition factors are unique up to reordering.
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Theorem 3 (Jordan–Hölder). Suppose that 𝑀 is an 𝐴-module and that

0 = 𝑀1 ⊂ ⋯ ⊂ 𝑀𝑘 ⊂ 𝑀𝑘+1 = 𝑀, 0 = 𝑁1 ⊂ ⋯ ⊂ 𝑁𝑙 ⊂ 𝑁𝑙+1 = 𝑀

are two composition series of 𝑀. Then 𝑘 = 𝑙 and for each simple module 𝐴-module 𝐿

|{𝑖 ∣ 𝐿 ≃ 𝑀𝑖+1/𝑀𝑖}| = |{𝑖 ∣ 𝐿 ≃ 𝑁𝑖+1/𝑁𝑖}|.

Remark 4. The Jordan–Hölder Theorem does not hold for Z-modules.

In particular, the Jordan–Hölder Theorem lets us define the composition multiplicities
[𝑀 ∶ 𝐿] of 𝐿 in 𝑀 as the number of composition factors of 𝑀 that are isomorphic to 𝐿.

Extra material on the course
Since I departed slightly from Chris’s convention for cellularity (and also used left-
module to keep in line with the general notion), I will provide some course notes. Feel
free to follow Chris’ convention instead of mine. They are slightly less general, but
most cellular algebras of relevance fall in Chris’ convention. I follow here mostly the
original paper of Graham and Lehrer [GL96] with some proofs taken from the book of
Mathas [Mat99]. Whatch out if you are to look into the book of Mathas: he considers
right-modules and his order is the reverse of the other sources (and mine in particular).

We begin with the original definition of cellular algebras due to Graham–Lehrer.
Here, we put 𝑅 a commutative ring with unit and our algebra are associative and unital.

Definition 5 ([GL96, Definition 1.1]). A cellular algebra is an 𝑅-algebra together with a cell
datum (Λ,𝑃, 𝐶, ∗) where

• Λ = (Λ, ⪯) is a poset;

• for each 𝜆 ∈ Λ, 𝑃(𝜆) is a finite set;

• 𝐶 ∶ ⨆𝜆∈Λ 𝑃(𝜆) × 𝑃(𝜆) → 𝐴 is an injective map whose image is an 𝑅-basis of 𝐴. We write
𝐶(𝐵, 𝑇) = 𝐶𝜆

𝐵𝑇 for 𝐵, 𝑇 ∈ 𝑃(𝜆). This basis is called the cellular basis of 𝐴;

• ∗ ∶ 𝐴 → 𝐴 is an anti-involution,

and the following relations are respected

𝑎𝐶𝜆
𝐵𝑇 ≡ 

𝑆∈𝑃(𝜆)
𝑟𝑎𝑆𝐵𝐶𝜆

𝑆𝑇 mod 𝐴<𝜆 (4.1)

(𝐶𝜆
𝐵𝑇 )∗ = 𝐶𝜆

𝑇𝐵, (4.2)

where 𝐴≺𝜆 is generated by {𝐶𝜇
𝐵′𝑇′ ∣ 𝜇 ≺ 𝜆, 𝐵′, 𝑇 ′ ∈ 𝑃(𝜇)}.

It will be useful to combine (4.1) and (4.2):

𝐶𝜆
𝐵𝑇𝑎 ≡ 

𝑈∈𝑃(𝜆)
𝑟𝑎𝐵𝑈𝐶𝜆

𝐵𝑈 mod 𝐴<𝜆 (4.3)

Thewhole point of the definition is that this gives us, on the nose, a family ofmodules
coming from the 𝑃(𝜆). We fix for the next part, a cellular algebra over a field 𝑅(= C)with
cell datum (Λ, 𝑃, 𝐶, ∗).
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Definition 6. We define the (left) cell module 𝑉𝜆 for 𝜆 ∈ Λ to be the free vector space with
basis {𝑣𝐵 ∣ 𝐵 ∈ 𝑃(𝜆)} and action given by

𝑎𝑣𝐵 = 
𝑆∈𝑃(𝜆)

𝑟𝑎𝐵𝐵′𝑣𝐵′

where 𝑟𝑎𝐵𝐵′ is determined by 𝑎𝐶𝜆
𝐵𝐵.

