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Maybe I should begin with a comment on the title. On a sunny after-
noon of the summer 2020, outside at good distance of each others,
I could clearly hear, for the distance had to be accounted for in the
volume of our voices, my supervisor Hendrik comparing the writing
styles of his students, how he enjoyed each of their idiosyncrasies.
Curiosity prevailed and I joined the discussion, a feat ever so easily
done in the dance of sphere packing we were still following, and
rejoicing at the sight of my approach from the many meters, he took
me as example: “for example, never have I had a student whose
writing I could describe as ‘flowery’ before Alexis!” As he had had
his first encounter with my scientific prose recently, I could not be
so surprised: such aesthetic judgments have been made times before
in various variations, not the least by my previous supervisor with
whom I had just spent the previous summer and fall trying to cir-
cumspect my writing. I thought to have at the least improved my
ailment. Not yet apparently, and so I strove the next years to improve
this unfortunate trait. For the readers that shall go past this preface,
we can only hope that I have been successful. I shall also say, for my
own sake, I can only hope to improve it.

Nonetheless, I felt this flowery style might well be the most suited
for a section dedicated to acknowledge the support and help I have
received during the last four years and so, to the dismay maybe
only of Hendrik, shall it be the voice in which they are written, and
hence why this anthology of acknowledgments, an etymological quip
I hope the reader will forgive. If not only to make a practical joke,
this anthology, deze bloemlezing, ce florilège, shall also serve to
help me solve another conundrum: what to do with the books that
have came to share my flat? I could certainly not leave behind such
nice flatmates, never complaining, never messing around, always
available when needed and discrete when should be; yet, alas, it is
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too big a burden to let them travel with me, and their nature, most
home-bound, would not be suited for such uncertain trips. And so,
from the books I read during my stay in Ghent, shall a selection make
their way into the hands of the people who, like them, helped make
it a more pleasant place.

Naturellement, peut-être à l’image de mes dernières années passées
dans un mélange perpétuel de langues: English at work and with
new friends, Nederlands naast het werk met het leven en met nieuwe
vriend·inn·en puis français avec la famille et dans les solides amitiés
qui se sont préservées dans le fil ténu des rencontres et des appels,
et aussi pour laisser sortir une voix plus humaine, je ferai un petit
mélange langagier, sans indiquer les changements, au rythme de
ce qui me vient; petit plaisir de ne pas nécessairement avoir à être
compris.

Over supervision and jury

It is only fair that I begin with those who supervised this work and
those who accepted to supervise it. I will begin by the jury, but before,
it might do good to state how the jury is made, for the curious readers
who might be reading the acknowledgments of other people.

In UGent, the thesis is evaluated by a jury composed of: the super-
visors, Hendrik De Bie, Roy Oste and Joris Van der Jeugt; external
examiners, here Martina Balagović and Kieran Calvert; members of
UGent outside the faculty, here Martino De Martino and Hennie De
Schepper, and finally the president of the jury, Bart De Bruyn. The
jury received the thesis on January 17th. A first defence, closed to
the public, was held on March 6th after the jury could read and com-
ment on the manuscript. This is were I answered the many technical
questions the jury found suitable to ask. After this, I incorporated
the remarks of the jury to the current manuscript at the best of my
capacity and we went to the public defence on April 24th, where
I presented the subject to the greater public and answered the last
questions of the jury.

J’espère que ceci explique le déroulement de la fin d’un doctorat à
Gand et passe sans plus de commentaire aux premiers remerciements.
They shall proceed in the reverse order of appearance in the previous
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enumeration.

Aan de president Bart De Bruyn, bedankt voor een goede organisatie
en om mijn vragen te hebben beantworden. Ik heb het boek Raad
eens wie boven ligt interessant gevonden, en ik hoop dat u ook.

Aan Hennie De Schepper, bedankt om de tijd te hebben nemen om
mijn proefschrijft te lezen. We hebben elkaar ampers gezien deze
jaar, wat ik jammer vind want ik heb vaak over u gehoord en altijd
was het positief! Omdat ik weet dat u weinig tijd, denk ik dat dit
klein boek, Willem, over een briefdiefstal zal lukken.

To Marcelo De Martino, I wish to express my appreciation for your
constant enthusiasm and my admiration for your passion in every
aspect of your life. I do not think I have heard someone laugh so
much while doing mathematics, or simply in general. One last time, I
want to reassure you that it was always a pleasure to do mathematics
with you. The book The three-body problem left me thinking of you, as
I could see you dive as far as the author in the consequences of small
advances.

To Kieran Calvert, it was a pleasure to talk with you in Manchester,
and your insightful comments really helped me improve this research.
One of the aspect I appreciate the most of mathematics, and that
Covid sadly prevented for a while, is to meet interesting people with
a shared interest. I am happy to have been able to meet you and hope
to be able to do so again in the near future. I bought this book, North
and South, in Manchester during my visit, and I hope I will be able to
let it find its way to you soon.

To Martina Balagović, I wish to express my thanks for the thorough
reading of the thesis and the many comments given. Reading the
annotated manuscript proved a most instructive incursion in how
one reads mathematics and extracts important information, and I am
still trying to parse how to pursue some of the ideas you suggested.
To thank you, I would like to share an exposition booklet of the artist
Hiroshi Sugimoto, Conceptual forms and mathematical models.

If the jury spends more of their share of time reading this thesis, or
more precisely, a version of the thesis that still had not benefited
of their insights, what to say of the supervisors who had to endure
me for the past 4 years, and read the drafts of article with their
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frustrating slow progress. Now that the time to close this adventure
arrives, I realise that I have not taken enough advantage of their
wisdom and experience, as we say, au temps pour moi! but it will not
prevent me from expressing my gratitude.

Dear Joris, thank you for always being available for questions. You
always made me feel trusted and valued during my time in Ghent
and I really enjoyed your approach to work: even when work was
taking over, you always found a way to make time for me. As a token,
the first Belgian book I read in Ghent: Bruxelles, here I come.

Dear Hendrik, thank you for your advice and your pragmatic views,
always useful to ground for someone who has a tendency to loose
himself in the ideas and not its realisation. I toyed with the idea of
letting you my edition of La recherche du temps perdu, but even if I
think you would appreciate its bad influence away from me, I think
the simple and direct poetry of Cees Nooteboom in Vos would be
more adapted.

Dear Roy, van academische peter tot promotor, je was altijd bij voor
alle mijn vragen en het was altijd best boeiend om met jou onderzoek
te doen. Ik ben erg dankbaar dat ik met jou heb kunnen werken.
Maar ook, het was een plezier om jou een vriend te kunnen noemen.
Comme cadeau, je pensais à La vouivre de Marcel Aymé, un de mes
auteurs préférés d’adolescence, en référence au dragon de Gand. I
hope our paths will cross many times in the following years!

On friendship and family circles

Bien futile la comparaison des amitiés, dans les incomparables dy-
namiques des relations qui se développent au fil de la vie, on ne peut
chercher à hiérarchiser sans tomber dans un distinction qui ne tient
plus la route dès que changent nos conditions. S’il faut une hiérar-
chie, qu’elle soit basée sur des faits. So to decide who to mention;
despite my statement about flowers and style, I do want to keep this
at a pace, let only because it will be printed and that I can only plant
so many trees, so I will restrain myself and consider factually how to
decide whom and how to mention them. Of course, the first fact that
I cannot avoid is the help receive: all my friends share a part in my
hearth, but some of them really warmed it, especially when I looked
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through my office windows to enjoy yet another rainy Sunday dawn,
those are the ones who actually read this manuscript beforehand. To
those I have a special circle in my hearth.

With the highest distinction

Du haut d’une chaire, Jean-Philippe Chassé, tu as su tonitruer sur
ma prose, injustement bien sûr, mais j’imagine qu’à toi peut être
attribuée une certaine constance de ponctuation au travers de ce
manuscrit. Petite pique exceptée, je suis fort content que tu as passé
un trajet de train Gand–Zürich sur mes deux premiers chapitres et y
as investi ton temps. Bien entendu, j’accorde plus de valeur à notre
amitié que simplement sur le (très bon) travail d’édition que tu as pu
faire. Nos multiples appels et notre correspondance assidue m’ont
soutenu tout au long de ces quatre dernières années, et j’espère bien
continuer à connaître ton adresse! Tu ne seras pas surpris·e de mon
choix de livre, Miracle de la rose de Genet.

A full week you spend, Asmus Kjær Bisbo, to read and correct this
thesis. As you taught me, a week is 37.56 hours and I would certainly
want to spend a full week thanking you; your comments were the
fuel that motivated my last days writing. As if not enough, you were
also my companion, of office, of covid, of travel, of boardgames, long
walks and an explainer of the true sense, and pronunciation, of hygge.
In the spirit of our discussions full of “what if” I think Never let me
go from Ishiguro might be interesting for you.

With high distinction

I also would like to reserve a small place to those, not mentioned yet,
with whom I collaborated during my research, also in the extended
vision of research.

Cher Alexi, ta venue à Gand la dernière année de mon doctorat a
été une surprise des plus agréable. Après avoir passé ma maîtrise à
poursuivre tes travaux, travailler avec, et côtoyer, l’homme derrière
la prose a été révélateur et a été certainement une des périodes
favorites de mon doctorat. Pour commémorer notre projet d’algèbres
diagrammatiques, L’écorché me semblait adapté.

Très cher Charles, ce fut un plaisir véritable que de de côtoyer ces trop
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rares moments où nous nous trouvions à proximité; je te le dis assez
pour ne pas avoir besoin de le redire. Merci aussi d’avoir embarqué
dans ce projet de vulgarisation mathématico-échiquéenne au milieu
de la covid. La défense Loujine, de mon toujours apprécié Nabokov,
me semble des plus appropriés en rapport à ce projet.

Beste Toon, je was altijd mee in alle projecten dat ik met jou wilde
bespreken. Je weet waarschijnlijk al alles erin, maar X-factor, 20
verhalen over de onzichtbare kracht van wiskunde was bijna bedoeld
voor jou!

Cher Yvan, tu t’inclus encore des les remerciements de cette thèse,
comme nous avons terminé notre recherche durant les premiers mois
de mon séjour, mais aussi comme l’impact de ta supervision s’est
fait sentir tout au long de cette deuxième aventure. Un livre belge,
Le passeur de lumière : Nivard de Chassepierre maître verrier semble
approprié et devrait t’atteindre en temps et lieux.

With distinction

Naturally, I cannot ask to everyone I know to read my thesis or
collaborate with me, but there are many more ways to support, and I
wish to highlight a few.

À mes parents, qui m’ont accompagné dans cette aventure sans pou-
voir m’y suivre, je penche sur la bande dessinée Oleg : la forme pour
rappeler la Belgique qui m’a accueilli, mais aussi comme on y voit
quelqu’un se perdre dans l’écriture en pouvant compter sur son
entourage, thématique donc.

À mes soeurs Catherine, Sophie et Sylvie, j’espère que les quelques
bandes dessinées belges que je rapporterai vous donneront un air de
ces dernières années.

À Hadewijch, merci de m’avoir accueilli à mon arrivée en Belgique.
Nous avons pu partager maintes discussions, glaces, clémentines,
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literatuur, taal, gewoontes en eekhoorn. Je hebt wel mijn wankele
Nederlands moeten verdragen. Ik heb al vele boeken aangeraden,
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1
Introduction

1.1 Remembrance of things past, stories

Mathematics does not happen in a vacuum. Mathematicians, those
who do mathematics, are the people infusing life in the theory. Sub-
jects are studied and established from sparks and with reason; be
it for their intrinsic beauty, in the search of a solution to concrete
problems, as they are stumbled upon while searching for something
else, or even as the result of an obsession.

The subject of this thesis thus does not exist in a vacuum; it fol-
lows ideas established in the last two centuries and reinterpreted by
contemporary research.

To lay the foundation whose ground this thesis builds on, the next
few pages will quickly survey a selection of encounters that paved
the way for us. The stories come mostly from the historical notes of
Bourbaki [Bou07a], Humphreys [Hum90], Coxeter [Cox73] and van
der Waerden [Wae85].

When Felix Klein and Sophus Lie met in Berlin in 1869, they shared
an interest in geometric structures that would shape the landscape
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of mathematics for the next half-century. In Berlin, the great news
at that time was the publication by Jordan of his commentary on the
work of Galois [Jor69]. The ideas of Galois were already known to the
young Lie and the publication was the occasion for him to share them
with Klein and work together. They met again in Paris the next year to
follow the course of Jordan from his famous Traité [Jor70] on groups
and substitution. The trend, started by Descartes, of mixing geometry
and algebra would be pushed forward by them. Klein would go on to
attempt to unify the different geometries with his Erlangen program
and Lie would go on to study continuous groups. Their next (non)-
meeting would be at the end of the 19th century when Klein arranged
the appointment of Lie in Leipzig to replace him; even if they would
not work together again after that, it would set up the scene for the
ideas of the young Norwegian to reach the rest of Europe (for more
on the life of Klein and Lie see respectively [Tob19; Fri99]).

The ideas of Lie bloomed in Leipzig with the help of Engel [LE93],
and their school would become a motor for young mathematicians.
Studying transformation groups, now known as Lie groups, had lead
them to the study of their infinitesimal transformations, what we
now call Lie algebras. Even that early in their study, they recognised
the importance of the correspondence between the geometric dif-
ferentiable world of Lie groups and the algebraic linear one of Lie
algebras. The focus was put on semisimple Lie algebras.

The teaching of Lie was highly influential for the new generation of
mathematicians and would blossom after the work of Killing [Kil90]
and the systemic study of Cartan [Car94]. Their main idea was to
use a subalgebra that is invariant under a group specific to the alge-
bra. This group is now known as the Weyl group of a classical Lie
algebra, and the subalgebra, as the Cartan subalgebra. They were
able to classify the simple complex Lie algebras by focussing on the
properties of a geometric structure: the root system associated with
the Cartan subalgebra. But it was really van der Waerden [Wae33]
and especially Coxeter [Cox34] that understood the intrinsic poten-
tial of root systems and started a systematic approach to reflection
groups.

Another side of this picture resides in the study of special functions
and hypergeometric functions. Klein and Fricke [FK97], and Poincaré,
following the works of Riemann and Möbius, would develop the the-
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ory of automorphic functions, and recognised its similarities with the
search of discrete subgroups of the motion group of the hyperbolic
plane.

Classical orthogonal polynomials have a lot of symmetries. But
just how central their symmetries were to their study became really
apparent in the work of MacDonald on Hall polynomials [Mac98]
(now more commonly called MacDonald polynomials) that sparked
research in the eighties. These polynomials generalise many families
of orthogonal polynomials and the insight of MacDonald was to
conjecture they would also share many of properties of classical
orthogonal polynomials, most notably a conjecture of a constant
formula for their norm [Mac82].

The interest in orthogonal functions and polynomials and their sym-
metries also led Charles Dunkl to investigate the relations of these
objects with reflection groups, leading to his now famous defini-
tion of differential-difference operators, nowadays most commonly
known as Dunkl operators [Dun89]. This allowed him to retrieve
classes of orthogonal polynomials as solution to differential equations
deformed with the Dunkl operators.

The norm conjecture of MacDonald was only proven in full gener-
ality by Cherednik [Che95], who defined to this goal double affine
Hecke algebras, now often called Cherednik algebras. The idea of
Cherednik was to show that the MacDonald polynomials appear in
the representation theory of an algebraic object: the deformation of
an affine Hecke algebra. It enabled the use of results on the struc-
ture of the representation of the algebra to gain knowledge on the
polynomials. To this goal, he used crucially the newly-defined Dunkl
operators and an insight of Heckman [Hec91a] linking them to shift
operators.

The viewpoint of Cherednik was highly influential, and it has in-
spired an active research program. Stemming from this, while inves-
tigating symplectic algebras, Etingof and Ginzburg [EG02] defined
the rational Cherednik algebra, having in mind the study of inte-
grable systems, specifically Calogero–Moser systems [Eti07; Fei12].
For a given reflection group and a parameter function, rational Che-
rednik algebras are the algebras encoding the structure generated by
the Dunkl operators linked to the group, the group algebra, and mul-
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tiplication by the variables. In general, the representation theory of
the algebra changes at some singular points of the parameter function.
For example, in the case of the root system An, the parameter function
is a constant and there are finite-dimensional representations only
when the constant is some rational number [BEG03].

The representation theory of rational Cherednik algebras has been
studied for most cases: for An [BEG03; Rou08], for the dihedral root
systems [Chm06], for the exceptional root system H3 [BP14], and then
the remaining exceptional cases in a series of papers [Nor14; Nor16a;
Nor16b; LS18] and for the unitary case Bn [Gri18] with link to crystal
combinatorics [Nor21]. General results were also obtained by study-
ing a category equivalent to the Bernstein–Gel’fand–Gel’fand cate-
gory O [BGG71] in the rational Cherednik algebras setting [Gin+03;
Eti12].

