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Preface

A chess problem is genuine
mathematics, but it is in some way
“trivial” mathematics. However,
ingenious and intricate, however
original and surprising the moves,
there is something essential lacking.
Chess problems are unimportant. The
best mathematics is serious as well as
beautiful – “important” if you like, but
the word is very ambiguous, and
“serious” expresses what I mean much
better.

G. H. Hardy

This work is an attempt to collect some of the material I accumulated over the
years on chess and mathematics. After some years of being a mathematician, and
many more a chess player, the examples lying at the intersection of those two inter-
ested gradually accumulated. It was always in the back of my mind to combine the
two, so I kept a mental note each time I saw something interesting combining them.
What follows is an organic document tenting to share what I found.

I am certainly not the first to assemble chess-inspired mathematics. I do di-
rect you to the books of Watkins [9] and the collection of problem assembled by
Petković [6] for an interesting read. A lot of the references and ideas I got for the
queens problem come from the nice survey by Bell and Brett [2]. An older and lighter
source for the n-Queens problem is the piece of Rivin, Vardi and Zimmermann in the
American Mathematical Monthly [8].

Chapter 1 is a translation of an outreach article [4] written for the Québec mag-
azine Accromath. It gives an overview of the Eight queen problem and presents how
to attack it with a computer. Chapter 2 is a translation of outreach article [5] written
with Charles Senécal for Accromath following up on the one presented in Chapter 1.
It goes over generalisations of the Eight queens and queen domination problems hap-
pening when the geometry of the chessboard is changed: precisely what happens if
we consider a chessboard on a torus, as Pólya did [7] or try to dominate polyomi-
noes, as recently Alpert and Roldán did [1]. Chapter 3 then presents a collection of
problems around those themes. Part of them were put with the Accromath articles
and a few were made for an activity of the mathematical student association PRIME
at UGent in 2021. Finally, Chapter 4 contains further reading and plans for future
activities I would like to try.
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Chapter 1

Eight queens and a chessboard

By Alexis Langlois-Rémillard¹

One chessboard, eight queens and a constraint, that is all the needed component of
the Eight queens puzzle. Despite this simplicity, it keeps being studied after more than
170 years. We follow the traces of one of the greatest mathematician to unveil its secrets.

1.1 A very special puzzle

Chess as we know it has been played for centuries, and variants of the game, for
thousands of years. Next to the game itself, enthousiasts and amateurs have also
created many a puzzles around using the rules of the game. If some of those puzzles
were created by teachers as routine exercises to improve and practice, others were
build by aesthetes that have developed chess problem creation into an art, crafting
rightfully-called compositions under strict rules.

Outside this spectrum, another type of puzzle was discussed next to the black
and white terrain: amusement using chess pieces and their geometrical movements
with no concern for the game. Most famous amongst those is the knight tour: one
has to make a knight visit each square of the chessboard only once. Often, those
problems thought as entertainment hid deep mathematical ideas in the simplicity of
their questions, often drawing professionals and amateurs alike to try their luck at the
study. One of the best example of the impact of such puzzle needs only queens and
sparked a century and a half quest to unravel its secrets. A queen threaten another
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Figure 1.1: Movement of the
queen

if she can reach the square the other occupies (see Figure 1.2).
The Eight queen puzzle was first published in 1848 by Max Bezzel (1824–1871)

in the German periodic Schachzeitung (chess journal). It was then showcased many
times in other chess revues and other newspapers.

Problem 1.1.1. Howmany ways are there to place eight queens on a chessboard without
having them threaten each others?

¹This chapter is a translation, with small modifications, of Alexis Langlois-Rémillard. “Huit dames et
un échiquier”. In: Accromath 17.1 (2022), pp. 8–13. issn: 1911-0189. uRl: https://accromath.uqam.
ca/2022/02/huit-dames-et-un-echiquier/.
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8 CHAPTER 1. EIGHT QUEENS AND A CHESSBOARD

To begin, a queen moves on a chessboard alongside rows, columns and diagonals
(see Figure 2.3). If it is (relatively) easy to find one solution to the problem, how can
we be sure to find them all? Before keeping reading, now would be a good time to
take a pause, find a (possibly virtual) chessboard, gather some queens and try!