More precisely, we define𝑉𝜆
𝑇 as the 𝑅-submodule of𝐴⪯𝜆/𝐴≺𝜆 with basis {𝐶𝜆

𝐵𝑇 +𝐴≺𝜆 ∣
𝐵 ∈ 𝑃(𝜆)}. It is a left 𝐴-module by (4.1), and furthermore it is independent of 𝑇 so we
can identify it with 𝑉𝜆.

Observe that we can use the anti-involution to define right 𝐴-modules.
We nowwant to define the bilinear form. Wewill use a technical lemma tomake sure

it is well-defined.

Lemma 7. Suppose 𝐵, 𝑇 ∈ 𝑃(𝜆). Then there exists an elements 𝑟𝐵𝑇 ∈ 𝑅 such that, for any
𝑆,𝑈 ∈ 𝑃(𝜆)

𝐶𝜆
𝑆𝑇𝐶𝜆

𝐵𝑈 ≡ 𝑟𝐵𝑇𝐶𝜆
𝑆𝑈 mod 𝐴≺𝜆.

Proof. We simply simplify the product in two ways, first with (4.1) and then with (4.3);
what will remain is simply one coefficients 𝑟𝐵𝑇 .

This allows us to give a bilinear form ⟨−, −⟩𝜆.

Definition 8. Define a bilinear form ⟨−, −⟩𝜆 ∶ 𝑉𝜆 ×𝑉𝜆 → 𝑅 on the basis of 𝑉𝜆 by

⟨𝑣𝐵, 𝑣𝑇⟩𝜆 = 𝑟𝐵𝑇 mod 𝐴≺𝜆,

and extending linearly.

The form is symmetric and associative.

Proposition 9. Let 𝜆 ∈ Λ, 𝐵, 𝑇 ∈ 𝑃(𝜆), 𝑎 ∈ 𝐴 and 𝑣, 𝑤 ∈ 𝑉𝜆.

1. ⟨𝑣, 𝑤⟩𝜆 = ⟨𝑤, 𝑣⟩𝜆.

2. ⟨𝑎𝑣, 𝑤⟩𝜆 = ⟨𝑣, 𝑎∗𝑤⟩𝜆.

3. 𝐶𝜆
𝐵𝑇𝑣 = ⟨𝑣, 𝑣𝑇⟩𝜆𝑣𝐵.

Proof. Since everything can be done on the basis 𝑣 = 𝑣𝑆, 𝑤 = 𝑣𝑈 and extended linearly,
i) follows easily by application of ∗; ii) follows from the definition of the bilinear form
by choosing the parentheses: ⟨𝑎𝑣𝑆, 𝑣𝑈⟩𝜆𝐶𝜆

𝑈𝑉 ≡ 𝑎𝐶𝜆
𝑆𝑆𝐶𝜆

𝑈𝑈 ≡ (𝐶𝜆
𝑆𝑆𝑎∗)𝐶𝜆

𝑈𝑈 ≡ 𝐶𝜆
𝑆𝑆(𝑎∗𝐶𝜆

𝑈𝑈 ) ≡
⟨𝑣𝑆, 𝑣𝑈⟩𝜆𝐶𝜆

𝑆𝑈 . Finally, the last is precisely the definition of the bilinear form.

Lemma 10. Suppose 𝑣 ∈ 𝑉𝜆 and 𝑎 ∈ 𝐴⪯𝜇. Then 𝜆 ≺ 𝜇 ⇒ 𝑎𝑣 = 0.

Proof. Apply iii) of the previous proposition.