The last story we will tell goes back in time to follow a subject that
developed in parallel: Clifford algebras. Introduced by Clifford in
his study of Grassmann exterior algebras [Cli78], Clifford algebras
(or as Clifford called them, geometric algebras) entered the first
stages of mathematical physics in the works of Pauli [Pau27] and
Dirac [Dir28], on the nonrelativistic and the relativistic wave equa-
tion of the electron, respectively. Brauer and Weyl connected Clifford
algebras with Lie theory [BW35], joining the work edified by Élie
Cartan in his study of Lie algebra representations, which included
spinors [Car38].

The place of Clifford algebras in mathematics folklore has been ce-
mented by the seminal work of Atiyah, Bott and Shapiro [ABS64] for
their use in K-theory. They remain an important tool for mathematics
and mathematical physics. See [Tra06; BDS82] for more on Clifford
theory.

1.2 Present work

In this thesis, we study an algebra: the (Dunkl) total angular momen-
tum algebra via its representation theory. The representations of this
algebra motivating its study are the polynomial null-solutions to the
Dunkl–Dirac equation, the so-called Dunkl monogenic polynomials.
This algebra is the supercentraliser of a realisation of the Lie super-
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algebra osp(1|2) inside the tensor product of a rational Cherednik
algebra and a Clifford algebra.

This algebra appeared before in the study of the Bannai–Ito alge-
bra [DGV16a] and the higher-rank Bannai–Ito algebra [DGV16b].
The even part of the algebra, named the Dunkl angular momenta
algebra, appeared in the study of a deformation of the quantum an-
gular momentum algebra as a quadratic subalgebra of the rational
Cherednik algebra [FH15].

A related abstract algebra generated by symmetries of a generalised
Dirac operator was given afterwards [DOV18a], and further proper-
ties were given in [Ost22]. Note that the full set of relations of the
abstract algebra is not yet known apart from low dimensions.

In contrast to the Dunkl angular momenta algebra and rational Che-
rednik algebra, the Dunkl total angular momentum algebra does
not have a PBW-like basis theorem. This is due to the embedding
of the reflection group being a double covering interchanging the
positive and negative subspace. The Dunkl total angular momentum
algebra also differs from the Cherednik algebra by having a fam-
ily of finite-dimensional unitary irreducible representations for any
positive parameter function. A realisation of this family of represen-
tations in the Dunkl representation is given by the Dunkl monogenic
polynomials: the null-solutions of the Dunkl–Dirac operator.

Only partial results on the representation theory of the Dunkl total
angular momentum algebras were known before the start of this
thesis. Namely, it had been studied only for the reflection groupsW =
Z
d
2 ⊂ O(d) [DGV16a; DGV16b] and W = S3 ⊂ O(3) [DOV18b].

The main results of this thesis are described briefly as follows. We
show a construction of Dunkl monogenic polynomials using gener-
alised symmetries for any reflection group and positive parameter
function (Theorem 3.4.4). We give the full classification of unitary
finite-dimensional representations of the Dunkl total angular mo-
mentum algebra for the groups W = D2m ×Z2 in three dimensions
(Theorems 5.6.1, 5.6.2). Finally, we study finite-dimensional rep-
resentations of the Dunkl total angular momentum algebra for the
groups W = D2m ×D2n in four dimensions (Theorem 6.5.9 and Propo-
sition 6.5.14).
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1.3 Structure of the thesis

The thesis collects results published or submitted. Most of the con-
tent is taken from the published versions, but we often provide more
detail when possible. Furthermore, to avoid repetitions, we merged
some results together, making use of new insights gained over the
years.

Section 2 will give the necessary knowledge to allow the readers to
dive right away into the core research. Each subsequent chapter is
related to one of the articles written during my doctoral studies, see
the next section for the bibliographical details. They will be reviewed
in more detail here.

Chapter 3 contains article [DLOV23]. It explores one specific basis
for the Dunkl total angular momentum algebra constructed from
generalised symmetries. This basis exists for all reflection groups
W . One of the main advantages of the basis lies in the fact that the
double covering W̃ of the group has a tractable action on it. On small
rank or reducible examples, it also can be used to relate the algebra
to the theory of special functions.

Chapter 4 presents a proceedings paper [LO20]. This short note
covers some of the properties of the total angular momentum algebra
linked to the exceptional root system G2. It is, in a sense, superseded
by Chapter 5, but it is our belief that it can be of use as an example
of the elementary algebraic approach to the symmetry algebra taken
in the following chapters. The embedding of the root system in the
space was chosen to conform to the more usual embedding of root
system A2 in R

3, it is not the one used in Chapter 5.

Chapter 5 takes the main part of the thesis. It contains an extended
version of article [DLOV22], including some further work done in a
proceedings paper [Lan22]. It contains a classification of all finite-
dimensional representations of the symmetry algebra linked to dihe-
dral groups of the form D2m ×Z2.

The results in that chapter are obtained purely algebraically using
the minimal number of assumptions, and they are linked to special
functions at the end of the paper as polynomial null-solutions to the
Dunkl–Dirac equation.
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The results of the proceedings paper [Lan22] were concerned with
generalising the signature of the Clifford algebra used. When rele-
vant, the generalised result is put in the chapter. However, the main
theorems are left with the convention of [DLOV22]: changing the gen-
eral Clifford signature would represent a lot of careful sign-checking
to gain very little insight, and so we decided against it.

Chapter 6 contains the preprint [DLO23]. In this chapter we consider
the total angular momentum algebra related to the groups of the
form W = D2m ×D2n. It is a stepping stone to the general cases of a
product of an arbitrary number of dihedral groups.

In this chapter, we present general properties of the algebra using
the specificities of the group, and then go on to prove a coarse clas-
sification of the possible representations. The main striking feature
we were able to use is the presence of a subalgebra with a triangular
decomposition. We focus on a class of representations that contains
the Dunkl monogenics and provide a classification for them. An
example closes the chapter.

1.4 Articles written

During the course of my doctoral research, I have written the follow-
ing preprints, articles and proceedings contributions.

Preprints

[DLO23] M. De Martino, A. Langlois-Rémillard, and R. Oste. Dou-
ble dihedral total angular momentum algebra. 2023. arXiv:
2308.16366 (cit. on pp. 7, 8, 9, 143).

[LM23] A. Langlois-Rémillard and A. Morin-Duchesne. Uncoiled
affine Temperley–Lieb algebras and their Wenzl–Jones pro-
jectors. 2023. arXiv: 2302.12782 (cit. on p. 8).

[LMR22] A. Langlois-Rémillard, C. Müßig, and É. Roldán-Roa.
Complexity of Chess Domination Problems. 2022. arXiv:
2211.05651 (cit. on pp. 8, 9).

https://arxiv.org/abs/2308.16366
https://arxiv.org/abs/2302.12782
https://arxiv.org/abs/2211.05651
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Published and accepted articles

[DLOV22] H. De Bie, A. Langlois-Rémillard, R. Oste, and J. Van
der Jeugt. “Finite-dimensional representations of the
symmetry algebra of the dihedral Dunkl–Dirac opera-
tor”. J. Algebra 591 (2022), pp. 170–216. doi: 10.1016/
j.jalgebra.2021.09.025. arXiv: 2010.03381 (cit. on
pp. 6, 7, 8, 9, 73).

[DLOV23] H. De Bie, A. Langlois-Rémillard, R. Oste, and J. Van der
Jeugt. “Generalised symmetries and bases for Dunkl
monogenics”. Rocky Mountain J. Math. 53.2 (2023),
pp. 397–415. doi: 10.1216/rmj.2023.53.397. arXiv:
2203.01204 (cit. on pp. 6, 8, 9, 37).

[LS20] A. Langlois-Rémillard and Y. Saint-Aubin. “The repre-
sentation theory of seam algebras”. SciPost Phy. 8.2.019
(2020), 34p. doi: 10.21468/SciPostPhys.8.2.019
(cit. on p. 9).

Published and accepted proceedings contributions

[Lan22] A. Langlois-Rémillard. “The dihedral Dunkl–Dirac sym-
metry algebra with negative Clifford signature”. Lie
Theory and Its Applications in Physics, LT 2021. Ed. by V.
Dobrev. Vol. 396. Springer Proceedings in Mathematics
& Statistics. 2022, 7p. doi: 10.1007/978-981-19-4751-
3_50. arXiv: 2209.06599 (cit. on pp. 6, 7, 8, 73, 94).

[Lan23] A. Langlois-Rémillard. “Deforming algebras with anti-
involution via twisted associativity”. Non-commutative
and non-associative algebra and analysis structures. Vol. 426.
Springer Proc. Math. Stat. Springer, Cham, 23, pp. 591–
612. doi: 10.1007/978-3-031-32009-5_21. arXiv:
2106.01855 (cit. on p. 9).

[LO20] A. Langlois-Rémillard and R. Oste. “An exceptional
symmetry algebra for the 3D Dirac–Dunkl operator”.
Lie Theory and Its Applications in Physics, LT 2019. Ed.
by V. Dobrev. Springer Proceedings in Mathematics &
Statistics. 2020, pp. 399–405. arXiv: 2009.13904 (cit. on
pp. 6, 8, 9, 65, 77).

The thesis contains items [DLOV23], [DLOV22], [Lan22], [LO20]
and [DLO23] The preprints [LMR22; LM23] and the proceedings

https://doi.org/10.1016/j.jalgebra.2021.09.025
https://doi.org/10.1016/j.jalgebra.2021.09.025
https://arxiv.org/abs/2010.03381
https://doi.org/10.1216/rmj.2023.53.397
https://arxiv.org/abs/2203.01204
https://doi.org/10.21468/SciPostPhys.8.2.019
https://doi.org/10.1007/978-981-19-4751-3_50
https://doi.org/10.1007/978-981-19-4751-3_50
https://arxiv.org/abs/2209.06599
https://doi.org/10.1007/978-3-031-32009-5_21
https://arxiv.org/abs/2106.01855
https://arxiv.org/abs/2009.13904
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contribution [Lan23] reached subjects tangential to my main area
of research and are thus omitted from the text for coherence and
concision. The article [LS20] was finished during my first months in
Ghent, but is concerned with the research I did during my master’s
degree at Université de Montréal; it should therefore not be taken
into account for evaluation purposes.

To finish, a note on authorship. Most of the articles are written in
collaboration. It is hard, and mostly meaningless, to try to quan-
tify contribution in sciences and specially in mathematics, but for
the purpose of evaluation I can be considered the main author for
papers [DLOV23; DLOV22] and have contributed equally with the
other co-authors for contributions [LO20; DLO23; LMR22].
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2
Preliminary notions

This chapter has one goal: to give the readers the tools that they need
to start reading any of the remaining chapters right away. We would
recommend a chronological reading, since the choice has been made
to gradually increase the complexity and abstraction needed.

We begin by reviewing briefly reflection groups and root systems,
and presenting Dunkl operators. We then proceed to introduce the
main subject of this thesis: the (Dunkl) total angular momentum
algebra. Before it can come to the front of the scene, however, a cast
of algebraic notions must be presented.

We hope the readers will find the sources we give at the beginning
of each section useful should they wish to go deeper in the subject.
For more historically oriented references, we refer to the previous
chapter.

2.1 Reflection groups and Dunkl operators

No objects are more central to this thesis than reflection groups.
As such, they deserve the first place in this presentation that has
no pretension to honour them at their just value. We begin with
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generalities, present common properties the chapters will use, and
end the section by considering in detail Dunkl operators, one of the
main tools to realise the abstract algebras we study. We are following
the book of Humphreys [Hum90] for reflection groups and root
systems, and that of Dunkl and Xu for Dunkl operators [DX14].

2.1.1 Reflection groups and root systems

Let V be a Euclidean space with bilinear form 〈−,−〉. In most of the
thesis, we will take V = R

d with the canonical inner product. On
Euclidean spaces, the notion of reflection takes place naturally. For a
non-zero vector α ∈ V , the reflection with respect to the hyperplane
normal to α is denoted by

σα(x) := x − 2
〈α,x〉
〈α,α〉

α. (2.1)

It is exemplified geometrically in Figure 2.1 in the case V = R
2.

α

σα

x

σα(x)

Figure 2.1: The reflection of x by σα.

From the notions of reflections and of Euclidean spaces, it is already
possible to introduce the definition of root systems.

Definition 2.1.1 (Root systems). Let Φ ⊂ V − {0} be a finite collection
of non-zero vectors. It is called a root system if

1. Φ spans V as a vector space;

2. −α ∈ Φ , for every α ∈ Φ ;

3. σα(β) ∈ Φ , for every α ∈ Φ and all β ∈ Φ .

A root system is called reduced if

4. Rα ∩Φ = {α,−α}, for every α ∈ Φ ,
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and crystallographic if furthermore

5. 2〈α,β〉〈α,α〉 ∈Z, for all α,β ∈ Φ .

The rank of a root system is the dimension of V , and the elements of a
root system are called roots.

In this thesis, we will always consider reduced root systems, and
specifically focus on one family of non-crystallographic root sys-
tems.

A root system Φ is called reducible if it is the sum of two non-trivial
root systems, and it is called irreducible if it cannot be expressed as
the sum of two root systems.

Let H ⊂ V be an arbitrary hyperplane that does not contain any vector
of a root system Φ . The hyperplane then divides the roots of Φ into
two: the positive roots Φ+ and the negative roots Φ−:

Φ+ := {α ∈ Φ | 〈H,α〉 > 0}, Φ− := {α ∈ Φ | 〈H,α〉 < 0}. (2.2)

It is a remarkable fact of the geometry of root systems that they
can be generated by a subset of their positive roots with a positivity
constraint.

Proposition 2.1.2. Let Φ ⊂ V be a root system of rank n, and let Φ+ be
the subset of positive roots with respect to a hyperplane H. Then there
exists a set of n positive roots {α1, . . . ,αn} ⊂ Φ+ such that any root β ∈ Φ
can be expressed as

β =
n∑
i=1

ciαi , with the ci ’s either all positive or all negative. (2.3)

Such a set of roots is called a set of simple roots.

The properties of root systems we will use are independent of the
choice of positive roots. So let us always fix a certain set of positive
and simple roots when a root system is defined.

Definition 2.1.1, simple as it is, offers a very restricted realm of
possibilities. There are four infinite families of irreducible crystal-
lographic reduced root systems and five exceptional ones. The four



2. Preliminary notions 14

A1 ⊕A1 :
α

β

A2 :
α

β

B2 :
α

β

G2 : α

β

Figure 2.2: The four crystallographic reduced root systems of
rank 2. The orange roots are the two simple roots and the teal
roots are the remaining positive roots for a certain choice of
hyperplane H.

crystallographic reduced root systems of rank two are presented in
Figure 2.2.

Removing the crystallographic condition adds one infinite family of
rank 2 irreducible root systems and two more exceptional ones. The
core of this thesis will focus on this infinite family: the dihedral root
systems.

Before continuing with the properties, we include a nomenclature
for all the possibilities of irreducible root systems for completeness.
The complete classification, with concrete realisations, can be found
in the classical references [Bou07b; Hum90].

Theorem 2.1.3. Let V be a Euclidean space. An irreducible reduced
root system Φ ⊂ V lies in one of the following crystallographic families:
An−1(n ≥ 2), Bn(n ≥ 2), Cn(n ≥ 3), Dn(n ≥ 4); one of the following
exceptional crystallographic root systems: E6, E7, E8, F4, G2, or is one of
the following non-crystallographic root systems: H3,H4, I2(m)(m ≥ 5,m ,
6).

Remark 2.1.4. For ease of notation, we will extend the family I2(m) to
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m ≥ 2, understanding that the following identifications happen: I2(2) '
A1 ⊕A1, I2(3) ' A2, I2(4) ' B2, I2(6) ' G2.

The study of crystallographic root systems came hand in hand with
that of Lie algebras. The crystallographic families label the families of
simple complex Lie algebras. The correspondence is as follows:

1. An corresponds to sl(n+ 1);

2. Bn corresponds to so(2n+ 1);

3. Cn corresponds to sp(2n);

4. Dn corresponds to so(2n).

The exceptional crystallographic root systems are also linked to sim-
ple complex Lie algebras.

Denote by O(V ) the group of endomorphisms of V that preserves the
norm induced by 〈−,−〉. The reflections generated by the elements
of the root systems form a finite subgroup of O(V ), specifically a
reflection group. We denote it by

W :=W (Φ) = 〈σα | α ∈ Φ〉 ⊂ O(V ). (2.4)

It is usually named the Weyl group of the root system when the root
system is of type A–G. It can be proven that it is generated by the
reflections corresponding to simple roots of Φ . An example is carried
out in Figure 2.3.

I2(3) ' A2 : α

α + β
β

σα

σβσασβ

σασβσασβ

W (Φ) = S3 ' D6.

Figure 2.3: The root system A2 ' I2(3) and its reflection group;
we can see the defining braid relation σασβσα = σβσασβ of S3.
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The root system I2(m) is normally called the dihedral root system
since its reflection group is isomorphic to a dihedral group1 D2m of
size 2m.