At the intersection of chess and maths

Where does this association between the worlds of chess and mathematics
in popular culture? Looking at the history, we can easily understand why!
In the sixteen world champions since 1862, we find two professional math-
ematicians: Emanuel Lasker (champion from 1894 to 1921) and Machgielis
Euwe (champion from 1935 to 1937), and one engineer and computer scien-
tist: Mikhael Boitvinnik (champion from 1948 to 1957, 1958 to 1960 and 1961
to 1963). Still today, many top players studied mathematics, for example the
grandmasters John Nunn, Thomas Ernst, Jonathan Speelman, Jonathan Mes-
tel and Kasten Müller, to name a few, all have a PhD in mathematics. At the
very top, the 2021 blitz and 2009 junior world champion Maxime Vachier-
Lagrave has taken the time to finish his bachelor in mathematics before be-
coming a full-time professional.
Chess, with its rules pertaining to the movement of the pieces in its space
of 64 squares, inspired throughout the years many problems mathematically
rich. In the eighteenth century, Leonhard Euler (1707–1783) studied with a
new field, graph theory, the knight’s tour problem, a famous puzzle where
it is asked to visit all squares of the chessboard once and only once using a
knight. Later, the German mathematician Ernst Zemerlo (1871–1953) used
chess as an example to establish the bases of the field of game theory by
defining mathematically the concept of winning position in his contribution
to the International Congress of Mathematician in 1913.
In the middle of the twentieth century, the game inspired mathematicians
to apply their knowledge to create programs that could play chess. Alan
Turing (1912–1954) created such a program in 1948 with his friend the statis-
tician Davig G. Champernowne (1912–2000). Computer then could not run
the program as it was too complex, so the computations had to be done man-
ually! The game was for a long time a lab to test methods in artificial intel-
ligence. For example, when the mathematician Barbara Liskov (1939–) de-
veloped heuristics of optimal search for her PhD thesis in 1968, she applied
them to a program specifically created to play chess endgames to showcase
their power.

1.2 The solution of the Prince of mathematics: Gauss

Q

Q

q

q

Figure 1.2: The queens in
red are threatening them-
selves along a SE diagonal,
ant those in blue, along a NE
diagonal.

There are many ways to solve this problem, as much maybe as great persons trying
to solve it. We will follow the lead of the astronomer Heinrich Christian Schumacher
(1780–1850). Schumacher was passionate about chess, interested in mathematics and
kept all his life many correspondences. Onemanwith whom he exchanged oftenwas
the great German mathematician Carl Friedrich Gauss (1777–1855).

Gauss wrote to him about the problem in September 1850 after seeing an article
of Franz Nauck in the Leipzig gazette Illustrirten Zeitung. Nauck claimed to have
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solved the problem and gave 60 solutions. Intrigued, Gauss had spent a morning on
it and found more solutions and asked his friend if he had seen the puzzle.

Schumacher was quite enthusiast and the two exchanged a few letters about it.
Meanwhile, Nauck corrected his mistake and correctly gave the 92 solutions. Gauss
did not verify that they were all of them, but he explained a method to do so to his
friend, letting him finish the computations stating: “With those methodic trial-and-
errors, one would not find it difficult to find the solutions if one would be ready to
spend an hour of two²”. The story does not tell if Schumacher solved the challenge
before his death, but the method of Gauss is certainly still worth considering.

It goes like this, step by step

1. Themovement of a queen is the union of four lines: a vertical, a horizontal and
two diagonal, one North-East of slope 1 and one South-East of slope −1.

2. One and only one queen is required on each column and one and only one
queen is required on each row. So all the vertical and horizontal lines must be
distinct.

3. From this we note the position the queens by a list of 8 numbers

(Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8)

where Qi gives the row on which the queen of the ith column is, counting
from bottom to top. This make sure that there is only one queen per column.
When all columns are distinct, all the Qi are distinct and we call such a list a
permutation. All solutions must be permutations, but not all permutations are
solutions: diagonals matter.

4. Two queens in positions (j,Dj) and (k,Dk) are on the same NE diagonal if the
two coordinate pairs lie on the same line of equation y = x+ b, so ifDj − j =
Dk − k. For example on Figure 1.2, the two black queens are in position (5, 4)
and (8, 7), and they are on the line y = x− 1 as 7− 8 = −1 = 4− 5.