Definition 11. Let Rad𝜆 = {𝑣 ∈ 𝑉𝜆 ∣ ⟨𝑣, 𝑤⟩𝜆 = 0, ∀𝑤 ∈ 𝑉𝜆} be the radical of the bilinear form.
Denote also 𝐿𝜆 ∶= 𝑉𝜆/Rad𝜆.

We denote Λ0 = {𝜆 ∈ Λ ∣ Rad𝜆 ≠ 𝑉𝜆}.
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Proposition 12. Let 𝑅 be a field1; then Rad𝜆 is the unique maximal submodule of 𝑉𝜆 and 𝐿𝜆 is
simple.
Proof. In class.

Proposition 13. Let 𝑅 be a field and let 𝜆, 𝜇 ∈ Λ0. Let 𝑀 be a proposer submodule of 𝑉𝜇 and
suppose that 𝜎 ∶ 𝑉𝜆 → 𝑉𝜇/𝑀 is an 𝐴-modules morphism.

1. If 𝜎 ≠ 0 then 𝜇 ⪯ 𝜆.

2. If 𝜇 = 𝜆 then 𝜎(𝑣) = 𝑀+ 𝑟𝜎𝑣 for all 𝑣 ∈ 𝑉𝜆.
Proof. Use the strategy of the proof of Proposition 12 to use that there exists elements
𝑣, 𝑤 ∈ 𝑉𝜆 such that ⟨𝑣, 𝑤⟩ = 1 and then use 𝑣 to generate all 𝑣𝐵 ∈ 𝑉𝜆. So for 𝑣𝐵 we get
𝜎(𝑣𝐵) = 𝜎(𝑎𝐵𝑣) = 𝑎𝐵𝜎(𝑣) +𝑀 and then 𝜆 ≺ 𝜇 implies 𝑎𝐵𝜎(𝑣) = 0 by Lemma 10. If 𝜆 = 𝜇,
then express 𝑎𝐵 = ∑𝑈∈𝑃(𝜆) 𝑟𝑈𝐶𝐵𝑇 and thus Proposition 12 iii) implies 𝜎(𝑣𝐵) = 𝜎(𝑣)𝑎𝐵 +
𝑀 = ∑𝑈∈𝑃(𝜆) 𝑟𝑈𝜎(𝑣)𝐶𝐵𝑈𝜎(𝑣) = ⟨𝜎(𝑣), 𝑦⟩𝑣𝐵 for 𝑦 = ∑𝑈∈𝑃(𝜆) 𝑟𝑈𝑣𝑈 , and 𝑟𝜎 = ⟨𝜎(𝑣), 𝑦⟩𝜆.

Corollary 14. The 𝐿𝜆 are pairwise non-isomorphic.
Proof. In class.

We now prove a technical lemma giving a filtration of the cellular algebra.
Lemma 15. Suppose that Λ is finite with ∅ = Γ0 ⊂ Γ1 ⊂ ⋯ ⊂ Γ𝑘 = Λ is a maximal chains of
ideal of Λ. Then we can find a total ordering 𝜆1, … , 𝜆𝑘 such that Γ𝑖 = {𝜆1, … , 𝜆𝑖}. Then

0 = 𝐴(Γ0) ↪ 𝐴(Γ1) ↪ ⋯ ↪ 𝐴(Γ𝑘) = 𝐴

is a filtration of 𝐴 with composition factors 𝐴(Γ𝑖)/𝐴(Γ𝑖−1) ≃ 𝑉𝜆𝑖∗ ⊗𝑅 𝑉𝜆𝑖 .
Proof. Since the chain of ideal is maximal, that means Γ𝑖 ⧵ Γ𝑖−1 = {𝜇} for a certain 𝜇. So
we can find a total ordering. As a consequence, 𝐴≺𝜆𝑖 ⊂ 𝐴(Γ𝑖−1) and the basis {𝐶𝜆𝑖