We end this short section by presenting in more detail the root sys-
tems and the reflection groups that we will tackle in Chapters 5
and 6. We refer the readers to [Bou07b; Hum90] for more on the
many properties that general root systems enjoy.

In Chapter 5, we choose the root system A1 ⊕ I2(m), for m ≥ 3 with
roots given by

α0 = (0,0,1) αj = (sin( jπm ),−cos( jπm ),0), j = 1, . . . ,2m, (2.5)

with the set of positive roots given by R+ = {α0,α1, . . . ,αm}. The
root system is presented in Figure 2.4. We decided to follow the
same convention as Dunkl [Dun89] and Humphreys [Hum90] for
the dihedral root system. The associated reflections σj are given in
matrix form by

σ0 =


1 0 0

0 1 0

0 0 −1

 , σj =


cos(2jπ

m ) sin(2jπ
m ) 0

sin(2jπ
m ) −cos(2jπ

m ) 0

0 0 1

 . (2.6)

The reflection group is generated by the reflections corresponding to
the three simple roots σ0 := σα0

, σ1 := σα1
and σm := σαm , with Coxeter

presentation

W =
〈
σ0, σ1, σm | σ2

0 = σ2
1 = σ2

m = (σ0σ1)2 = (σ0σm)2 = (σ1σm)m = 1
〉
.

(2.7)
This is the group W = Z2 ×D2m.

In Chapter 6, we choose the standard root system Φ ⊂ R
4 of type

I2(m)⊕ I2(n), explicitly realised as

αp = (sin(pπm ),−cos(pπm ),0,0), βq = (0,0,sin(qπn ), −cos(qπn )), (2.8)

1Although the same notation is used for a root system of type Dn and a dihedral
group D2m, there cannot be any confusion since in the rest of the thesis, root systems
of type Dn no longer appear.
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I2(m)⊕A1

αm

α1

α0y

x

z

Figure 2.4: The root system A1 ⊕ I2m studied in Chapter 5, here
illustrated for m = 6.

for p = 1, . . . ,2m and q = 1, . . . ,2n. We fix the set of positive roots
to be Φ+ = {α1, . . . ,αm,β1, . . . ,βn}. The associated reflections sp, for
p = 1, . . . ,m and tq, for q = 1, . . . ,n, are given in matrix form by

σp=



cos(2pπ
m ) sin(2pπ

m ) 0 0

sin(2pπ
m ) −cos(2pπ

m ) 0 0

0 0 1 0

0 0 0 1


, σq=



1 0 0 0

0 1 0 0

0 0 cos(2qπ
n ) sin(2qπ

n )

0 0 sin(2qπ
n ) −cos(2qπ

n )


.

The reflection group associated with these reflections is W = D2m ×
D2n.

2.1.2 Dunkl operators

Reflection groups and root systems boast a realm of combinatorial
properties, which can be used to define rich mathematical structures.
Inspired by properties of special functions, Dunkl discovered that
one can modify the definition of partial derivatives to create new
operators sharing similar properties: they reduce the degree by 1,
they commute amongst themselves and the common differential
operators can be defined with them.
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We will present the definition of these Dunkl operators and give
some of their properties. They will be used throughout the thesis to
construct concrete examples of the abstract algebraic objects encoun-
tered.

Let W be a reflection group acting on R
d , and let 〈−,−〉 be the canon-

ical bilinear form of Rd . Let Φ ⊂ R
d denote the root system linked

to W , and let Φ+ be a fixed set of positive roots. The group W is
generated as a Coxeter group by the reflections σα for α ∈ Φ , and its
elements act on functions of x ∈Rd by

wf (x) = f (w−1x), w ∈W. (2.9)

It will be often useful to start from a reflection group and associate
to it the roots of the root system, but then normalise them, as is often
done in Dunkl theory; see [Dun89; Hec91b]. Indeed only the orien-
tation of the vectors is useful to define reflections; the orientation
and the hyperplane arrangements are what matter, not the length of
roots. Hence, from now on, we will assume that the roots of Φ are
normalised.

We consider aW -invariant function κ : Φ→C, that is, an assignment
α 7→ κα ∈ C such that κw(α) = κα, for all α ∈ Φ and w ∈W . We will
usually assume κ to be a positive real function.

For an algebra A, we will denote by [a,b] = ab − ba and {a,b} = ab +
ba the commutator and anti-commutator, for any elements a,b ∈
A.

Let ξ1, . . . ,ξd denote the canonical basis of Rd .

Definition 2.1.5 ([Dun89]). The Dunkl operator (or differential-dif-
ference operator) associated with ξj is defined by its action on multi-
variate functions

Djf (x) = ∂xj f (x) +
∑
α∈R+

κ(α)
f (x)− σαf (x)
〈α,x〉

〈
α,ξj

〉
, (2.10)

where ∂xj is the partial derivative on variable xj :=
〈
x,ξj

〉
. For a vector

µ = (µ1, . . . ,µd), the Dunkl operator is given by

Dµ =
d∑
j=1

µjDj . (2.11)



19 2.1 Reflection groups and Dunkl operators

Theorem 2.1.6 ([Dun89, Thm 1.9]). Let Dj and Dk be two Dunkl
operators. They commute,[

Dj ,Dk

]
= DjDk −DkDj = 0. (2.12)

The proof is non-trivial and can be found either in the original refer-
ence [Dun89], or the lecture notes of Etingof and Ma [EM10].

With normalised roots, the commutation relations between the vari-
ables and the Dunkl operators are given by

[
Di , xj

]
= δij + 2

∑
α∈Φ+

κ(α)〈α,ξi〉
〈
α,ξj

〉
σα , where δij =

1 i = j,

0 else,
(2.13)

and one readily sees that
[
Di , xj

]
=

[
Dj , xi

]
.

The algebra generated by x1, . . . ,xd , D1, . . . ,Dd and the group algebra
CW can be seen as a deformation of the Weyl algebra of partial
derivatives with the group algebra CW ; it is called the Dunkl–Weyl
algebra. This is an example of the algebra A considered in [DOV18a,
Ex. 4.2].

When restricted to a radial function, that is, a function f constant
on the sets {x, | |x| = K} for K ∈ R≥0, the Dunkl operators satisfy the
following Dunkl–Leibniz rule for any function g:

Djf g = (∂xj f )g + f (Djg). (2.14)

The Dunkl–Laplace operator ∆κ, the squared norm and the norm of a
vector x ∈Rd are respectively given by

∆κ :=
d∑
j=1

D2
j , |x|2 :=

d∑
j=1

x2
j , |x| :=

√√√√ d∑
j=1

x2
j , (2.15)

which are all invariant under the action of W . As a consequence of
this invariance, and by an application of the Dunkl–Leibniz rule for
radial functions (2.14), we get that[

Dj , |x|a
]

= a|x|a−2xj , for a ∈R. (2.16)
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The classical Euler operator E, which measures the degree of a homo-
geneous polynomial, is alsoW -invariant. We define another operator,
often known as the Casimir akin to it in this setting:

H :=
1
2

d∑
j=1

{
Dj , xj

}
=

1
2

d∑
j=1

Djxj + xjDj = E+ d/2 +γ, (2.17)

where E :=
d∑
j=1

xj∂xj and γ :=
∑
α∈R+

κ(α).

Proposition 2.1.7 ([Hec91b]). The operators ∆κ, |x|2 and H form an
sl(2) triple, that is, they respect the following relations:[

H, |x|2
]

= 2|x|2, [H, ∆κ] = −2∆κ,
[
∆κ, |x|2

]
= 4H. (2.18)

Moreover, we also have the relations[
H, xj

]
= xj ,

[
H,Dj

]
= −Dj ,[

∆κ, xj
]

= 2Dj ,
[
|x|2,Dj

]
= −2xj .

(2.19)

Proof. Direct computations using (2.13) (see for example [DOV18a,
Theorem 2.2]).

Throughout the thesis, we make use of the following shorthand
notations:

Cij :=
[
Di , xj

] (2.13)
=

[
Dj , xi

]
, Cij = Cji , (2.20)

Lij := xiDj − xjDi , Lij = −Lji , Lii = 0. (2.21)

The following theorem relates the Lij ’s and the Cij ’s for general root
systems. In particular, it will be used in Chapter 5 for the proof of
Proposition 5.5.5.

Theorem 2.1.8 ([DOV18a, Thm 2.5] and [FH15, Prop. 3.1]). Let i, j, k,
l be four non-necessarily distinct integers in {1, . . . ,d}. The commutation
relation between Lij and Lkl is given by[

Lij , Lkl
]

= LilCjk +LjkCil +LkiClj +LljCki (2.22)
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= CjkLil +CilLjk +CljLki +CkiLlj , (2.23)

and the following identities hold:{
Lij , Lkl

}
+
{
Lki , Ljl

}
+
{
Ljk , Lil

}
= 0, (2.24)[

Lij , Ckl
]
+
[
Lki , Cjl

]
+
[
Ljk , Cil

]
= 0, (2.25)

LijLkl +LkiLjl +LjkLil = LijCkl +LkiCjl +LjkCil . (2.26)

The last relation (2.26) comes from [FH15] and is the crossing relation
that defines the angular momentum algebra.

2.2 The algebraic actors

In this section, we present the main algebraic objects that will make
an appearance during the thesis.

2.2.1 Rational Cherednik algebras

The Dunkl–Weyl algebra and the corresponding reflection group
generate an algebraic structure, or to be more precise, form a repre-
sentation of an abstract algebraic structure. The above-mentioned
algebraic structure is named a rational Cherednik algebra and de-
notedHκ(V ,W ). It will be the algebraic framework in which the total
angular momentum algebra will be defined. Rational Cherednik
algebras were introduced by Etingof and Ginzburg [EG02]. We will
follow partially the lecture notes of Etingof and Ma [EM10].

In fact, one can define the rational Cherednik algebra Hκ(V ,W ) via
its Dunkl polynomial representation in the complex vector space
C[V ] in which w ∈W acts on V as a reflection in the representation
ofW in V ∗; elements x ∈ V act by multiplication, and elements ξ ∈ V ∗
act as the Dunkl operator Dξ [EG02, Prop. 45].

For our purpose, we will only need this way of viewing the rational
Cherednik algebra. Hence, we will use this as our definition and
present the general definition after for the interested readers.

Definition 2.2.1 ([EG02]). Let V be a d ∈N, W ∈ O(d) be a reflection
group with root system Φ , and κ : Φ → C be a W -invariant parameter
function. The algebra generated by the d commutating variables x1, . . . ,xd ,
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the d Dunkl operators D1, . . . ,Dd and CW is called the rational Cherednik
algebra denoted by Hκ.

Using the relations (2.28), it is possible to prove a Poincaré–Birkhoff–
Witt theorem for rational Cherednik algebras.

Theorem 2.2.2. The elements

d∏
i=1

Dmi
i

d∏
j=1

x
nj
j

∏
w∈W

w, (2.27)

form a basis of Hκ.

For the sake of completeness, the general definition of rational
Cherednik goes as follows.

Definition 2.2.3 ([EG02]). Let V be a Euclidean space. Let W ∈ O(V )
be a reflection group. The rational Cherednik algebra Hκ = Hκ(V ,W )
is the quotient of the smash-product algebra T (V ⊕V ∗)oC[W ] by the
relations [ξ,η] = 0 = [x,y] and

[ξ, x] = ξ(x) +ψκ(B−1(ξ),x), (2.28)

for all ξ,η ∈ V ∗ and x,y ∈ V , whereψκ(x,y) =
∑
α∈Φ+

2κα
〈α,α〉 〈x,α〉

〈
y,α

〉
σα .

and B : V → V ∗ is the linear isomorphism induced by the Euclidean struc-
ture.

Let gr(Hκ) be the graded algebra coming fromHκ by setting degξ = 1,
for all ξ ∈ V ∗ and degw = 0 = degx for all w ∈W and all x ∈ V . Then
Theorem 2.2.2 means that there is an isomorphism of graded algebra
between

C[V ⊗V ∗]oCW → gr(Hκ). (2.29)

2.2.2 Clifford algebras and superalgebras

We have already seen from the last sections that there is a mean-
ingful interpretation of harmonic analysis in the context of rational
Cherednik algebras or Dunkl operators by taking the operator ∆κ
as the appropriate generalisation of the Laplace operator. It is a
natural question then to ask if a similar meaningful generalisation of
monogenic analysis exists, that is, if we have a proper generalisation
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of the Dirac operator. For this, we turn to Clifford algebras and will
define the relevant algebraic context.

Our source for this material is the book of Cheng and Wang [CW12].
We begin by some notations and usual definition.

Definition 2.2.4. A Z2-graded vector space V = V0̄ ⊕V1̄ is called a vec-
tor superspace. In particular, the vector superspace with even subspace
C
m and odd subspace Cn is denoted by C

m|n. The parity of a homogeneous
element a ∈ Vı̄ for i ∈Z2 is denoted by |a| = ı̄.

Definition 2.2.5. A vector superspace A = A0̄ ⊕A1̄ is called a superal-
gebra, or a Z2-graded algebra, if it is equipped with a multiplication
such that the grading A→Z2 is respected by the multiplication, that is,
AcAd ⊂ Ac+d for c,d ∈Z2.

If A is a unital associative superalgebra, and if a,b ∈ A are homoge-
neous elements of respective degree |a|, |b|, we shall use the notation
Ja,bK := ab − (−1)|a||b|ba, called the supercommutator.

We are now ready to define Clifford algebras. Let ε ∈ {−1,+1} be a
sign, and let Cl(d) be the Clifford algebra associated with R

d and
〈−,−〉. The Clifford algebra is generated by e1, . . . , ed , the images of
the canonical basis, {ξ1, . . .ξd}, of Rd ,

γ : ξj 7→ ej , (2.30)

subject to the following anticommutation relations{
ei , ej

}
= eiej + ejei = 2εδij . (2.31)

Remark 2.2.6. We will often specialise to one value of ε. To this end, we
will use the notation Clε for the Clifford algebra with Clifford signature ε.
Specifically, Chapter 3 and most of Chapter 5 will have general signature
ε, but the remaining will be specific to ε = 1. Furthermore, Chapter 6 will
also have a slightly more general definition of Clifford algebras.

For an ordered subset A = {a1, . . . , ap} ⊆ {1, . . . ,d}, we put

eA :=
−−−→∏

p
j=1eaj = ea1

ea2
· · ·eap .
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We warn the reader that the order of the product matters as indicated
by the arrow on top of the product¸. The set {eA | A ⊆ {1, . . .d}} forms
a linear basis of Cl(d).

Clifford algebras have a natural Z2-grading given by setting the
degree of the generators ei to 1̄. It is thus a superalgebra. We write
Cl = Cl0̄⊕Cl1̄ for the induced Z2-grading. We also let |·|be the degree
map defined on homogeneous elements by

|e| =

 0, if e ∈ Cl0̄
1, if e ∈ Cl1̄.

We also define an involution by s̄ = s if s ∈ Cl0̄ and s̄ = −s if s ∈ Cl1̄.
We denote by ∗ the anti-involution defined by s∗ := s̄ and (st)∗ :=
t∗s∗.

2.2.3 Double coverings

In this section, the results concerning double covering groups and
their representation theory are recalled. The main source for this
material is the important work of Schur [Sch11] and Morris [Mor76;
Mor80]. We have decided to focus only on the specific cases used
in this thesis, where we have an explicit presentation by generators
and relations. We refer the reader to [Kar68], [HH92] or [ABS64] for
further references on the general theory.

Suppose that W is a real reflection group of arbitrary rank d and that
V
R
�R

d is its reflection representation. There are generally two dou-
ble coverings of W , a positive W + and a negative W −, reflecting the
two possibilities for a definite symmetric bilinear form on V

R
.

If W has Coxeter presentation given by some mij ∈N

W =
〈
σ1, . . . ,σn

∣∣∣ (σiσj )
mij = 1;mii = 1

〉
, (2.32)

then one gets in general two double coverings of the Coxeter group
W and their generators and relations presentations.

Theorem 2.2.7 (Morris [Mor76, Thm 3.6]). The two double coverings
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of W are given by

W̃ + =
〈
z, σ̃1, . . . , σ̃n

∣∣∣∣∣∣∣∣ z2 = 1,
(σ̃i σ̃j )

mij = 1, mij odd,

(σ̃i σ̃j )
mij = z, mij even

〉
, (2.33)

W̃ − =
〈
z, σ̃1, . . . , σ̃n

∣∣∣ z2 = 1, (σ̃i σ̃j )
mij = z

〉
. (2.34)

Corollary 2.2.8 ([Mor76, Prop. 3.5]). The two sequences

0 Z2 W̃ + W 0 (2.35)

0 Z2 W̃ − W 0 (2.36)

are exact, and W̃ + and W̃ − are central extensions of W .