5. For the SE diagonals, we follow the same line of reasoning, but for lines of
equation y = −x + b. For example, on Figure 1.2 again, the white queens on
position (2, 6) and (6, 2) are on the line y = −x+ 8.

6. The condition for a permutation to be a solution is thus: all sumsDk + k must
be distinct for 1 ≤ k ≤ 8 and all differences Dk − k also.
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Q

Figure 1.3: A solution to the
8 queens problem.

One example and one non-example: Figure 1.3 corresponds to to the permutation
(6, 1, 5, 2, 8, 3, 7, 4). We quickly compute all differences and all sums to get that all
numbers are different in the difference (A) and in the sum (B).

6 1 5 2 8 3 7 4 6 1 5 2 8 3 7 4
- 1 2 3 4 5 6 7 8 + 1 2 3 4 5 6 7 8
A 5 -1 2 -2 3 -3 0 -4 B 7 3 8 6 13 9 14 12
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Figure 1.4: Not a solution to
the 8 queens problem.

However, if we consider the the position of Figure 1.4, which corresponds to the
permutation (1, 7, 4, 6, 2, 8, 5, 3), we see that it is not a solution since there are two
“2” in the difference (C) and two “7” in the sum (D).

²“Schwer ist es übrigens nicht, durch ein methodisches Tatonnireu sich diese Gewissheit zu verschaf-
fen, wenn man 1 oder en Paar Stunden daran wenden will.”
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1 7 4 6 2 8 5 3 1 7 4 6 2 8 5 3
- 1 2 3 4 5 6 7 8 + 1 2 3 4 5 6 7 8
C 0 5 1 2 -3 2 -2 -5 D 2 9 7 10 7 14 12 11

After long verifications, one can obtain 92 unique solutions to the problem. These
solutions can then be grouped in 12 families. Eleven of eight solutions are given by
one solution of the family and the images under rotation of 90◦, 180◦ and 270◦, and
under the four reflections with respect to the horizontal, vertical and diagonal axes.
A last family of four solutions is given by one solution of the family and its image
under the rotation of 90◦ and under the two reflections with respect to the vertical
and diagonal NE axes.

Following blindly Gauss’s method would yield

8! = 8× 7× 6× 5× 4× 3× 2× 1 = 40 320

permutations to check. The great German mathematician was maybe a bit optimist
when he said it would be possible to verify everything in one or two hours! But we
might expect somebody of the stature of Gauss to have some tricks under his sleeves.

1.3 A step backward, two forward

Let us assume you would want to find all solutions to the Eight queen problem. You
would undoubtedly become quite good at those computations, an would quickly find
ways to save some work. For example, it is clear that any permutation starting by
(1, 2, x, x, x, x, x, x) is not a solution since the two first queens attack themselves.
By discarding all such permutations, you just saved 6! = 720 positions to check, not
bad!

This is good, but how canwe be certain to find asmany such heuristics as possible,
andmore importantly, be sure that all the solutionswill be found? This is a commonly
studied question in informatics. One way to ensure this is called backtracking. The
Eight queens puzzle is the classical example to illustrate those type of algorithms.

In the context of the puzzle, the idea of the algorithm rests upon one observation:
for a permutation to be a solution on the n×n chessboard, the first k queens must be
a solution on the k×n chessboard. Practically, this means that we add the queens one
by one, and verify at each step that no queen gets threatenedwhenwe do so. If adding
a queen creates a problem, we change the last queen(s) until we reach a solution,
hence the name. This way, we never encounter two permutations containing the
same problem.

1.4 And for bigger?

What happens if we try to generalise the problem for bigger chessboards? We get a
generalisation of the problem. Mathematicians loves generalising problems, and this
one is no exception. When Nauck got the solutions of the Eight queen puzzle, he
also proposed to look into generalisation to bigger chessboards. The French math-
ematician Lionnet in 1869 asked this question to the students of the École normale
supérieure and Polytechnique. It reads as follows.
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Figure 1.5: The backtracking algorithm on a 4× 4 chessboard

Problem 1.4.1. Howmany ways are there to place n non-threatening queens on a n×n
chessboard?