𝐵𝑇 +
𝐴(Γ𝑖+1) ∣ 𝐵, 𝑇 ∈ 𝑃(𝜆𝑖)} is a basis of the two-sided ideal 𝐴(Γ𝑖)/𝐴(Γ𝑖−1). The isomorphisms
of 𝐴-bimodule is then simple sending 𝐶𝜆𝑖

𝐵𝑇 +𝐴(Γ𝑖−1) ↦ 𝑣𝐵 ⊗ 𝑣𝑇 +𝐴≺𝜆𝑖 where 𝑣𝐵 ⊗ 𝑣𝑇 ≃
𝐶𝜆𝑖
𝐵𝑇 .

Then, the factors at level 𝜆of the filtration are isomorphic to direct sum of |𝑃(𝜆)| left-
module 𝑉𝜆. This means that, when extended to composition series, the composition
factors of 𝐴 are composition factors of 𝑉𝜆.

With this, we can already give one of the simple modules of 𝐴.
Lemma 16. When 𝜆 is maximal, then 𝑉𝜆 ≃ 𝐿𝜆.
Proof. We need to prove that Rad𝜆 = 0. Suppose 𝑣 ∈ Rad𝜆. We write it 𝑣 = ∑𝐵∈𝑃(𝜆) 𝑟𝐵𝑣𝐵.
Fix 𝑇 ∈ 𝑃(𝜆) and write 𝑎(𝑣𝑇) = ∑𝐵∈𝑃(𝜆) 𝑟𝐵𝑐

𝜆
𝐵𝑇 ∈ 𝐴. In particular, 𝑎(𝑣𝑇) ∈ 𝐴⪯Λ, and it is in

𝐴≺𝜆 if and only if 𝑣 = 0. Since 𝑣 is in the radical, we have ⟨𝑣, 𝑤⟩𝜆 for all𝑤 ∈ 𝑉𝜆. Therefore
by the definition of the bilinear form we have, for 𝑈, 𝑆 ∈ 𝑃(𝜆)

𝐶𝜆
𝑈𝑆𝑎(𝑣𝑇) = 

𝐵∈𝑃(𝜆)
𝑟𝐵𝐶𝜆

𝑈𝑆𝐶𝜆
𝐵𝑇 ≡ 

𝐵∈𝑃(𝜆)
𝑟𝐵⟨𝑣𝑆, 𝑣𝐵⟩𝜆𝐶𝑈𝑇 = ⟨𝑣𝑆, 𝑣⟩𝜆𝐶𝜆

𝑈𝑇
𝑣∈Rad𝜆= 0 mod 𝐴≺𝜆

Then 𝑎(𝑣𝑇)𝑎 ∈ 𝐴≺𝜆 for all 𝑎 ∈ 𝐴⪯𝜆 and since 𝜆 is maximal, that means 𝑎(𝑣𝑇) ⋅ 1 ∈ 𝐴≺𝜆 so
𝑥 = 0.

1Just a reminder.
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Theorem 17 (Graham–Lehrer). Suppose that 𝑅 is a field and that Λ is finite. Then {𝐿𝜆 ∣ 𝜆 ∈
Λ0} is a complete set of pairwise inequivalent simple modules.

Proof. Done in class. See either [Mat99, Theorem 2.16] or [Bow25, Theorem 6.2.20] for
proof. In Chris’ proof, the chain of ideals comes from Lemma 15.

This seems all dandy and fine, but sometimes it will be hard to find Λ0. Still, we
have reduced a difficult problem of abstract algebra into amuchmoremanageable linear
algebra problem.