Remark that W̃ + might not be a non-trivial central extension of the
groupW , that is,W might not have a projective representation that is
not equivalent to a linear representation. For example, this is the case
when W = D2m for m odd [Sch07]. When considering representations
of W̃ − and W̃ +, those where the commuting element z is acting as the
identity are in correspondence with the representations of W . Those
where z acts as −1 are in correspondence with projective representa-
tions of W and are called spin representations [Mor76].

This last statement necessitates a bit more explanation. Let e± := 1±z
2

denote the canonical idempotents of CW̃ and put CW̃± := e±(CW̃ ).
This is not the group algebra of the positive or negative double
coverings of the previous paragraph. Then

CW̃ = CW̃+ ⊕CW̃−. (2.37)

Moreover, CW̃+ � CW . Indeed, note that if {w̃,zw̃} = π−1(w) for
w ∈ W , then e+w̃ = e+(zw̃); so the assignment e+w̃ 7→ π(w̃) defined
on the canonical generators of CW̃ is well-defined and induces the
isomorphism.

In light of (2.37), the representations of W̃ are split in two types: the
first are the linear representations that factor through the action of
W , and the second are the spin representations.
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Let Irr(W̃ ) denote the set of equivalence classes of irreducible repre-
sentations of W̃ . We can decompose

Irr(W̃ ) = Irr(W )t sIrr(W̃ ), (2.38)

where sIrr(W̃ ) is the set of equivalence classes of irreducible spin
representations of W̃ . Since∑

V ∈Irr(W )

dim(V )2 = |W | and
∑

V ∈Irr(W̃ )

dim(V )2 = 2|W |, (2.39)

we get ∑
U∈sIrr(W̃ )

dim(U )2 = |W |. (2.40)

If ρ : CW̃ →CW ⊗Cl is the diagonal algebra homomorphism defined
on the generators w̃,z ∈ W̃ by ρ(w̃) = π(w̃)⊗ w̃, ρ(z) = 1⊗ (−1) and
extended linearly, then [CDO22, Proposition 2.5]

ρ(CW̃ ) �CW̃−. (2.41)

Since we can realise W̃ as a subgroup of the group of units in a
Clifford algebra, we can use the Z2-grading of the latter to decompose
into even and odd parts:

W̃ = W̃0̄ ∪ W̃1̄. (2.42)

2.2.4 A detour through some Lie superalgebras

We will now make a small detour to the theory of Lie superalge-
bras. We have seen in Definition 2.2.5 what a superalgebra is. The
super version of a Lie algebra will be a superalgebra with a super-
bracket respecting super-versions of the skew-symmetry and Jacobi
identity.

Definition 2.2.9. A superalgebra g = g0̄ ⊕ g1̄ equipped with a bracket
J−, −K : g× g→ g is a Lie superalgebra if the two following axioms are
satisfied, for a,b,c ∈ g homogeneous,

1. skew-supersymmetry: Ja, bK = −(−1)|a|·|b|Jb, aK;
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2. super Jacobi identity:

Ja, Jb, cKK = JJa, bK, cK + (−1)|a|·|b|Jb, Ja, cKK. (2.43)

The usual definitions of homomorphisms, subalgebras, ideals and
quotients go through categorically.

The even part of a Lie superalgebra is a Lie algebra in the classical
sense. Any associative superalgebra can be made into a Lie superal-
gebra by defining the supercommutator

Ja, bK := ab − (−1)|a|·|b|ba. (2.44)

The adjoint map
ad : g→ End(g)

ad(a)(b) := Ja, bK,
(2.45)

is a homomorphism of Lie superalgebras, and the action on g it
induces is called the adjoint action.

The classification of simple complex Lie superalgebras was completed
by Kac [Kac77], and we refer the reader to this original source for a
complete overview.

Theorem 2.2.10 (Kac). The simple complex finite-dimensional Lie su-
peralgebras that are not Lie algebras are in one of the followings families:

1. the classical Lie superalgebras A(m,n), B(m,n),C(n) and D(m,n);

2. the exceptional classical Lie algebras F(4) and G(3) or one of the
deformations of D(2,1): D(2,1;α), for α ∈C;

3. the strange classical Lie superalgebras P(n) and Q(n);

4. the Lie superalgebras of Cartan type W(n), S(n), H(n), S̃(n).

We will only need one specific algebra and so shall restrict ourselves
to introduce two of the main families of Lie superalgebras and one
“strange” one to give the readers a sense of these objects.

General and special linear Lie superalgebras. For a vector super-
space V , equip End(V ) with the supercommutator (2.44). This forms
a Lie superalgebra called the general linear Lie superalgebra denoted
by gl(V ). Specifically for V = C

m|n, it is denoted by gl(m|n).
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Let us parametrise a chosen set of basis elements for V0̄ and V1̄ by
I(m|n) = {1̄, . . . , m̄;1, . . . , n̄}. The indices 1̄, . . . , m̄ correspond to vectors
in V0̄ and the indices 1, . . . , n̄ to those of V1̄. Then gl(V ) can be realised
as (m+n)× (m+n) complex matrices of the form

g =

a b

c d

 , (2.46)

with a, a m×m matrix; b, a m× n matrix; c, a n×m matrix, and d, a
n×n matrix.

The supertrace is defined on the matrix g as

str(g) := tr(a)− tr(d). (2.47)

The subspace of supertraceless matrices is a subalgebra of gl(m|n)
called the special linear Lie superalgebra and denoted by

sl(m|n) := {g ∈ gl(m|n) | str(g) = 0}. (2.48)

Note that if m = n, it contains a one-dimensional ideal generated by
the scalar multiple of the identity matrix I2n. The family A(m,n) of
Theorem 2.2.10 is identified withsl(m+ 1 | n+ 1) m , n;

sl(n+ 1 | n+ 1)/〈I2n+2〉 m = n.
(2.49)

Orthosymplectic Lie superalgebras We begin by defining the su-
pertranspose of a matrix A. For ̄ ∈Z2 and for i ∈ Ī, denote |i| := ̄. The
elementary matrices are denoted by Eij , i, j ∈ I . Then a matrix

A =
∑
i,j∈I

aijEij , aij ∈C,

has a supertranspose defined as

Ast :=
∑
i,j∈I

(−1)|j |(|i|+|j |)aijEji . (2.50)
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Definition 2.2.11. A bilinear form on a vector superspace V

B(−,−) : V ×V → V (2.51)

is called even if B(Vı̄,V̄) = 0 unless ı̄ + ̄ = 0̄ and odd if B(Vı̄,V̄) = 0
unless ı̄+ ̄ = 1̄. An even bilinear form is called supersymmetric if its
restriction to V0̄ ×V0̄ is symmetric and its restriction to V1̄ ×V1̄ is skew-
symmetric. It is called skew-supersymmetric if its restriction to V0̄ ×V0̄
is skew-symmetric and its restriction to V1̄ ×V1̄ is symmetric.

The vector superspace V can only have a non-degenerate supersym-
metric even bilinear form if dimV1̄ is even.

Definition 2.2.12. Let V = V0̄ ⊕V1̄ be a vector superspace with dimV1̄
even and B be a non-degenerate even supersymmetric bilinear form. We
call the following Lie superalgebra, with j ∈Z2,

osp̄ := {g ∈ gl(V )̄ | B(g(x), y) = −(−1)j |x|B(x,g(y)),∀x,y ∈ V },
osp(V ) := osp(V )0̄ ⊕ osp(V )1̄,

the orthosymplectic Lie superalgebra.

It is the subalgebra of gl(V ) that preserves the non-degenerate super-
symmetric bilinear form B. When V = C

m|2n, we denote osp(V ) by
osp(m|2n). For m = 0, we retrieve the Lie algebra sp(2n) and for n = 0,
the Lie algebra so(m).

If B is instead a non-degenerate odd skew-supersymmetric bilinear
form on V = V0̄ ⊕ V1̄ with dimV0̄ even, we denote the subalgebra
of gl(V ) preserving it by spo(V ). Note that, as Lie superalgebras,
osp(m|2n) ' spo(2n|m).

In the notation of Theorem 2.2.10, the families B(m,n), C(n) and
D(m,n) are defined as

B(m,n) = osp(2m+ 1|2n) m ≥ 0,n > 0;

D(m,n) = osp(2m|2n) m ≥ 2,n > 0;

C(n) = osp(2|2n− 2) n ≥ 2.

(2.52)

It will be more convenient to work with generators and relations for
the modest Lie superalgebra that will appear again and again in this
thesis: osp(1|2). With only two odd generators, the Lie superalgebra
can be generated via triple relations [GP80].
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Definition 2.2.13. The Lie superalgebra osp(1|2) is generated by two
odd generators C+,C− and with triple relations

JJC−, C+K, C±K = ±2C±. (2.53)

The queer Lie superalgebras The first two cases of Theorem 2.2.10
might give the impression that Lie superalgebras share more similar-
ities with classical Lie algebras than they do. The following is a short
example to illustrate to the readers how the extra grading gives more
possibilities before we close this detour.

Definition 2.2.14. Let V = V0̄ ⊕ V1̄ with dimV0̄ = dimV1̄. For any
P ∈ End(V ) such that P 2 = Idn|n, the subspace

q(V ) = {T ∈ End(V ) |JT , P K = 0}, (2.54)

is called the queer Lie superalgebra.

The queer Lie superalgebra is not isomorphic to the special linear
Lie superalgebra. There is no Lie algebra similar to this superalge-
bra.

2.2.5 Total angular momentum algebra

In our last section, we introduced the orthosymplectic Lie super-
algebra osp(1|2). We now will show that an instance of this Lie
superalgebra appears in the algebraic setting we developed during
the chapter.

We will work in the tensor product Hκ ⊗Cl. The Z2-grading of the
Clifford algebra Cl naturally induces a Z2-grading on Hκ ⊗Cl, by
declaring (Hκ⊗Cl)̄ =Hκ⊗Cl̄, for j ∈ {0,1}. To ease notation, we will
identify Hκ �Hκ ⊗C ⊂Hκ ⊗Cl and Cl �C⊗Cl ⊂Hκ ⊗Cl.

We will often not make explicit mention of the tensor product for
ease of notation when evident from the context.

Since CW ↪→ Hκ, we can define ρ : CW̃ → Hκ ⊗Cl as the map used
in (2.41).

Notation 2.2.15. For a root α ∈ Φ , we will denote α :=
∑d
j=1

〈
α,ξj

〉
⊗ ej

and σ̃α := ρ(α) = ασα ∈ ρ(CW̃ ).
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Note that α ∈ Cl(d), where we identified Cl(d) with 1 ⊗ Cl(d) ⊂
Hκ ⊗Cl(d).

Let us denote

x :=
d∑
j=1

xj ⊗ ej , D :=
d∑
j=1

Dj ⊗ ej , (2.55)

where x is the vector variable and D is the Dunkl–Dirac operator.

Up to the Clifford signature ε, the square of the Dunkl–Dirac operator
is the Dunkl–Laplace operator, and its dual operator is the square of
the vector variable:

∆κ :=
d∑
j=1

D2
j = εD2, |x|2 :=

d∑
j=1

x2
j = εx2. (2.56)

Moreover, we have by direct computation{
D, x

}
= 2εH = 2ε(E+ d/2 +γ). (2.57)

With this, we have proved that D and x are the odd generators of
a realisation of the Lie superalgebra osp(1|2) containing the Lie al-
gebra sl(2) as an even subalgebra realised by (2.18) [DOV18a, Theo-
rem 3.4]: [

D, |x|2
]

= 2x, [x, ∆] = −2D,[
D, H

]
= D, [x, H] = −x.

(2.58)

We can see they are equivalent to the presentation (2.53) by direct
computations. This is summarised in the following result.

Theorem 2.2.16 ([ØSS09, Lemma 4.2]). Let g0̄ = span{∆κ, |x|2,E} and
g1̄ = span{D,x}. The vector subspace g = g0̄ ⊕ g1̄ of Hκ ⊗Cl spanned by
{∆κ, |x|2,H,D,x} has the structure of a Lie superalgebra isomorphic to
osp(1|2).

We are now ready to give the definition of the (Dunkl) total angular
momentum algebra, the central object of study of our thesis.

Definition 2.2.17. The (Dunkl) total angular momentum algebra Oκ =
Oκ(V ,W ) is defined as the graded centraliser in Hκ ⊗Cl of the Lie super-
algebra g ' span(x,D,∆κ,H, |x|2) ⊂Hκ ⊗Cl(d) isomorphic to osp(1|2).
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For the rank two and three, another presentation of the total angular
momentum algebra will be used in this thesis in Chapters 4 and 5. It
is given by generators and relations and was defined in [DOV18a].
It will be called the Dunkl–Dirac symmetry algebra. This name is
a slight misnomer, since it is really the symmetry algebra of the
osp(1|2) realisation generated by abstract elements, so not just the
Dirac operator is involved, and it admits more possibilities than the
Dunkl deformation.

The algebra considered in [DOV18a] is more general. In particular, it
does not require a reflection group. The role of the group elements is
played by the one-index symmetries introduced in (2.65). However,
for our purposes, we will keep the convention of the total angular
momentum algebra and always see it inside the tensor product of a
rational Cherednik algebra and a Clifford algebra.

We begin by expressing the commutation relations between the ele-
ments x and D and the elements of Hκ ⊗Cl(d). For ease of notation,

denote 〈D,α〉 :=
∑d
j=1

〈
α,ξj

〉
Dj .

Lemma 2.2.18. The Dunkl–Dirac operator D and its dual symbol x
respect the following relations:

{σ̃α , x} = 0 =
{
σ̃α ,D

}
; (2.59)[

Dj , x
]

=
[
D, xj

]
= ej + 2

∑
α∈R+

κ(α)
〈
α,ξj

〉
σ̃α; (2.60)[

D, σα
]

= 2〈D,α〉 σ̃α , [x, σα] = 2〈x,α〉 σ̃α . (2.61)

Proof. Equations (2.59) follow using (2.13) and the Clifford algebra
relations. We focus now on (2.60). This is a direct application of the
commutation relation between Dunkl operators and variables (2.13)

Dxj = Djxjej +
∑
i,j

Dixjei

= ej + 2
∑
α∈Φ+

κ(α)
〈
α,ξj

〉2
σαej + xjDjej

+
∑
i,j

(2
∑
α∈Φ+

(κ(α)〈α,ξi〉
〈
α,ξj

〉
σα)ei + xjDj )ei
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= xjD + ej + 2
∑
α∈Φ+

κ(α)
〈
α,ξj

〉
(
〈
α,ξj

〉
ej +

∑
i,j

〈α,ξi〉)σαei

= xjD + ej + 2
∑
α∈Φ+

κ(α)
〈
α,ξj

〉
ασα .

For the two equations of (2.61), proving one will suffice. We do the
first. Recall that the action of σα on the Dunkl operators is as that
on vectors of Rd , with 〈α,α〉 = 1 since the roots are assumed to be
normalised. Therefore,

σαD = σα
d∑
j=1

Djej =
d∑
j=1

σαDjej =
d∑
j=1

(Dj − 2〈α,ξi〉〈D,α〉)σαej

= Dσα − 2
d∑
j=1

〈α,ξi〉〈D,α〉σαei = Dσα − 2〈D,α〉ασα .

Let A ⊂ {1, . . . ,d} be an ordered subset. Define

D
A

:=
∑
a∈A

Daea xA :=
∑
a∈A

xaea. (2.62)

Theorem 2.2.19 ([DOV18a, Thm 3.7]). Let A ⊂ {1, . . . ,d} be a list of
distinct elements. The following operators,

OA :=
1
2

(D
A
xAeA − eAxAD

A
− εeA), (2.63)

supercommute with D and x, that is,

DOA = (−1)|A|OAD and xOA = (−1)|A|OAx. (2.64)

The symmetries can be used to denote more compactly specific linear
combinations of elements in CW̃ , such as the one appearing in the
right-hand side of (2.60), we write (see also [DOV18a, Ex. 4.2])

Oj :=
ε
2

(
[
D, xj

]
− ej ) = ε

∑
α∈R+

κ(α)
〈
α,ξj

〉
σ̃α . (2.65)

We call the elements Oj one-index symmetries.
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Using the one-index symmetries, we have simpler expression of the
general index symmetries

Oij = Lij +
ε
2
eiej +Oiej −Ojei ; (2.66)

OA = (ε
|A| − 1

2
+ ε

∑
a∈A

Oaea −
∑
{i,j}⊂A

Lijeiej )eA. (2.67)

The following lemma shows how Clifford elements interact with the
one-index symmetries.

Lemma 2.2.20 ([DOV18a, Lem. 3.10]). For any two indices i, j the
following relation holds {

ei , Oj
}

=
{
ej , Oi

}
. (2.68)

Lemma 2.2.21. The following holds

d∑
j=1

Ojej =
∑
α∈R+

κ(α)σα . (2.69)

Proof. Recall that the roots are normalised and so, in particular,
α2 = ε. Replacing Oj by its expression (2.65) and using the anticom-
mutation of Clifford elements then yield

d∑
j=1

Ojej = ε
d∑
j=1

∑
α∈R+

κ(α)
〈
α,ξj

〉
ασαej

= ε
∑
α∈R+

κ(α)α2σα =
∑
α∈R+

κ(α)σα .