The first serious attempt recorded to tackle the problem was due to Emil Pauls,
a pharmacist interested and chess and mathematics. We will see later his general
solution. However, let’s remark that the solution we proposed for the Eight queens
problem is suitable to tackle the general problem. To paraphrase Gauss, someone
with a bit of knowledge of programming would only need one or two hours to write
a backtracking algorithm able to generate all solutions for a n× n chessboard.

There is only one small problem. Even if the backtracking algorithmwe described
is very efficient, it still grows very fast. And indeed, despite all the advances in
computing power, we do not know the exact number of solutions to the n queens
problem when n > 28. The computations for n = 27 took slightly more than one
year with state-of-the-art massively parallel supercomputers in 2016.

We could continue to search for better algorithms, or study the problem deeper,
but we will never be able to find a closed formula for all n. Indeed, Hsiang, Hsu and
Shieh proved in 2004 that it is not possible [3].

Q

Q

Q

Q

Figure 1.6: Pauls solution for
4.

In view of this result, most of the research in informatics on the n queens problem
have been concentrated on finding one solution, instead of enumerating them all.
Many sophisticated algorithms were originally tested on this task. The interest of
such problems is to inspire methods which can then be applied elsewhere: the result
is less important than the path taken. And in fact, finding one solution to the n
queens problem does not require a fancy algorithm. Emil Pauls gave one construction
for n > 3 already in 1873. We present his solution since it is quite simple and elegant.
It depends on the remainder of the division of n by 6.

Q
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Q

Q

Figure 1.7: Pauls solution for
n = 5.

• n = 6k or n = 6k + 4. The permutation with first half even numbers, and
second odd numbers, both in increasing order, so

(2, 4, . . . , n, 1, 3, . . . , n− 1)

is a solution. (Figure 1.6 is an example for n = 4.)

• n = 6k + 1 or n = 6k + 5. Place one queen in the top left corner and place
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the solution for the remaining n − 1 × n − 1 chessboard presented below.
(Figure 1.7 is an example for n = 5.

Q
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q

Q

Figure 1.8: Pauls solution for
n = 8.

• n = 6k + 2. It is the most complex case, let’s follow it on Figure 1.8. First,
place the left- and rightmost queens at (1, 4) and (n, n − 3) (in green). Then,
place the middle at (n/2−1, n), (n/2, 2), (n/2+1, n−1) and (n/2+2, 1) (in
blue). In the left part, place then queens at each (i, n − 2(i − 1)) for 2 ≤ i ≤
n/2 − 2 (in red). And in the right part, queens are placed at (j, 2n − 2j + 1)
for n/2 + 3 ≤ j ≤ n− 1 (in pink).

• n = 6k + 3. It suffices to place the solution for n − 1 = 6k + 2 previously
shown in the first n−1×n−1 chessboard and to add a queen in the top right
corner (Figure 1.9).
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Figure 1.9: Pauls solution for
n = 9.

Algorithmic complexity

A computer has a great computation power, but it is not unlimited. Informat-
ics has developed tools to define the complexity of algorithms. At its base,
the more steps an algorithm needs to complete a task, the more complex it
is. Algorithms are divided in classes according to the type of growth their
complexity experiments as the size of the task increases.
The n queens problem contains many examples of complexity classes. In-
genious algorithms have been created to find a solution in polynomial time.
Finding all solutions with the backtracking algorithm requires an exponential
time. The brute-force permutation method of Gauss needs a factorial time,
but it is still magnitude better than the naive brute-force method where we
choose n squares to place queens in the n2 of the chess board. For this one,
the time is bigger-than-factorial as the number of position to verify is given
by the binomial coefficient

(
n2

n

)
= n2!

n!×(n2−n)! . If it is possible to solve the
Eight queens problem this way with a modern desktop, for the 20 queens
problem, it would require to verify more than 2.78 × 1033 positions, which
would require more than a human lifetime even with all the supercomputers
of the Earth!

n Brute Gauss Backtracking One solution
1 1 1 1 1
2 6 2 1 2
3 84 6 4 6
4 1820 24 9 ∼10
5 53130 120 35 ∼20
8 4426165368 40320 ∼1096 ∼50

10 1.73× 1014 3628800 ∼18000 ∼350
14 8.71× 1020 87178291200 ∼13679276 ∼2000
n

(
n2

n

)
n! an n log(n) — n3

There is still a lot to be done around this problem. We only considered here plac-
ing the maximal number of queen on a chessboard. A closely-related problem asks
for the minimal amount of queens necessary to cover all squares on the chessboard.
Other generalisations of the problems include checking for rectangular chessboards,
or even more foreign boards or paving. In the next chapter of this work, we will
present two of these generalisations.
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All solutions for the Eight queens problem