Next lecture (13-05-2025) we will see that there is even more to those cellular alge-
bras, and that they will also let us state meaningful results on the, much more elusive,
indecomposable modules.
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Lecture 5

Cellular algebra -- indecomposable modules -- composition series -- Jordan--Hölder
Theorem -- decomposition number -- Krull--Schmidt Theorem -- idempotents --
radical

Let A be a finite-dimensional algebra. When seen as a left-module on itself, it has a
composition series, that is, a filtration where the factor are simple:

0 = A0 ⊂ A1 ⊂ ⋯ ⊂ A𝑘 ⊂ A𝑘+1 = A, (5.1)

wehere A𝑖/A𝑖−1 is simple.

Lemma 18. Any simple A-module 𝑀 appears a as a composition factor of A.

By the Jordan–Hölder Theorem 3, we can speak of the Jordan–Hölder composition
series of a module.

Definition 19. The decomposition number of a simple module 𝐿 inside a module𝑀 is the number
of time 𝐿 appears as a composition factor inside the composition series of 𝑀. We denote it [𝑀 ∶ 𝐿].

In cellular algebra, we define the decomposition matrix as

D = ([𝑉𝜆 ∶ 𝐿𝜇])𝜆∈Λ,𝜇∈Λ0 . (5.2)

As a consequence of Graham Lehrer Theorem 17, we know how D looks like.

Corollary 20. The matrix D is unitriangular.

In fact, we have even more, as cellular algebra also gives us information on the more
elusive indecomposable modules.

Definition 21. A module 𝑀 is indecomposable if it does not decompose into the direct sum of
two non-trivial submodule.

In particular, simple modules are indecomposable, but the converse is not always
true. From a course of

representation theory of
finite groups over C, one
might get this impression,
but on algebra, it is easy to
find example where it does
not work.

We will be interested in a class of special indecomposable modules.

Theorem 22 (Krull–Schmidt). Suppose 𝑀 is an 𝐴-module and that  

𝑀1 ⊕⋯⊕𝑀𝑘 = 𝑀 = 𝑁1 ⊕⋯⊕𝑁𝑙

are two decomposition of 𝑀 into a direct sum of indecomposable modules. Then 𝑘 = 𝑙 and we can
rearrange the 𝑁𝑖 via a permutation 𝜎 such that 𝑁𝜎𝑖 ≃ 𝑀𝑖.
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We will call the indecomposable module 𝑃𝑖 appearing in the Krull–Schmidt decom-
position of A viewed as a module on itself, the principal indecomposable.

The radical Rad(A) of a finite-dimensional F-algebraAwas defined as the sum of all
nilpotent ideals (so ideal 𝐼 for which there exists an 𝑛 ∈ N such that 𝐼𝑛 = 0). Then we
define the radical of a submodule 𝑀 ⊂ A as Rad(𝑀) ∶= Rad(A) ∩𝑀.

There is a one-to-one correspondence between principal indecomposable module
and simple module given by sending 𝑃 ↦ 𝑃/Rad𝑃.

In cellular algebra, we can then speak of thematrix given by the decomposition num-
ber [𝑃𝜆 ∶ 𝐿𝜇] for 𝜆, 𝜇 ∈ Λ0. By denoting 𝑃𝜆 the principal indecomposable whose head is
isomorphic to 𝐿𝜆 (𝑃𝜆/Rad𝑃𝜆 ≃ 𝐿𝜆). We denote C = ([𝑃𝜆 ∶ 𝐿𝜇])𝜆,𝜇∈Λ0

Awonderful result of cellular theory is that we can access these decomposition num-
ber via the decomposition matrix.

Theorem 23 (Graham–Lehrer). Let 𝐴 be a cellular algebra over a field with Λ finite. Then

C = D𝑡D.
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Lecture 6

Z-gradings -- weighted cellular algebras -- Z--graded (weighted) cellular
algebras -- The Idempotent Trick -- The Grading Trick -- binary Schur algebra

This lectures coveredmaterial from the books. Relevant sections are Sections 5.3, 5.6,
5.7, 6.3 (gradings and binary Schur algebras); Sections 6.6, 6.7, 6.9 (weighted cellular
algebras and Z–graded cellular algebra)
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Lecture 7
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