The total angular momentum algebra Oκ can then be defined as the
associative unital C-algebra generated by OA [DOV18a].

Remark 2.2.22. Note that this definition makes sense only because we
are seeing Oκ as a subalgebra of Hκ ⊗Cl. For the abstract version, we
would need the commutation relations.
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It was proven recently that only the algebra CW̃ , the two-index
symmetriesOij and the three-index symmetries andOijk are required
to generate Oκ [Ost22].

Let uj be an index in {1, . . . ,d}. The four- and five-index symmetries
Ou1u2u3u4

andOu1u2u3u4u5
have expressions in terms of two- and three-

index symmetries [Ost22, Lem. 4.11]:

Ou1u2u3u4
= 6A (Ou1u2

Ou3u4
)− 8A (Ou1u2u3

Ou4
)

Ou1u2u3u4u5
= 4A (Ou1u2u3

Ou4u5
) + 48A (Ou1u2u3

Ou4
Ou5

)

−36A (Ou1u2
Ou3u4

Ou5
),

where the anti-symmetriserA is defined on a multivariate expression
f by

A (f (u1, . . . ,un)) :=
1
n!

∑
s∈Sn

sign(s)f (us(1), . . . ,us(n)). (2.70)

The remaining commutation relations are given in the following
theorem extracted from [Ost22]. Note that the possible other higher-
order relations are not yet fully known.

Theorem 2.2.23 ([Ost22, Prop. 4.9, Props 4.12–14]). The algebra
Oκ is generated by CW̃ , and multilinear symbols Oij and Oijk with
commutation relations, for distinct a,b,c ∈ {1, . . . ,d} and distinct u,v,w ∈
{1, . . . ,d}, given by

[Oab, Ouv] = δbu(Oav + {Oa, Ov})− δau(Obv + {Ob, Ov})
− δbv(Oau + {Oa, Ou}) + δav(Obu + {Ob, Ou})
+ ({Oa, Obuv} − {Ob, Oauv}+ {Oabu , Ov} − {Oabv , Ou})/2;

denoting x̂ := δbxa− δaxb, for x ∈ {u,v,w},

[Oab, Ouvw] =Oûvw +Ouv̂w +Ouvŵ
+ {Oû , Ovw} − {Ov̂ , Ouw}+ {Oŵ, Ouv}
+ [Oa, Obuvw]− [Ob, Oauvw] .

Furthermore, supposing that δac = 0 = δbc and that the only possibly
non-zero pairings between {a,b,c} and {u,v,w} are δau ,δbv ,δcw,

{Oabc, Ouvw} = δau(Obcvw + {Obc, Ovw}) + [Oa, Obcuvw]
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+ δbv(Oacuw + {Oac, Ouw}) + [Ob, Oacuvw]

+ δcw(Oabuv + {Oab, Ouv}) + [Oc, Oabuvw]

+ δbvδcw [Oa, Ou] + δauδcw [Ob, Ov]

+ δauδbv [Oc, Ow]− δauδbvδcw/2.

From this result, we see that the commutation relations between
the symmetries are trivial in dimension two. The first time that
non-trivial commutation relations happen is in dimension three,
and the full relations of the three-index symmetries happen only in
dimension four. This will be the focus of Chapter 5 and Chapter 6,
respectively.

Remark 2.2.24. We emphasise that Theorem 2.2.23 only concerns the
commutation relations of the algebra. Finding all relations of the algebra
for spaces of dimension more than 3 is, as of yet, unknown, and it is
generally a very difficult problem to tackle. This is subject to ongoing
investigations.



3
Generalised symmetries and bases

for Dunkl monogenics

The content of this chapter is extracted from the article:

Hendrik De Bie, Alexis Langlois-Rémillard, Roy Oste, Joris Van der
Jeugt (2022+). To appear in Rocky Mountain Journal of Mathemat-
ics [DLOV23].

3.1 Introduction

Since their introduction by Dunkl in 1989 [Dun89], the family of
commutative differential-difference operators associated with a re-
flection groupW , nowadays known as Dunkl operators, have enjoyed
a great deal of interest in the mathematical and mathematical physics
communities. Due to their properties, it is possible to replace partial
derivatives with Dunkl operators in classical differential equations
and operators appearing in many physical systems. A great deal of
work has been done in the study of the resulting differential opera-
tors, most notably on the Dunkl version of the Laplace operator and
its harmonic functions.
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This work focuses on the kernel of the Dunkl version of the Dirac
operator, which, like its classical analogue, is a square root of the
Dunkl-Laplace operator. Polynomials in the kernel of the Dunkl–
Dirac operator are called Dunkl monogenics and they form solutions
of the Dunkl version of the homogeneous Dirac equation.

Symmetries play an important role in our study. We call an oper-
ator S a symmetry of an operator A if [S, A] = SA −AS = 0; a gen-
eralised symmetry of A if [S, A] = f A for a certain operator f , and
a supersymmetry if JS, AK = 0. Finally, S anticommutes with A if
{S, A} := SA+AS = 0.

The study of the Dunkl–Dirac operator D and its kernel can take
many forms. A recent fruitful path to its understanding resides
in the consideration of the symmetry algebra linked to the osp(1|2)
realisation generated by D and its dual symbol x [ØSS09]. This
symmetry algebra, which is the total angular momentum algebra Oκ

presented in Section 2.2.5, consists of elements supercommuting with
D, and the Dunkl monogenics form natural representation spaces
for Oκ. The study of its representation theory is furthered in the
following chapters.

The goal of this chapter is to introduce a class of generalised symme-
tries of the Dunkl–Dirac operator. Since these generalised symme-
tries preserve the kernel of D, they can be used to construct natural
bases for the spaces of monogenic polynomials. Constructing bases
of Dunkl monogenic polynomials with tractable expressions is not an
easy feat. Formulas are only known for the groups W = D2m [Dun89],
W = Z

N
2 [DGV16a; DGV16b], W = D2m ×Z2 (Theorem 5.7.7–5.7.8),

and partially for Sn [Dun16].

The generalised symmetries are related to the Maxwell representa-
tion in harmonic analysis [Mül98, p.69], which was translated to
Dunkl harmonic analysis by Xu [Xu00] and to Dunkl–Clifford anal-
ysis in [FCK09; Yac11]. Similar operators were also considered in
the study of the conformal symmetries of the super Dirac opera-
tor [CD15] and on the radially deformed Dirac operator [DDE17].
The last two were presented via Kelvin inverses; the generalised sym-
metries defined here are valid also in the abstract context of [DOV18a]
with abstract generators and commutation relations, but admit a pre-
sentation using a Clifford–Kelvin type transform when specialised to



39 3.2 Dunkl operators

the Dunkl setting.

As an application, we use these generalised symmetries to give a
new interpretation of the basis previously obtained by means of a
Dunkl version of the Cauchy–Kovalevskaya (CK) extension Theorem
in [DGV16b].

We now go through the structure of the chapter and highlight the
main results. In Section 3.2, we introduce the preliminaries on
Dunkl operators and rewrite some results of Xu [Xu00] on Dunkl
harmonics in terms of generalised symmetries of the Dunkl–Laplace
operator. Section 3.3 goes from the Dunkl harmonics to the Dunkl
monogenics. We introduce a class of operators and prove their main
properties. They are generalised symmetries of the Dunkl–Dirac
operator (Proposition 3.3.4), they commute with each other (Propo-
sition 3.3.8), they can be written by means of a Dunkl–Clifford–
Kelvin transform (Proposition 3.3.7) and they are related with a
monogenic projection operator (Propositions 3.3.10 and 3.3.11). A
basis of the monogenic representation for any reflection group is
then constructed in Section 3.4 (Theorem 3.4.4). Finally, we study in
Section 3.5 the case of the group W = Z

d
2 and retrieve a known basis

(Proposition 3.5.11).

3.2 Dunkl operators

Recall the definitions of the previous chapter. We fix d ∈ N and
work in R

d with canonical bilinear form 〈−,−〉. We denote the Dunkl
operator (2.10) in coordinate j by Dj and the Dunkl degree operator
byH := E+d/2+γ (2.17). In this chapter, we will identify the rational
Cherednik algebra Hκ with its Dunkl representation.

3.2.1 Dunkl harmonics

We will denote by P := P (Rd) the space of complex-valued polynomi-
als on R

d and by Pn := Pn(Rd) the space of homogeneous polynomials
of degree n. The space H of Dunkl harmonic polynomials consists
of all polynomials in the kernel of the Dunkl–Laplace operator ∆κ,
introduced in (2.15). We further denote Hn :=H∩Pn.

In a classical construction of harmonic analysis, the Maxwell repre-
sentation [Mül98] allows one to construct bases of polynomial har-
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monics by means of the Kelvin transformation. This was extended
by Xu to Dunkl harmonics [Xu00]. For β = (β1, . . . ,βd) ∈Nd , Xu con-
sidered the harmonic polynomials Yβ(x) given by (we define them
directly with Kelvin transform, compare with [Xu00, Def. 2.2])

Yβ(x) := KκDβ1
1 . . .Dβd

d Kκ(1), (3.1)

where a Dunkl version of the Kelvin transform is used:

Kκf (x) := |x|−(2γ+d−2)f

(
x

|x|2

)
, KκKκf (x) = f (x). (3.2)

They satisfy ∆κYβ(x) = 0.

3.2.2 Generalised symmetries

It is possible to express Xu’s construction by means of generalised
symmetries of the Dunkl–Laplace operator. The definition of these
operators is inspired by [Xu00, Thm 2.3]. They are related to the ad-
joints of a Dunkl operator, see [Dun89, Thm 2.1 and Prop. 2.3].

Definition 3.2.1. We define mj ∈Hκ to be

mj := 2xj(H − 1)− |x|2Dj , (3.3)

where H is defined in (2.17). For a multi-index β = (β1, . . . ,βd) ∈Nd , we
write mβ :=mβ1

1 · · ·m
βd
d .

Proposition 3.2.2. The operator mj is a generalised symmetry of the
Dunkl–Laplace operator: [

∆κ,mj

]
= 4xj∆κ. (3.4)

Proof. It follows from the relations (2.18) and (2.19):

∆κmj = ∆κ(2xjH − 2xj − |x|2Dj )

= 2xj∆κH + 4DjH − 2xj∆κ − 4Dj − |x|2Dj∆κ − 4HDj

= (2xjH − 2xj − |x|2Dj )∆κ + 4xj∆κ + 4
[
Dj , H

]
− 4Dj

=mj∆κ + 4xj∆κ.
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The next result gives the correspondence mβ(1) = (−1)nYβ(x) for
β ∈ N

d with |β|1 = n, where | · |1 is the 1-norm of β, that is, the
sum of its components.

Proposition 3.2.3. For β ∈Nd with |β|1 =m, when acting on P ,

mj = −KκDjKκ, and mβ = (−1)mKκDβKκ. (3.5)

Proof. By linearity, it is sufficient to prove it for a homogeneous
polynomial p ∈ Pn. We apply the Dunkl–Leibniz rule (2.16) to get

DjKκp(x) = Dj |x|−(2γ+d−2+2n)p(x)

= |x|−(2γ+d−2+2n)Djp(x)

− (2γ + d − 2 + 2n)|x|−(2γ+d+2n)xjp(x).

Both terms have degree of homogeneity −2γ − d + 1 − n, so we can
apply again the Kelvin transform Kκ on the two sides to obtain

KκDjKκp(x) = |x|−(2γ+d−2−2γ−2d+2+2n)|x|−(2γ+d−2+2n)Djp(x)

− (2γ + d + 2n− 2)
|x|−(2γ+d+2n)

|x|2γ+d−2−4γ−2d+2+2n
xjp(x)

= |x|2Djp(x) + 2xjp − (2γ + d + 2n)xjp(x),

and this is precisely −mjp(x) = −(2xjH − 2xj − |x|2Dj )p(x).

Proposition 3.2.4. The generalised symmetries mj commute amongst
themselves when acting on P [

mj ,mk

]
= 0. (3.6)

Proof. By Proposition 3.2.3, when acting on P ,

mjmk = KκDjKκKκDkKκ = KκDjDkKκ

= KκDkDjKκ = KκDkKκKκDjKκ =mkmj .
(3.7)
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Let projPH : P → H denote the projection operator that, when re-

stricted to Pn, reduces to projPnHn given by [Xu00, (2.5)]

projPnHn p(x) =
bn/2c∑
j=0

|x|2j∆jκp(x)
22jj!(−n− d/2−γ + 2)j

, (3.8)

where the notation for the Pochhammer symbol is used, which is
defined as (a)0 = 1, and (a)n = a(a+1) · · · (a+n−1) = Γ (a+n)/Γ (a), with
the Gamma function Γ .

The Dunkl harmonic Yβ(x) = (−1)nmβ(1) is related to the projec-
tion (3.8) as follows.

Theorem 3.2.5 ([Xu00, Theorem 2.4]). For β ∈Nd with |β|1 = n,

Yβ(x) = (−1)n2n(γ − 1 + d/2)nprojPnHn(x
β). (3.9)

We conclude this section with a result relating the operator mj with
the projection (3.8).

Proposition 3.2.6. With H given by (2.17) and xj , the operator that
multiplies a polynomial by xj , we have, when acting on H,

mj = 2(H − 2) ◦projPH◦xj . (3.10)

Proof. Let hn−1 ∈ Hn−1, then ∆kκxj(hn−1) = 0 for k ≥ 2, so using (3.8)
we have

2(H − 2)projPH(xjhn−1) = 2(H − 2)projPnHn(xjhn−1)

= 2(H − 2)xjhn−1

−
2(E+ d/2 +γ − 2)|x|2∆κ(xjhn−1)

(4(γ +n− 2 + d/2))

= 2xj(H − 1)hn−1 − |x|2Djhn−1,

where we used
[
∆κ, xj

]
= 2Dj and ∆κhn−1 = 0. The last line is pre-

cisely (3.3).
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3.3 Dunkl monogenic analysis

In this section we introduce the Dunkl monogenic space, define
the generalised symmetries and the Dunkl–Clifford–Kelvin inverse
used in the chapter, and present results pertaining to the projection
operator.

We recall the Dunkl–Dirac operator D and its dual symbol x (2.55).
We refer the readers to Section 2.2 for the background.

3.3.1 Dunkl monogenics

Let V be an irreducible representation of Cl(d), also called a spinor
representation. There is a natural action of Hκ ⊗Cl(d) on the space
P ⊗V . The space of Dunkl monogenic polynomials consists of the
elements of P ⊗ V that are in the kernel of the Dunkl–Dirac op-
erator, and will be denoted by M :=M(Rd ;V ). We denote Mn :=
Mn(Rd ;V ) = M∩ (Pn ⊗ V ) for the M-subspace of (spinor-valued)
homogeneous polynomials of degree n, and we have M(Rd ;V ) =⊕

n≥0Mn(Rd ;V ).

There is a projection projP⊗VM : P (Rd)⊗ V −→M(Rd ;V ) that, when
restricted to Hn ⊗V , is given by [ØSS09, Lem. 4.6]

projPn⊗VMn
: Pn(Rd)⊗V −→Mn(Rd ;V )

p 7−→ p − ε
b(n+1)/2c∑
j=0

(−1)jx2j+1 D2j+1p

22j+1j!(n− j − 1 + d/2 +γ)j+1

+
bn/2c∑
j=1

(−1)j |x|2j∆jκp
22jj!(n− j + d/2 +γ)j

.

(3.11)

Remark 3.3.1. Each Dunkl monogenic polynomial is a highest weight
vector for the osp(1|2) realisation containing the Dunkl–Dirac operator
as positive root vector. For the osp(1|2) extremal projector projP⊗VM , we
have [BT81, (3.8a)]

projP⊗VM = projH⊗VM projP⊗VH⊗V , (3.12)

where projP⊗VH⊗V = projPH as considered above (3.8) for the sl(2) part, and
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projH⊗VM , when restricted to Pn ⊗V , is given by

projHn⊗VMn
=

(
1−

εxD

2(n− 1 + d/2 +γ)

)
. (3.13)

3.3.2 Generalised symmetries

Recall that ε ∈ {−1,+1} and that the Clifford generators ej satisfy anti-
commutation (2.31). We will define a similar generalised symmetry
zj mimicking the harmonic case mj .

Definition 3.3.2. We define zj ∈Hκ ⊗Cl(d) for 1 ≤ j ≤ d by

zj := 2εxjH − xDjx. (3.14)

For a multi-index β = (β1, . . . ,βd) ∈Nd , we write zβ := zβ1
1 . . .z

βd
d .

We begin by giving alternative formulations of zj in terms of ele-
ments of Hκ ⊗Cl(d) that follow from Lemma 2.2.18 and the expres-
sions (2.65) of Oj .