The first eleven are in family of 12 solutions by rotations and reflection and
the last is in a family of 4 by rotation of 90◦ and reflections along the hori-
zontal and diagonal NE axes.
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Chapter 2

Queens on queer chessboards

By Alexis Langlois-Rémillard and Charles Senécal¹

Chess, with its simple rules governing the movement of pieces in its closed space,
inspired many interesting puzzles. Some of them have surprising links with various do-
mains of mathematics. In the dialogue between chess andmathematics, it was sometime
mathematics that modified the rule of the game to let interesting problems hatch.Q

Q

Q

Q

Q

Figure 2.1: Domination of 5
queens 2.1 Generalising classical problems

One of the most celebrated mathematical-chess problem is the Eight queen prob-
lem covered in Chapter 1. This puzzle asks to place the maximal amount of non-
threatening queens on a chessboard. A similar problem, the Queen domination prob-
lem is to ask the minimal amount of queens needed to cover all square of the chess-
board, so that each square is either occupied by a queen or guarded by a queen.

Mathematicians who studied those two problems have long generalised them by
increasing the size, and adding and removing constraints. Some were straightfor-
ward: studying a n×n chessboard instead of the classical one for example, but some
modified deeply the rules.

In the following, we will consider two such attempts. The first one was intro-
duced by the Hungarian mathematician Georg Pólya in 1918 and considers what
happens to the n queens problem if the chessboard is placed on a torus [7]. The sec-
ond was studied a century latter by Hannah Alpert and Érika Roldán and consider
the domination problem on polyominoes [1].

Figure 2.2: Two polyomi-
noes

So, the two problems will be the following.

Problem 2.1.1. For which n is there a solution for the n queens problem on the torus.

Problem 2.1.2. What is the minimal number of queens necessary to dominate a poly-
omino of N tiles.

¹This chapter is a translation of Alexis Langlois-Rémillard and Charles Senécal. “Des dames sur
d’étranges échiquiers”. In: Accromath (2022). to appear, 6p.
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Q Q

q q

q q

Figure 2.4: Movement of the queen, decomposed.

2.2 Pólya’s generalisation with a modular detour

Figure 2.3: A toroidal chess-
board

Let us consider the toroidal chessboard. How do the pieces move on such a donut-
shaped board? We do not need to have such a strange board to think about the
movement of the pieces: a simple chessboard is enough, we only need to add some
special rules once we reach the border.

To transform a normal chessboard in a toroidal one, we construct a “modular”
chessboard first. This special chessboard consists in many chessboards put next to
each others. When they move, pieces simply continue their paths on the boards.
When the movement ends, we than put the piece at the same square it reached on
the initial board.

We denote the position of a queen by (c, r) for c the column, and r the row. An
example of the movement described is present in Figure 2.4. There, the queen at
(6, 5) can reach the squares (9, 8) and (9, 2) on the second chessboard. This means
she can reach the two squares (1, 8) and (1, 2) on the initial chessboard.

2.3 Modular arithmetic

Maybe the last section description did not convince you. Luckily, there is a mathe-
matical way to describe such thing: modular arithmetic. In the modular world, equal-
ities are replaced by congruences linked to a certain number n. Two numbers a, b
are said to be congruent if they share the same remainder by the division by n, so
if there exists an integer k such that a = k × n + b. We denote congruences by
a = bmodn.

The clock is a typical example of modular arithmetic for n = 24 (or n = 12).
Sleeping 8 hours after going to bed at 23:00 means waking up at 7:00, not 31:00! We
just did here the congruence 31 = 7mod 24.

The “modular” chessboard we introduced previously is an example of modular
arithmetic for n = 8. All added chessboards are coming from vertical and horizon-
tal translations of 8 units. The operation “going back to the initial chessboard” is
precisely taking the modulo of each coordinate (c, r).
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2.4 Pólya’s problem
The biggest difference of the toroidal n queen problem and the classical one rests in
the diagonal. For a classical 8× 8 chessboard, there are 15 NE diagonals; on a torus,
only 8 remains (see Figure 2.5).