Lemma 3.3.3. The operator zj := 2εxjH − xDjx has the following ex-
pressions

zj = xj
{
D, x

}
− x

[
D, xj

]
− ε|x|2Dj ; (3.15)

zj = 2εxj(E+ d/2 +γ)− x(ej + 2εOj )− ε|x|2Dj . (3.16)

We now consider some of the main properties of zj that are useful
for our purposes.

Proposition 3.3.4. The operator zj is a generalised symmetry of the
Dunkl–Dirac operator [

D, zj
]

= 2εxjD. (3.17)

Proof. First we anticommute D and x by (2.57) and commute D and
xj by (2.60)

D zj = D(xj
{
D, x

}
− xDjx)

= (xjD +
[
D, xj

]
)
{
D, x

}
− (−xD +

{
x,D

}
)Djx ,
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now we use the commutation of Dj

= xjD
{
D, x

}
+
[
Dj , x

] {
D, x

}
+ xDjD x −

{
D, x

}
Djx ,

then we apply (2.57) and (2.19) to send D right to
{
D, x

}
, and anti-

commute a second time D and x

= xj
{
D, x

}
D + 2εxjD +

[
Dj , x

] {
D, x

}
− xDjxD + xDj

{
D, x

}
−
{
D, x

}
Djx ,

finally,
{
D, x

}
commutes with Djx because of

[
H,Dj

]
= −Dj , [H, x] = x

and ε2 = 1 so

= (xj
{
D, x

}
− xDjx+ 2εxj )D +

[
Dj , x

] {
D, x

}
−Djx

{
D, x

}
+ xDj

{
D, x

}
= zjD + 2εxjD.

Proposition 3.3.5. The operator zk respects the following commutation
relations

[x, zk] = −2εxkx+ x(ek + 2εOk)x; (3.18)[
xj , zk

]
= −2εxjxk − x

[
xj ,Dk

]
x; (3.19)[

ej , zk
]

= 2ε(xDkxj − xjDkx); (3.20)[
Dj , zk

]
= 2ε(xkDj − xjDk) + 2ε

[
Dj , xk

]
H + ej [x,Dk]

− 2ε(OjDkx+ xDkOj ); (3.21)

σ̃αzk = zσα(ξk)σ̃α , with zσα(ξk) :=
d∑
j=1

〈
σα(ξk),ξj

〉
zj . (3.22)

Proof. Equation (3.18) follows from a small computation using equa-
tions (2.19) and (2.58)

[x, zk] = 2εxxkH − xxDkx − zkx = 2εxkxH − xDkxx − x [x,Dk]x − zkx
= −2εxkx+ x(ek + 2εOk)x.
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Equation (3.19) follows from the commutation relation (2.19) be-
tween xj and H :[

xj , zk
]

= 2εxjxkH − xjxDkx − zkxj
= 2εxkHxj − 2εxkxj − (xDkxjx+ x

[
xj ,Dk

]
x)− zkxj

= −2εxjxk − x
[
xj ,Dk

]
x.

Equation (3.20) comes from
{
ej , x

}
= 2εxj :

ejzk = 2εejxkH − ejxDkx = 2εxkHej + xejDkx − 2εxjDkx

= zkej + 2εxDkxj − 2εxjDkx.

Slightly more tedious computations yield equation (3.21). First de-
velop[

Dj , zk
]

= 2εDjxkH −DjxDkx − zkDj

= 2εxkDjH + 2ε
[
Dj , xk

]
H − (xDjDkx+

[
Dj , x

]
Dkx)

− (2εxkHDj − xDkDjx − xDk

[
x,Dj

]
),

then employ
[
H,Dj

]
= −Dj and cancel some terms with (2.65)

= 2εxkDj + 2ε
[
Dj , xk

]
H −

[
Dj , x

]
Dkx+ xDk

[
x,Dj

]
= 2εxkDj + 2ε

[
Dj , xk

]
H − (ej + 2εOj )Dkx − xDk(ej + 2εOj ),

now use
{
x, ej

}
= 2εxj to get

= 2εxkDj + 2ε
[
Dj , xk

]
H − ejDkx+ ejxDk

− 2εxjDk − 2ε(OjDkx+ xDkOj )

= 2ε(xkDj − xjDk) + 2ε
[
Dj , xk

]
H + ej [x,Dk]

− 2ε(OjDkx+ xDkOj ).

Relation (3.22) follows from (2.59), and from the action of W on xj
and Dj .
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Lemma 3.3.6. The operator z :=
∑d
j=1 zjej can be written as

z = 2εx(E+γ −
∑
α∈R+

κ(α)σα)− ε|x|2D. (3.23)

Proof. We express zj by (3.16) and use Lemma 2.2.21:

z =
d∑
j=1

(2εxj(E+ d/2 +γ)− x(ej + 2εOj )− ε|x|2Dj )ej

= 2εx(E+ d/2 +γ)− εxd − 2εx
d∑
j=1

Ojej − ε|x|2D

= 2εx(E+γ −
∑
α∈Φ+

κ(α)σα)− ε|x|2D.

3.3.3 Kelvin transformation

Define the Dunkl–Clifford–Kelvin transform Iκ as

Iκf (x) = x |x|−(2γ+d)f

(
x

|x|2

)
. (3.24)

Since κ ≥ 0, the sum γ =
∑
α∈Φ+ κ(α) is non-negative and the expres-

sion |x|−(2γ+d) is thus well-defined. The operator Iκ is ε-idempotent,
that is I2

κ = ε. Indeed, using xx = ε|x|2,

IκIκf (x) = Iκ

(
x|x|−(2γ+d)f

(
x

|x|2

))
= x|x|−(2γ+d)

(
x

|x|2
|x|2(2γ+d)

|x|(2γ+d)
f

(
x

|x|2
|x|4

|x|2

))
= εf (x).

The relation between the two Kelvin-type transforms (3.2) and (3.24)
is

Iκf = εx|x|−2Kκf . (3.25)

Remark that for p(x) ∈ Pn(Rd) we have p(x/ |x|2) = |x|−2np(x), and thus
the action of the Dunkl–Clifford–Kelvin transform becomes

Iκp(x) = |x|−(2γ+d+2n)xp(x). (3.26)



3. Generalised symmetries and Dunkl monogenic bases 48

The transform (3.24) was considered before, for example see [Yac11]
and [FCK09]. One of the main results of those two papers is to prove
that, for any polynomial monogenic f , also IκDjIκ(f ) is a polyno-
mial monogenic. We give an interpretation in terms of generalised
symmetries of the Dunkl–Dirac operator.

Proposition 3.3.7. For β ∈Nd with |β|1 :=
∑d
j=1βj = m, when acting

on P ⊗V ,

zj = −IκDjIκ, and zβ = (−1)mεm−1IκDβIκ. (3.27)

Proof. Let p ∈ Pn(Rd) be a homogeneous polynomial of degree n.
Apply equation (2.16) to get

DjIκp(x) = Dj |x|−(2γ+d+2n)xp(x)

= −(2γ + d + 2n)|x|−(2γ+d+2n+2)xjxp(x)

+ |x|−(2γ+d+2n)Djxp(x).

Remark now that the first and second terms have degree of homo-
geneity −2γ −d −n. Thus applying another time the Dunkl–Clifford–
Kelvin transform yields

IκDjIκp(x) = −(2γ + d + 2n)x
|x|−(2γ+d+2n+2)

|x|2γ+d−4γ−2d−2n
xjxp(x)

+ x|x|−(2γ+d−4γ−2d−2n)|x|−(2γ+d+2n)Djxp(x)

= −(2γ + d + 2n)x2|x|−2xjp(x) + xDjxp(x)

= −2ε(n+ d/2 +γ)xjp(x) + xDjxp(x),

which equals −zjp(x) = −(2εxj(E+ d/2 +γ)− xDjx)p(x).

The commutativity of the Dunkl operators implies that of the zj .

Proposition 3.3.8. The operators zj commute amongst themselves, na-
mely [

zj , z`
]

= 0. (3.28)

Proof. Apply the commutation relations of Lemma 2.2.18 and equa-
tion (2.58). First expand the product of the two generalised symme-
tries zj and z`:

zjz` = 4ε2xjHx`H − 2εxjHxD`x − 2εxDjxx`H + εxDj |x|2D`x.
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Now work out the commutation of the four terms and combine the
results. The first one can be switched directly using [H, xi] = xi and[
xi , xj

]
= 0

xjHx`H =Hxjx`H − xjx`H
= x`HxjH + x`xjH − xjx`H = x`HxjH. (3.29)

Send the xjH of the second term to the right using equations (2.58)
and (2.19)

xjHxD`x = xxjHD`x+ xxjD`x = xxjD`Hx − xxjD` + xxjD`x

= xxjD`Hx = xxjD`xH + xxjD`x

= xD`xxjH + x
[
xj ,D`

]
xH + xxjD`x. (3.30)

Now send the x`H of the third term to the left using the same equa-
tions

xDjxx`H = xDjx`xH = x`xDjxH + x
[
Dj , x`

]
xH

= x`xDjHx − x`xDjx+ x
[
Dj , x`

]
xH

= x`xHDjx+ x`xDjx − x`xDjx+ x
[
Dj , x`

]
xH

= x`HxDjx − xx`Djx − x
[
x`,Dj

]
xH. (3.31)

Finally, developing the fourth term uses only
[
|x|2,Di

]
= −2xi and[

Dj ,D`

]
= 0:

xDj |x|2D`x = (x|x|2DjD`x+ 2xxjD`x)

= xD` |x|2Djx − 2xx`Djx+ 2xxjD`x. (3.32)

Combining equations (3.29) to (3.32) cancels the superfluous terms
and yields z`zj , thus proving the commutation zjz` = z`zj .

Remark 3.3.9. Proposition 3.3.8 holds in Hκ ⊗Cl(d). When acting on
P ⊗V we can use Proposition 3.3.7 to have a shorter proof. This was to
avoid any problem due to specific values of κ.

Apply Proposition 3.3.7 and the ε-idempotence of Iκ:

zjz` = IκDjIκIκD`Iκ = εIκDjD`Iκ
= εIκD`DjIκ = ε2IκD`IκIκDjIκ = z`zj .

(3.33)
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3.3.4 Projection operator relation

Proposition 3.3.10. With H given by (2.17) and xj the operator that
multiplies a polynomial by xj we have, when acting onM,

zj = 2ε(H − 1) ◦projP⊗VM ◦xj . (3.34)

Proof. Let Mn ∈ Mn, then DkxjMn = 0 for k ≥ 3, since D3xjMn =
εD∆κxjMn = Dxj∆κMn −DDjMn = 0, so using the first three terms
of the projector (3.11), we have

2εH projP⊗VM (xjMn) = 2εH(projPn+1⊗V
Mn+1

(xjMn))

= 2εH(xjMn −
xD

2(n+ d/2 +γ)
xjMn

− |x|2∆κ
4(n+ d/2 +γ)

xjMn)

= 2ε(n+1 + d
2 +γ)xjMn− x

[
D, xj

]
Mn− ε|x|2DjMn

−
xD

(n+ d/2 +γ)
xjMn −

ε|x|2∆κ
2(n+ d/2 +γ)

xjMn

where we evaluated H on polynomials of degree n + 1 and used[
∆κ, xj

]
= 2Dj and DMn = 0 = ∆κMn−1. From this, we use (3.15) to

see that indeed

2εH projP⊗VM (xjMn) = zjMn + 2εprojP⊗VM (xjMn),

proving the proposition.

The next result is related to [Yac11, Prop 4.2] where the Dunkl–
Clifford–Kelvin transform is used.

Proposition 3.3.11. Let β ∈Nd with |β|1 = n and xβ ∈ Pn. Then, acting
on V ,

zβ = εn2n(γ + d/2)nprojPn⊗VM ◦xβ . (3.35)

Proof. By (3.12), we write

projPn⊗VMn
= projHn⊗VMn

projPn⊗VHn⊗V . (3.36)
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Let s ∈ V , then by (3.9) (or [Xu00, Theorem 2.4])

projPn⊗VHn⊗V (xβs) = (−1)nYβ s/(2
n(γ − 1 + d/2)n).

Next, we apply (3.13) and make use of (2.16)

projHn⊗VMn
Yβs = Yβs −

εx

2n+ d + 2γ − 2
DKκDβKκ(s)

= Yβs −
εxD

2n+ d + 2γ − 2
|x|2γ+d−2+2nDβ |x|−2γ−d+2s

= Yβs −
ε(2γ + d − 2 + 2n)x2|x|2γ+d−2+2n

(2n+ d + 2γ − 2)|x|−2 Dβ |x|−2γ−d+2s

+
ε

2n+ d + 2γ − 2
x|x|2γ+d−2+2nDβD|x|−2γ−d+2s

= Yβs − |x|2γ+d−2+2nDβ |x|−2γ−d+2s

+
2ε(γ + d/2− 1)x
2n+ d + 2γ − 2

|x|2γ+d−2+2nDβx|x|−2γ−d+2−2s

=
ε(γ + d/2− 1)
n+ d/2 +γ − 1

IκDβIκ(s),

where we used (3.25) in the last line. The result now follows by
Proposition 3.3.7.

3.4 Monogenic bases

The goal of this section is to give a basis for the polynomial mono-
genics using the generalised symmetries of the previous section.
Note that we will here also assume κ to be a positive real func-
tion.

The idea is that acting with a generalised symmetry on a monogenic
polynomial gives a monogenic polynomial of a higher degree. We
can thus construct a generating set forMn starting from the space
of monogenics of degree 0. The strategy we employ to reduce the
generated set to a basis is inspired by the one applied by Xu in the
Dunkl harmonic case [Xu00]. Note that for the case of harmonic
polynomials, the degree 0 harmonics H0 are the constant polynomi-
als, while the space of monogenics of degree 0 is given by the spinor
space:M0 = V .
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For each multi-index β = (β1, . . . ,βd) ∈ N
d with |β|1 = n and each

spinor s ∈ V , we define a polynomial monogenic of degree n by

Z
β
s := zβs = zβ1

1 · · ·z
βd
d s. (3.37)

It is direct to see from (3.27) that

Z
β
s = (−1)nεn−1IκDβIκ(s) = (−1)nεn−1IκDβ1

1 . . .Dβd
d Iκ(s). (3.38)

Recall that ξj = (0, . . . ,0,
j
1,0, . . . ,0) ∈Nd ⊂R

d , and so we define β+ξj =
(β1, . . . ,βj + 1, . . . ,βd).

Lemma 3.4.1. Let β ∈Nd with |β|1 = n and s ∈ V . The spinor-valued
polynomial Zβs respects

Z
β+ξj
s = (2ε(n+ d/2 +γ)xj − 2εxOj − xej − ε|x|2Dj )Z

β
s . (3.39)

Proof. It follows from the commutativity of the zj along with their
expression (3.16).

We now turn our attention to the construction of bases for the mono-
genics.

Proposition 3.4.2. Let ν be a basis of V , the spinor representation of
Cl(d). The set

Cn = {Zβs | β ∈Nd , |β|1 = n, s ∈ ν } (3.40)

is a generating set forMn(Rd ;V ). Moreover, the following relations hold

d∑
j=1

Z
η+ξj
ej ·s = 0, for every η ∈Nd , with |η|1 = n− 1, and s ∈ V . (3.41)

Proof. Proposition 3.3.4 states that every zj is a generalised symmetry

of D, and thus DZ
β
s = 0, so span

C
(Cn) ⊂Mn(Rd ;V ). The monomials

xβ for β ∈Nd with |β|1 = n, together with the spinors s ∈ ν, form a
basis of Pn ⊗V . The projection projPn⊗VMn

sends the element xβ ⊗ s to a

multiple of Zβs = zβs ∈ Cn by Proposition 3.3.11, so span(Cn) contains
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im(projPn⊗VMn
). The projection is surjective, therefore span

C
(Cn) ⊃

Mn(Rd ;V ). We have thus shown that the set Cn generatesMn(Rd ;V ).

We now show that the relations of the form (3.41) hold. Let η ∈Nd

with |η|1 = n−1 and s ∈ V . We now use Lemma 3.3.6, and the relations
Es = 0, σαs = s and Ds = 0 to find

d∑
j=1

Z
η+ξj
ej ·s =

d∑
j=1

zηzjejs = zηzs

= zη(2εx(E+γ −
∑
α∈Φ+

κ(α)σα)− ε|x|2D)s = 0.

Remark 3.4.3. Let η ∈ Nd with |η|1 = n − 2. Xu exhibited the corre-
sponding relations satisfied by the harmonics of equation (3.1) [Xu00,
p. 500] (see also [DX14, pp. 212-213]):

d∑
j=1

Yη+2ξj = KκDη∆κKκ(1) = 0. (3.42)

The monogenics satisfy the same relation, as can be seen by applying twice
relation (3.41), or by viewing the relation in the Dunkl–Clifford–Kelvin
transform

d∑
j=1

Z
η+2ξj
s = (−1)nεn−1IκDη∆κIκ(s) = 0. (3.43)

The relations (3.41) can be used to reduce the generating set Cn to a
basis. For instance, the next theorem shows that if we consider only
multi-indices j ∈ Nd with zero as last index, we get a basis of the
polynomial monogenics. Other bases can be constructed by following
the same strategy but excluding other elements from Cn using the
relations (3.41). The proof of the following theorem also shows that
for a fixed n ∈N and s ∈ ν, with ν a basis of V , the relations (3.41)
are all independent.

Theorem 3.4.4. Let ν be a basis of V , the spinor representation of Cl(d).
The set

Bn = {Zj
s | j = (j1, . . . , jd−1,0) ∈Nd , |j|1 = n, s ∈ ν} (3.44)
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is a basis ofMn(Rd ;V ).

Proof. For every s ∈ ν, let s′ = εed · s and, for these s′, consider the
relations (3.41) for all η with |η|1 = n− 1. These relations can be used
to go from Cn to Bn by removing all polynomials Zβs with βd , 0. We
will show that each relation will remove exactly one polynomial, after
which the result follows by a dimension argument. We order the
multi-indices I := {η ∈Nd | |η|1 = n−1} by reverse lexicographic order,
so η1 = (0, . . . ,0,n − 1), η2 = (0, . . . ,0,1,n − 2), . . . ,η|I | = (n − 1,0, . . . ,0),
with |I | = dimPn−1(Rd) =

(n+d−2
d−1

)
.

Since ed · s′ = s for s ∈ ν, we can write relation (3.41) for ηi and s′ ∈ V
as

Z
ηi+ξd
s = −

d−1∑
j=1

Z
ηi+ξj
ej ·s′ . (3.45)

For each ηi , we can use this to exclude the polynomials {Zηi+ξds | s ∈ ν},
since the right-hand side of (3.45) is a sum of polynomials strictly
lower in the ordering. Therefore, starting from the set Cn, doing this
procedure in the reverse lexicographic order for all ηi each step will
exclude dimV polynomials from the set.

This results in a basis, as can be seen from the dimensions of the
spaces involved. Indeed, the cardinality of the spanning set is |Cn| =
dimPn(Rd)×dimV , and there are dimPn−1(Rd)×dimV different lin-
ear relations between its members; dimMn(Rd ;V ) = dimPn(Rd−1)×
dimV and

(dimPn(Rd)−dimPn−1(Rd))×dimV =
(
n+ d − 2
d − 2

)
×dimV

= dimMn(Rd ;V ) = |Bn|.

3.5 Examples: the abelian cases

3.5.1 Reducible reflection groups

In this section, we consider the cases when the reflection group is
reducible: W = WΨ ×WΨ ′ , for Ψ ,Ψ ′ two root subsystems of lower
rank with Φ = Ψ tΨ ′ the disjoint union of the two.
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Let M be the rank of Ψ . For simplicity, assume that Ψ is restricted to
the first M coordinates. We have an osp(1|2) realisation given by the
following operators

D
[M]

:=
M∑
a=1

Daea, x[M] :=
M∑
a=1

xaea.

The odd elements D
[M]

and x[M] generate a realisation of the superal-

gebra osp(1|2) with the following commutation relation{
D

[M]
, x[M]

}
= 2εH[M] = 2ε(E[M] +M/2 +γ[M]), (3.46)

where

E[M] :=
M∑
a=1

xa∂xa , γ[M] :=
∑
α∈Ψ +

κ(α).

Thus one can also define generalised symmetries in this “smaller”
osp(1|2)-realisation.

Definition 3.5.1. Let 1 ≤ j ≤ M. The partial generalised symmetry
linked to D

[M]
is given by

zj,[M] := 2εxjH[M] − x[M]Djx[M]. (3.47)

Naturally, since it is also in an osp(1|2)-realisation, zj,[M] satisfies
the equivalent relations of Proposition 3.3.8, Lemma 3.3.3, Proposi-
tion 3.3.5 and Proposition 3.3.7.

3.5.2 The abelian cases

We turn to the study of the abelian case. This means the Dunkl–
Dirac symmetry algebra for the group W = Z

d
2 acting on R

d with a
W -invariant function given by the d-tuple of non-negative constants
(κ1, . . . ,κd). In the abelian case, the reflection σj sends xj to −xj and
leaves the other variables invariant. The Dunkl operators in this case
are given by

Di = ∂xi +κi
1− σi
xi

, (3.48)
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and the commutation relation (2.13) becomes[
Di , xj

]
= δij(1 + 2κiσj ). (3.49)

Albeit Theorem 3.4.4 gives a basis ofMn, the specificity of the group
studied call for a slightly different approach. The complete reducibi-
lity of W = Z

d
2 was used in [DGV16a; DGV16b] to construct a basis

from the Cauchy–Kovalevskaya extension Theorem. We will retrieve
this construction from the partial generalised symmetries of Defini-
tion 3.5.1.

3.5.3 The Cauchy–Kovalevskaya basis

In the abelian case, there exists a generalisation of the Cauchy–Kova-
levskaya map. It can be used to construct a basis of the polynomial
monogenics.

Proposition 3.5.2 ([DGV16b, Eq. (31)]). Let V be an irreducible repre-
sentation of the Clifford algebra Cl(d). There is an isomorphism between
the space of spinor-valued polynomials of degree n over k − 1 variables
and the monogenics of degree n over k variables given by

CKκk
xk : Pn(Rk−1)⊗V −→Mn(Rk ;V )

p 7−→ CKκk
xk (p) =

bn/2c∑
a=0

x2a
k D2a

[k−1]

22aa!(κk + 1/2)a
p

− ε
ekxkD[k−1]

2

b n−1
2 c∑
a=0

x2a
k D2a

[k−1]

22aa!(κk + 1/2)a+1
p.

(3.50)

Note that in [DGV16b], the proposition is given for ε = −1. The proof
for the two signs is the same up to minor modifications.

The map CKκk
xk is an isomorphism and has an inverse given by the

map evaluating the last variable to 0:

Rk :Mn(Rk ;V ) −→ Pn(Rk−1)⊗V
f (x1, . . . ,xk) 7−→ Rk(f )(x1, . . . ,xk−1) = f (x1, . . . ,xk−1,0).

(3.51)

Consider now the Fischer decomposition of the polynomial space.
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Proposition 3.5.3 (Fischer decomposition [BDS82; ØSS09]). The space
of spinor-valued polynomials decomposes in monogenic spaces as

Pn(Rd)⊗V =
n⊕
k=0

xn−k[d] Mk(R
d ;V ). (3.52)

When κ is positive, the same also holds for Dunkl polynomial spaces.

Pn(R2)⊗V Mn(R3;V )

Pn(R)⊗V Mn(R2;V )

Pn−1(R)⊗V x[2]Mn−1(R2;V )

...

P0(R)⊗V xn[2]M0(R2;V )

CKκ3
x3

=
CKκ2

x2

⊕
x[2]CKκ2

x2

⊕

⊕
xn[2]CKκ2

x2

Figure 3.1: Tower of CK extension and Fischer decomposition
for d = 3, see also [DGV16b, Eq. (32)]

From this proposition, and the tower of CK extensions and Fischer
decompositions (see Figure 3.1), we get a basis of the space of mono-
genics.

Proposition 3.5.4 ([DGV16b, Prop. 6]). Let {s}s∈ν be a basis of the
spinor representation V . The set of functions defined, for all multi-index
with last entry zero, j = (j1, . . . , jd−1,0) ∈Nd with |j|1 = n, by

ψ
j
s(x1, . . . ,xd) = CKκd

xd

(
x
jd−1
d−1CKκd−1

xd−1

(
· · ·

· · ·CKκ3
x3

(
x
j2
2 CKκ2

x2 (xj11 )
)
. . .

))
s,

(3.53)

is a basis ofMn(Rd ;V ).
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3.5.4 A new basis

We will use the partial generalised symmetries of Subsection 3.5.1 to
make full use of the completely reducible nature of Zd

2 . The crucial
point of the abelian case W = Z

d
2 is a chain of inclusions

Z2 ⊂Z
2
2 ⊂ · · · ⊂Z

d−1
2 ⊂Z

d
2 . (3.54)

This gives in turn a tower of osp(1|2) algebra realisations given by the
pairs (D

[k]
,x[k]) for each 1 ≤ k ≤ d. We remark that the constant γ[k]

appearing in the anticommutation relation (3.46) is γ[k] := κ1 +κ2 +
· · ·+κk in the abelian case.

This feature of the group Z
d
2 was used in Proposition 3.5.4 to give a

basis. We give a basis proportional to the CK basis by replacing the
operators zj in Theorem 3.4.4 by the partial ones zj,[j]. This is done
by linking the Cauchy–Kovalevskaya extension of each level to one
partial generalised symmetries.

An important note, the commutation of the zj,[j] requires that they
stay on the same level. Indeed, two partial generalised symmetries
at a different level in the tower do not commute in general. So
in the basis of the following proposition, the order of application
matters.

Proposition 3.5.5. The set of polynomials of the form

φ
j
s := zjd−1

d,[d]z
jd−2
d−1,[d−1] . . .z

j1
2,[2]s,

for j = (j1, . . . jd−1,0) ∈Nd , |j|1 = n, and s ∈ ν,
(3.55)

constitutes a basis ofMn(Rd ;V ).

The proof of this proposition will follow from Proposition 3.5.11, as
it exhibits a change of basis from the ψ

j
s to the φ

j
s. The remaining of

the section is dedicated to proving this change of basis.

Propositions 3.5.7 and 3.5.10 show that CKκk
xk x

j
[k−1] and z

j
k,[k] are

Clifford proportional as operators, meaning that they differ only by
a Clifford number. There is a small difference between k = 2 and
k > 2, and thus we separate the proof in two steps. We begin by
showing what will constitute the hard part of the induction proof of
Proposition 3.5.7.
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Lemma 3.5.6. The z2,[2] operator and the CKκ2
x2 extension are linked by

z2,[2]CKκ2
x2 (xm1 s) = AmCKκ2

x2 (xm+1
1 e2e1s), (3.56)

with
Am = 1 +m+ (1− (−1)m)κ1 + 2κ2. (3.57)

Proof. Recall that R2 is the inverse of CKκ2
x2 . Acting with R2 on (3.56)

thus yields
R2z2,[2]CKκ2

x2x
m
1 s = Amx

m+1
1 e2e1s, (3.58)

so it suffices to compute the left-hand side of (3.58). Begin by using
the expression (3.16) of z2,[2]

R2(z2,[2]CKκ2
x2 (xm1 s)) = R2((2εx2(E[2] + 1 +γ[2])

− x2(1 + 2κ2σ2)e2 − ε|x|2[2]D2)CKκ2
x2 (xm1 s)),

and since R2 sends x2 to 0, this reduces to

= (−x1e1(1 + 2κ2σ2)e2)xm1 s

+ ε2x2
1D2

x2e2D1e1

2
xm1 s

(1/2 +κ2)

= ((1 + 2κ2σ2)e2e1)xm+1
1 s

+ x2
1(1 + 2κ2σ2)

D1x
m
1 e2e1s

(1 + 2κ2)
,

and now we apply D1x
m
1 s = (m+ κ1(1− (−1)m))xm−1

1 s, since D1s = 0,
to obtain

= (1 +m+ 2κ2 + (1− (−1)m)κ1)xm+1
1 e2e1s.

Using this lemma, we can prove the general proposition.

Proposition 3.5.7. Acting on a spinor s, we have

z
j
2,[2]s = aj2CKκ2

x2x
j
1(e2e1)js, (3.59)

with
a
j
2 := 2j(κ2 + 1/2)b(j+1)/2c(γ[2] + 1)bj/2c. (3.60)
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Proof. We proceed by induction on j, the case j = 1 being covered by
Lemma 3.5.6 with m = 0. Assume the induction hypothesis holds up
to j =m. Now we consider the (m+1)-th step and apply the induction
hypothesis

zm+1
2,[2]s = z2,[2]z

m
2,[2]s = z2,[2]a

m
2 CKκ2

x2x
m
1 (e2e1)ms, (3.61)

then we apply Lemma 3.5.6 to get zm+1
2,[2]s = am+1

2 CKκ2
x2x

m+1
1 (e2e1)m+1s

since Ama
m
2 = am+1

2 .

In general, for k > 2, there is one additional difficulty: the CK map
includes not only Dunkl derivatives, but also partial Dunkl–Dirac
operators. We will thus need a small lemma.

Lemma 3.5.8 ([DGV16b, Lem. 13]). Let f ∈Mn(Rk ;V ). The action of
D

[k]
on xm[k]f is given by

D
[k]

(xm[k]f ) = ε(m+
(1− (−1)m)

2
(2n+ k − 1 + 2γ[k]))x

m−1
[k] f . (3.62)

Proof. Proceed by induction on m, first for even m. The base case

m = 2 comes from the commutation relation
[
D

[k]
, |x|2k

]
= 2|x|2k , equa-

tion (2.58). The induction step follows then from

D
[k]
xm[k]f = D

[k]
x2

[k]x
m−2
[k] f = x2

[k]D[k]
xm−2

[k] f + 2εxm−1
[k] f = εmxm−1

[k] f .

(3.63)
The base case for odd m follows from the anticommutation rela-
tion

{
D

[k]
, x[k]

}
= 2ε(Ek + k/2 + γ[k]), D

[k]
f = 0 and Ekf = nf . The

induction step is then achieved by one application of equation (2.58)

D
[k]
xm[k]f = D

[k]
x2

[k]x
m−2
[k] f = x2

[k]D[k]
xm−2

[k] f + 2εxm−1
[k] f

= ε(2n+m+ k − 1 + 2γ[k])x
m−1
[k] f .

(3.64)

Now to prove the relation between the partial generalised symmetry
and the CK map for the other levels of the tower, we introduce a
lemma that takes care of the difficult induction step.
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Lemma 3.5.9. Let f ∈ Mn(Rk−1;V ) be a monogenic of degree n in the
first k − 1 variables. Then

zk,[k]CKκk
xk x

m
[k−1]f = Bmk,nCKκk

xk x
m+1
[k−1]ekf , (3.65)

with

Bmk,n = (−1)m+1(m+ 1 +
(1− (−1)m)

2
(2n+ k −2 + 2γ[k−1]) + 2κk). (3.66)

Proof. The proof proceeds in the same fashion as the one of Lem-
ma 3.5.6, using E[k−1]f = nf , D

k−1
f = 0 and Dkf = 0 instead of

Es = 0, D1s = 0 and D2s = 0 in the corresponding steps.

The map CKκk
xk has an inverse Rk defined as evaluating xk to 0. We

compute, using (3.50),

R := Rk(zk,[k]CKκk
xk x

m
[k−1]f )

= Rk
(
2εxk(E[k] + k/2 +γ[k])

− x[k](1 + 2κkσk)ek − ε|x|2kDk

)
CKκk

xk x
m
[k−1]f

= −x[k−1](1 + 2κkσk)ekx
m
[k−1]f + ε2|x|2k−1Dk

ekxkD[k−1]

2(κk + 1/2)
xn[k−1]f

= (−1)m+1(1 + 2κk)x
m+1
[k−1]ekf + |x|2k−1ek

[Dk , xk]
2(κk + 1/2)

D
[k−1]

xn[k−1]f

and we use Lemma 3.5.8 for f ∈Mn(Rk−1;V ) on the rightmost term
to get

= (−1)m+1(1 + 2κk)x
m+1
[k−1]ekf

+ ε(m+
(1− (−1)m)

2
(2n+ k − 2 + 2γ[k−1]))|x|2k−1ekx

m−1
[k−1]f

= (−1)m+1
(
1 + 2κk + ε2m

+ ε2 (1− (−1)m)
2

(2n+ k − 2 + 2γ[k−1])
)
xm+1

[k−1]ekf .

This allows to determine the constant Bmk,n by comparing with (3.65).
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Proposition 3.5.10. Let f ∈Mn(Rk−1;V ) be a monogenic in k − 1 vari-
ables of degree n. For k > 2,

z
j
k,[k]f = bjk,nCKκk

xk x
j
[k−1]e

j
kf , (3.67)

with

b
j
k,n = (−1)b(j+1)/2c2j(κk + 1/2)b(j+1)/2c(γ[k] +n+ k/2)bj/2c. (3.68)

Proof. We proceed by induction on j. The base case follows from
Lemma 3.5.9 with m = 0. Assume the induction hypothesis holds up
to j. The induction step follows from the induction hypothesis and
Lemma 3.5.9

z
j+1
k,[k]f = zk,[k]z

j
k,[k]f = zk,[k]b

j
k,nCKκk

xk x
j
k−1e

j
kf

= Bjk,nb
j
k,nCKκk

xk x
j+1
k−1e

j+1
k f . (3.69)

This shows the result since Bjk,nb
j
k,n = bj+1

k,n .

Connecting this to the CK basis, we get the following correspondence,
proving Proposition 3.5.5.