6 5 4 3 2 1 78

8

6

5

4

3

2

1

Figure 2.5: The 8 SE diago-
nals

We know from Chapter 1 that all classical n× n chessboards have a solution for
n ≥ 4. Pólya was asking himself if putting the chessboard on a torus would change
that, and if so, how? Before giving what he found, we study the problem for a 8× 8
chessboard.
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8,7,1
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Figure 2.6: The numerota-
tion of the chessboard

Let us index the SE diagonals as in Figure 2.5 and write, for each square of the
chessboard, its column c, its row r and its SE diagonal d. Each of these numbers has
to be between 1 and 8. The choice of numbering for SE diagonals was not random: it
is made so in order that 8 divides the sum c+ r + d for each square, see Figure 2.6.

Suppose the set {(ci, ri, di) | 1 ≤ i ≤ 8} is a solution of the toroidal eight queens
problem. Then, all queens are on different rows, different columns and different
diagonals. Therefore if we sum any of those numbers ci, ri or di, we simply sum
the number from 1 to 8. Adding the three we obtain:

8∑
i=1

(ci + ri + di) =

8∑
i=1

ci +

8∑
i=1

ri +

8∑
i=1

di = 3

8∑
i=1

= 3× 36 = 108.

But we have a problem: 108 is not divisible by 8. The thing is, all ci + ri + di are
divisible by 8, thus our supposition cannot be true: there thus are no solution to the
toroidal eight queens problem.

The constraint added by Pólya is non-trivial. Is it too restrictive? If we verify the
small chessboard, we quickly find that it is not: the 5 × 5 chessboard has a toroidal
solution. It is obtained by placing a queen following the knight jump, as shown in
Figure 2.7

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Figure 2.7: Solution of the
toroidal five queens problem

What does the 5×5 chessboard have that the 8×8 does not? Pólya answered this
question by an elegant criterium to determinate if a chessboard has toroidal solution.

Theorem 2.4.1 (Pólya, 1918). Let n ≥ 4. A solution to the toroidal n queens exist if
and only if n and 6 are relatively prime, that is if 2 and 3 do not divide n.

Proof

Consider a list (r1, . . . , rn) of integer in {1, . . . , n}. The number ri then
corresponds to the position of the queen presents at the column ci. This list
is a solution of the toroidal n queens problem if and only if:

i. (r1, . . . , rn) is a permutation of the numbers of 1 to n: each of them
appears once only;

ii. ((r1 + 1)modn, . . . , (rn + n)modn) is a permutation, with 0 =
nmodn;

iii. ((r1 − 1)modn, . . . , (rn − n)modn) is a permutation, with 0 =
nmodn.

Those three conditions ensures that no two queens share the same row, the
same column (i), the same diagonal SE (ii) or the same diagonal NE (iii). To
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prove the theorem, we must first probe that if the condition is satisfied, then
there is a solution, and then that if a solution exist, then 2 and 3 do not divide
n.
Suppose that 2 and 3 do not divide n. We prove that (r1, . . . , rn) given by
rk = 2kmodn is a solution. For the 5 × 5 chessboard, it is precisely the
solution of Figure 2.7. We check that all three points are verified.
The point i is verified as 2 does not divide n. That means that 2 has an inverse
modulo n since the gcd(n, 2) = 1. (For example, 2−1 = 3mod 5 as 3 × 2 =
6 = 1mod 5.) Hence, the list 2kmodn is a permutation. If 2k = 2pmodn,
then we can multiply both side by 2−1 to return to k = pmodn. The list
rk = 2kmodn is thus a permutation.
The point ii is verified as the sum in question is simply the list
(3, 6, . . . , 3n}modn. As 3 does not divide n, it also has an inverse modulo n
and so the list is a permutation by the same argument as above.
The point iii requires us simply to remark that rk − k = 2k − k = kmodn,
which is the permutation (1, 2, . . . , n).
We now show the other direction of the implication. Suppose that there is a
solution. It respects then all three points i, ii and iii. We add all the elements
ri − i from the third permutation. Since it is a permutation, it is the same as
summing over the number from 1 to n, hence we obtain the famous formula
from summing consecutive numbers:

n∑
j=1

(rj − j) =

n∑
k=1

k =
n(n+ 1)

2
modn.

However, we can also sum differently, and as the point i tells us (r1, . . . , rn)
is a permutation, we obtain:

n∑
j=1

(rj − j) =

n∑
j=1

rj −
n∑

j=1

j = 0modn.

We combine the two equalities and obtain n(n+1)
2 = 0modn. Thus, n divides

n(n+1)
2 . If n was even, then n = 2sr for a certain odd integer r. Then

n(n+ 1)

2
= 2s−1(2sr + 1).

But this number cannot be divided by n as 2sr + 1 is odd and n contains s
factor 2. By contradiction, n must then be odd, and so 2 does not divide n.
We now show that 3 does not divide n. To do so, we sum the square of he
two lists given in points ii and iii. Both of them are permutation, so we are
only summing the square of the numbers from 1 to n. By using the formula
for the sum of consecutive squares we obtain

n∑
j=1

(rj − j)2 +

n∑
j=1

(rj + j)2 = 2

n∑
k=1

k2 = 2
n(n+ 1)(2n+ 1)

6
modn.
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If we instead develop the two squares, we obtain, as (r1, . . . , rn) is a permu-
tation by point i,

n∑
j=1

(rj − j)2 +

n∑
j=1

(rj + j)2 =

n∑
j=1

(r2j − 2rj + j2) + (r2j + 2rj + j2)

= 4

n∑
k=1

k2 = 4
n(n+ 1)(2n+ 1)

6
modn.

We thus obtain the following congruence:

2
n(n+ 1)(2n+ 1)

3
=

n(n+ 1)(2n+ 1)

3
modn or n

3
=

2n

3
modn.

The last equation is possible only if 3 does not divide n. If it did, then n = 3sr
for r non-divisible by 3. However, the equation demands that n/3 = 3s−1r
be divisible by n, a contradiction.
Therefore, if a solution exists for the toroidal n queens problem, 2 and 3 do
not divide n and we proved Pólya’s theorem.

2.5 Polyominoes and domination

Let us now turn to a second generalisation of the chessboard: polyominoes. Wemean
by polyomino a connected set of tiles. Hence, we consider any set of tiling, not just
a n × n square, as long as they are connected. By this, we mean that we can travel
to any tile in the polyomino by crossing their edges. Figure 2.8 gives examples of
polyominoes and non-polyominoes.

Figure 2.8: Two polyominoes of 23 and 26 tiles, and one non-polyomino (which can
be seen as one polyomino of 8 tiles, and one of 16)

The problem we consider for those new strange chessboards is the domination
problem. Given a polyomino of N tiles, how many queens do we need to guard all
the tiles. If a given set of queens placed on the tiles of the polyomino guard all the
tiles, we say that this set “dominates” the polyomino.

Q

Figure 2.9: A queen and the
tiles she guards.
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Remark that we lost a constraint in contrast with the preceding problem: the
queens can threaten themselves. Hence, a trivial solution to the polyomino dom-
ination problem is to place a queen on each tile! To investigate more interesting
configurations, we will instead ask for the minimal number of queens necessary to
guard a polyomino. The answer will obviously depends of the geometry of the poly-
omino in question. For example, the domination of a 9 tiles polyomino can require
one, two or three queens as shown in Figure 2.10

A criterionwas published by themathematiciansHannahAlpert and Érika Roldán
in 2021 [1]. It gives a upper bound to the minimal amount of queens necessary to
guard a polyomino of N tiles.

Q Q

Q

Q

Q

Q

Figure 2.10: Polyominoes of 9 tiles who need 1, 2 or 3 queen(s) for their domination.

Theorem 2.5.1 (Alpert–Roldán, 2021). The number of queens that is sufficient and
sometime necessary to guard a polyomino of N ≥ 3 tiles is ⌊N/3⌋.

We will present a version of their proof, leaving out one subtlety as an exercise.
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Q

Q

Q

Q
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Q

Figure 2.11: Polyominoes
needing the maximal
amount of queens for
N = 15, 16, 17.
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2

2

2

1

1

1

Figure 2.12: A queen and the
tiles at distance at most 2
from her.

Proof

There are two parts to prove: first that we can cover any polyomino of N
tiles with ⌊N/3⌋ queens, and second that some polyominoes require ⌊N/3⌋
queens.
We begin with the latter. We construct such polyominoes by putting on top
of each other stacks of lines of 3 tiles sharing one straight stem of ⌊N/3⌋
tiles. The remaining tiles are then added at the beginning of the stem. It is
best represented by an example in Figure 2.11.
We now show that any polyomino of N tiles can be guarded by ⌊N/3⌋
queens. To do so, we first define the distance in between two tiles by the
length of the shortest path in between the two, with the rule that we can
only travel from one tile to the ones on its left, right, top or bottom. Further-
more, we can only travel on the polyomino.
With this notion of distance we can remark that a queen guard all tiles at
distance at most 2 of her. She guards her own tiles, so the tile at distance
0. All tiles at distance 1 are only a movement away, and the tiles at distance
2 are either in a straight line from her, or at one queen movement away in
diagonal. Figure 2.12 shows one example.
Given a polyomino ofN tiles, we choose one tile that we name the root of the
polyomino. If possible, we choose the root to be a tile that only touch another
tile, if this is not possible, we choose any tile². Now, we note on all the tiles of
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the polyomino their distance to the root tile. We will colour the polyomino
with three colours. The colour we use will depend of the distance modulo 3:
one for the tiles at distance 0mod 3; one for those at distance 1mod 3 and a
last one for those at 2mod 3. All tile have a colour, and the least represented
colour appears at most ⌊N/3⌋ times. We then place a queen on all tile of the
least represented colour. Then, from any tile, taking the path to the root will
ensure that we cross a queen in at most two steps. By the preceding remark,
the queen guard the tile. All tiles of the polyomino are then guarded by at
least one queen. An example of the construction is given in Figure 2.13.

With a bit of creativity in mathematics, we often explores interesting and un-
expected results by modifying a given problem. One only needs to ask: “what if?”
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Figure 2.13: The three steps of the domination by 7 queens of a 22 tiles polyomino.
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Chapter 3

Exercises

3.1 Queens on the chessboard
Exercise 3.1.1. In the middle of the eighteenth century, the African mathematician
Muhammad ibn Muhammad studied magic squares¹: n× n tables filled with numbers
from 1 to n2 such that the sum of the lines, or the diagonals or the column is always
equal to a magical constant. In one of his manuscript, he gave a construction of magical
squares using knight moves. Can you give a link with the five queens problem?

13 25 7 19 1

17 4 11 23 10

21 4 20 2 14

5 12 24 6 18

9 16 3 15 22

Figure 3.1: Magic square of
magical constant 65

Exercise 3.1.2. Prove that there are n! permutations of n elements and give the corre-
spondence of permutation and the n rooks problem.

Exercise 3.1.3. Take a solution of the n rooks problem. Replace each rook by a 1, and
each empty square by a 0 to obtain a n × n matrix. What can you say about those
matrices?

R

R

R

R

R

R

R

R



0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0



3.2 Queens on queer chessboards
Exercise 3.2.1. Prove the beginning of Pólya’s proof.
Consider a list (r1, . . . , rn) of integer in {1, . . . , n}. The number ri then corresponds to
the position of the queen presents at the column ci. This list is a solution of the toroidal
n queens problem if and only if:

i. (r1, . . . , rn) is a permutation of the numbers of 1 to n: each of them appears once
only;

ii. ((r1 + 1)modn, . . . , (rn + n)modn) is a permutation, with 0 = nmodn;

iii. ((r1 − 1)modn, . . . , (rn − n)modn) is a permutation, with 0 = nmodn.

Exercise 3.2.2. Give the equivalent result for the polyomino domination problem if we
change queens for rooks. (Hint: what would be the tiling used?)

¹Those objects were believed to display magical properties. As such, it was a tradition to always place
mistakes in the book where they were explained so that only the initiates could access their magical
properties.

23
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Exercise 3.2.3. What would happen if we tried the same construction as in the chapter
but choosing the root as in Figure 3.2.

Exercise 3.2.4. What happens if one of the colours is empty in the proof of Alpert–
Roldán’s theorem?

X

Figure 3.2: Other choice of
root

Exercise 3.2.5. The theorem proved by Alpert and Roldán was in fact for generalised
polyominoes, called polycubes, in d dimensions. How would the situation changes for
tridimensional polyocubes?

Figure 3.3: A 3D polycube

3.3 Other exercises
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For more
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