Proposition 3.5.11. Let j = (j1, . . . , jd−1,0) ∈Nd with |j|1 = n and s ∈ ν
be a spinor. The partial generalised symmetry basis is linked to the CK
basis by

φ
j
s = cjψ

j
j·s, (3.70)

where the action j · s in ψ
j
j·s denotes the action e

jd−1
d . . . e

j2
3 (e2e1)j1s on

the spinor space in the expression of the polynomial ψ, and where the
proportionality constant is given by

cj =

d−1∏
k=3

k−1∏
l=2

(−1)jkjl

2n(1/2 +κ2)b(j1+1)/2c(1 +γ[2])bj1/2c×

d−1∏
i=2

((−1)b(ji+1)/2c×

(1/2 +κi+1)b(ji+1)/2c((i + 1)/2 +γ[i+1] +
i−1∑
k=1

jk)bji /2c).

(3.71)
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Proof. The first steps are to apply once Proposition 3.5.7 for the z2,[2]
contribution and multiple times Proposition 3.5.10 for the remaining
contributions of the zk,[k]. This will give cj up to the first sign. This
sign is obtained when Clifford elements go to the right from their
interaction with the vector variables. Note that ek commutes with
CKκl

xl when k > l, as can be clearly seen from the expression (3.50), so
the only sign to consider is from the vector variable crossing. Step by
step, this gives

φsj = zjd−1
d,[d]z

jd−2
d−1,[d−1] . . .z

j1
2,[2]s

(Prop. 3.5.7) = aj12 z
jd−1
d,[d]z

jd−2
d−1,[d−1] . . .z

j2
3,[3]CKκ2

x2

(
x
j1
1 (e2e1)j1s

)
(Prop. 3.5.10) = aj12

d−1∏
k=2

(bjk
k+1,

∑k−1
j=1 jk

)CKκd
xd

(
x
jd
[d−1]e

jd−1
d CKκd−1

xd−1 · · ·

e
j2
3 CKκ2

x2 (xj11 (e2e1)j1s)
)

=

d−1∏
k=3

k−1∏
l=2

(−1)jkjl

aj12 d−1∏
k=2

(bjk
k+1,

∑k−1
j=1 jk

)CKκd
xd

(
x
jd
[d−1] · · ·

CKκ2
x2 (xj11 e

jd−1
d . . . (e2e1)j1s)

)
= cjψ

j·s
j .

Thus, the generalised symmetries can be used to retrieve the CK
basis, and Proposition 3.5.11 gives the change of basis.
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4
An Exceptional Symmetry Algebra

for the 3D Dirac–Dunkl Operator

The content of this chapter is extracted from the contribution:

Alexis Langlois-Rémillard and Roy Oste (2020). Proceedings of the
conference Lie Theory and Its Applications in Physics, LT-XIII Varna
2019 [LO20].

In the present chapter, we initiate the study of an algebra of symme-
tries for the Dirac–Dunkl operator associated with the exceptional
root system G2. The latter is primarily known from the classification
of simple Lie algebras. The associated Lie group and algebra continue
to spark interest, see for instance the recent paper of Dobrev [Dob19]
and references therein. Our purpose is related instead to the action
of the Weyl group associated with G2 on a (two-dimensional sub-
space of a) three-dimensional space. Though G2 is indeed a root
system of rank 2, the arising symmetry algebra associated with a
three-dimensional space portrays interesting non-trivial relations,
which are not present when considering the two-dimensional ana-
logue.

We will briefly recall how the symmetry algebra in question arises.
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See Section 2.2.5 for more detail. For a finite reflection group W
acting on a finite dimensional vector space, there exists a rational
Cherednik algebra (RCA) [EM10] that can be viewed as a deformation
of the algebra of polynomial differential operators on the vector space.
An explicit realisation is given by means of differential-difference
operators called Dunkl operators [Dun89]. A generalisation of the
Dirac operator is defined abstractly inside the tensor product of the
RCA and a Clifford algebra, or explicitly by using Dunkl operators
in lieu of partial derivatives in the ordinary definition of the Dirac
operator.

In this way, the Dirac–Dunkl operator squares to a Dunkl version
of the Laplace operator whose invariance is restricted to the group
W as opposed to the full orthogonal invariance of its classical coun-
terpart. Moreover, together with its dual partner, the Dirac–Dunkl
operator generates a Lie superalgebra isomorphic to osp(1|2). The
latter’s (super)centraliser, Oκ (Definition 2.2.17) inside the tensor
product of RCA and Clifford algebra gives an algebra of symmetries
(super)commuting with the Dirac–Dunkl operator. Structurally it can
be seen as a deformation of the orthogonal Lie algebra representing
total angular momentum in the non-deformed case.

The full analysis of the representation theory goes beyond the scope
of this chapter and will be presented in Chapter 5. Here, we will
present some preliminary results pertaining to three-dimensional
spaces and focus in particular on the exceptional root system G2,
embedded herein. Note that this chapter follows the same convention
for the root system as previous work on W = S3 [DOV18a], whereas
the next chapter will use a different one.

In Section 4.1, the required definitions of the exceptional root system
G2 and the Dirac–Dunkl operator are introduced and we present
the symmetry algebra both abstractly and as an explicit realisation.
In Section 4.2, we prove an intermediate result for arbitrary root
systems in R

3 and show that this leads to the existence of ladder
operators for the symmetry algebra associated with G2.
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4.1 An exceptional symmetry algebra

We consider the Euclidean space R
3 with coordinates x1,x2,x3. The

2-dimensional root system G2 is realised in a plane and is generated
by two simple roots α1 = (0,1,−1) and α2 = (1,−2,1). The Coxeter
group linked to G2 is the dihedral group D2·6 that we will present by:
D12 = 〈σ1,σ2 | σ2

1 = σ2
2 = (σ1σ2)6 = (σ2σ1)6 = 1〉 with the reflections

σ1 connected to the short root α1, and σ2 to the long root α2. Their
actions on R

3 are expressed matricially by:

σ1 =


1 0 0

0 0 1

0 1 0

 , σ2 =


2/3 2/3 −1/3

2/3 −1/3 2/3

−1/3 2/3 2/3

 . (4.1)

A set of positive roots is given by

Φ+ = {α1 = (0,1,−1),α2 = (1,−2,1),α3 = (1,−1,0),

α4 = (1,1,−2),α5 = (1,0,−1),α6 = (2,−1,−1)} .
(4.2)

To each root αi , a reflection σi is paired. The remaining reflections
have the following decompositions in terms of the simple reflections
σ1,σ2:

σ3 = σ2σ1σ2, σ4 = σ1σ2σ1,

σ5 = σ1σ2σ1σ2σ1, σ6 = σ2σ1σ2σ1σ2.
(4.3)

We introduce a D12-invariant weight function κ : G2→ C, which is
defined by two complex numbers κ1 and κ2 linked respectively to
the short and long roots. With this, it is possible to define Dunkl
operators (2.10) for the root system G2; for example the one associated
with the coordinate x2 is given by

D2 =
∂
∂x2

+κ1

(
1− σ1

x2 − x3
− 1− σ3

x1 − x2

)
+κ2

(
−2

1− σ2

x1 − 2x2 + x3
+

1− σ4

x1 + x2 − 2x3
− 1− σ6

2x1 − x2 − x3

)
,

while D1 and D3 are defined similarly.

Fix a sign ε ∈ {+1,−1}. We consider the Clifford algebra with three
anticommuting generators e1, e2, e3 that all square to ε. The Dirac–
Dunkl operator associated with our embedding of G2 in R

3 is D :=
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D1e1+D2e2+D3e3. Together with its dual partner x := x1e1+x2e2+x3e3,
it generates a realisation of osp(1|2). For ease of notation, we shall
not make explicit mention of the tensor product, trusting the reader
to add it whenever Clifford elements ei are involved.

The elements of the symmetry algebra Oκ were obtained in previous
work [DOV18a] (that they indeed generate the full centraliser is the
subject of [Ost22]) and we will go over them now. First, we need
a double cover of the Weyl group D12. The orthogonal group O(3)
has two non-isomorphic double covers. These correspond to the two
choices of ε in the definition of the Clifford algebra [Mor76]. For
either choice of ε, we obtain a double cover D̃ε12 from Theorem 2.2.7.
In this way, we obtain the elements of C[D̃ε12] (together with their
additive inverses):

σ̃1 =
σ1(e2 − e3)
√

2
, σ̃2 =

σ2(e1 − 2e2 + e3)
√

6
,

σ̃3 =
σ3(e1 − e2)
√

2
, σ̃4 =

σ4(e1 + e2 − 2e3)
√

6
,

σ̃5 =
σ5(e1 − e3)
√

2
, σ̃6 =

σ6(2e1 − e2 − e3)
√

6
.

Note that the group relations depend on the choice of ε. By direct
computation we find D̃ε12 = 〈−1, σ̃1, σ̃2 | −12 = 1, σ̃2

1 = σ̃2
2 = ε, (σ̃1σ̃2)6 =

(σ̃2σ̃1)6 = −1〉, which also follows from Theorem 2.2.7. The order of
this group is 24, and for ε = +1 it is again a dihedral group, while
for ε = −1 it is a dicyclic group. Regardless of the choice of ε, all
elements of D̃ε12 will supercommute with the Dunkl–Dirac operator
when taking into account the Z2-grading inherited from the Clifford
algebra. Both D and ±σi are odd elements with respect to this grading,
so they will in fact anticommute.

Furthermore, there are three analogues of the total angular momen-
tum operators that commute with the Dirac operator: O12,O23,O13,
see (2.66). Classically (non-Dunkl) they generate a realisation of the
orthogonal Lie algebra so(3), though here it will be a deformation of
the product so(3)oCW̃ .

For this group, the one-index symmetries (2.65) will be explicitly the
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following:
O1 = κ1(σ̃3 + σ̃5) +κ2(σ̃2 + σ̃4 + 2σ̃6),

O2 = κ1(σ̃1 − σ̃3) +κ2(−2σ̃2 + σ̃4 − σ̃6),

O3 = κ1(−σ̃1 − σ̃5) +κ2(σ̃2 − 2σ̃4 − σ̃6).

(4.4)

It is immediate to see that the sum O1 +O2 +O3 = 0. Moreover,
we will denote E = [O1,O2], and by direct but slightly tedious com-
putations, we can also see that [O2,O3] = E = − [O1,O3]. From the
realisation (2.66), it is clear that Oij = −Oji .

The interaction of the two simple reflections σ̃1 and σ̃2 with the
two-index symmetries are given by:

σ̃1O12 =O13σ̃1, σ̃2O12 = (−2/3O12 + 2/3O13 + 1/3O23)σ̃2,

σ̃1O13 =O12σ̃1, σ̃2O13 = (2/3O12 + 1/3O13 + 2/3O23)σ̃2,

σ̃1O23 = −O23σ̃1, σ̃2O23 = (1/3O12 + 2/3O13 − 2/3O23)σ̃2,

(4.5)

from which the entire action of D̃ε12 on Oκ follows.

The final generator of our symmetry algebra is a central element
O123, of which an explicit realisation is given by

O123 = εe1e2e3 +O1e2e3 −O2e1e3 +O3e1e2 +L12e3 −L13e2 +L23e1.

As a consequence of the relations in the general case presented in
Section 2.2.5, the two-index symmetries Oij respect

[O13,O12] =O23 + 2O123O1 + E;

[O23,O12] = −O13 + 2O123O2 + E;

[O23,O13] =O12 + 2O123O3 + E .
(4.6)

In the right-hand sides of (4.6), the linear combinations of elements
of D̃ε12 given by (4.4) and E appear. When the deformation parameters
κ1, κ2 are chosen to be zero, these all vanish and the relations (4.6)
reduce to those of the orthogonal Lie algebra so(3).

4.2 Ladder operators

The result we prove next holds for any arbitrary root system in R
3.

Hereto, one should use the appropriate definitions for O1,O2,O3 as
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given in [DOV18a, eq. (3.8) and Ex. 4.2] and the relations analogous
to (4.6) given by [DOV18b, eq. (1.7)]. What we obtain in this way are
not yet the desired ladder operators, though we will show that they
do lead to ladder operators for the G2 case at hand.

Proposition 4.2.1. Let ω = e2iπ/3 and consider the following linear
combinations:

O0 := −i/
√

3(O12 +O23 −O13),

O+ := −i
√

2/3(O12 +ωO23 −ω2O13),

O− := −i
√

2/3(O12 +ω2O23 −ωO13).

(4.7)

Denoting ω+ :=ω and ω− :=ω2, the linear combinations satisfy

[O0,O±] = ±O± ∓ i
√

2/3(2O123(O3 +ω±O1 +ω∓O2)

+ [O1,O2] +ω± [O2,O3] +ω∓ [O3,O1]);

[O+,O−] = 2O0 − 2i/
√

3(2O123(O1 +O2 +O3)

+ [O1,O2] + [O2,O3] + [O3,O1]).

(4.8)

Proof. Using the definitions (4.7) and grouping the terms appropri-
ately we obtain

[O0,O±] = −
√

2/3
(
(1−ω±) [O23,O12]

+ (ω∓ − 1)[O12,O31] + (ω± −ω∓) [O31,O23]
)
.

Noticing that (ω±−ω∓) = ±i
√

3, and (1−ω±) = 3/2∓ i
√

3/2 = ±i
√

3ω∓,
and (ω∓ − 1) = −3/2 ∓ i

√
3/2 = ±i

√
3ω±, and applying [DOV18b,

eq. (1.7)] result in

= ∓i
√

2/
√

3
(
ω∓(O31 + {O123,O2}+ [O3,O1])

+ω±(O23 + {O123,O1}+ [O2,O3])

+O12 + {O123,O3}+ [O1,O2]
)
,

and finally using again the definitions (4.7) one arrives at the desired
expression. In the same manner for the second equation, we find

[O+,O−] = −2/3(ω −ω2) ([O23,O12] + [O12,O31] + [O31,O23])
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= −2i/
√

3(O31 + {O123,O2}+ [O3,O1] +O23 + {O123,O1}
+ [O2,O1] + O12 + {O123,O1}+ [O1,O2])

= 2O0 − 2i/
√

3({O123,O1 +O2 +O3}
+ [O1,O2] + [O2,O3] + [O3,O1]) .

As O123 is central, this proves the second equality.

When the root system satisfies some specific properties, we can use
the previous result to obtain ladder operators.

Proposition 4.2.2. For the root system G2, the elements O0, O+ and O−
satisfy

[O0,O±] = ±O± ∓ 2i
√

2/3O123

(
O3 +ω±O1 +ω∓O2

)
;

[O+,O−] = 2O0 − 2i
√

3E .
(4.9)

Moreover, the quadratic elements

K+ :=
1
2
{O0,O+} K− :=

1
2
{O0, O−} (4.10)

fulfill the ladder operator relations

[O0, K±] = ±K±. (4.11)

Proof. Starting from the relations (4.8), we can use 1+ω+ω2 = 0, and
O1 +O2 +O3 = 0, while [O1,O2] = [O2,O3] = [O3,O1] = E, to arrive
at (4.9).

In addition, [O0,K±] = 1/2[O0, {O0,O±}] = 1/2 {O0, [O0,O±]}. By the
first relation (4.9), this becomes

[O0,K±] = ±1/2 {O0,O±} ∓ i
√

2/3
{
O0,O123(O3 +ω±O1 +ω∓O2)

}
= ±K±.

In the last step we used the fact that O123 is central, and that all
elements of D̃ε12 anticommute with O0, which is clear from the ac-
tion (4.5).

These ladder operators can now be used in the study of the represen-
tation theory of the symmetry algebra in a similar vein as what was
done in the S3 case [DOV18b]. This is the subject of the following
chapter.
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5
Finite-dimensional representations

of the dihedral Dunkl–Dirac
symmetry algebra

The content of this chapter is extract from the article and the contri-
bution:

Hendrik De Bie, Alexis Langlois-Rémillard, Roy Oste, and Joris Van
der Jeugt. (2022) Journal of Algebra [DLOV22].

Alexis Langlois-Rémillard. (2022+) Proceedings of Lie Theory and Its
Applications in Physics, LT-XIV 2021. [Lan22].

5.1 Forewords

The following chapter contains work extracted from the two publica-
tions mentioned above. To adapt them to the notation of this thesis,
we have modified the results of the first sections to work with both
Clifford signatures. However, Section 5.6 has kept the convention
ε = 1.
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5.2 Introduction

The aim of this work is to continue the inquiry of the representation
theory of the symmetry algebra, generated by symmetries supercom-
muting with an osp(1|2) realisation linked to a Dirac-like operator
deformed by a reflection group [DOV18a], namely the Dunkl total
angular momentum algebra Oκ. We consider the case of a Dunkl–
Dirac operator acting on a three-dimensional space as this is the
lowest dimension where the symmetry algebra portrays interesting
behaviour. This work enlarges the class of studied systems to all the
reducible rank 3 root systems in a three-dimensional setting.

Dunkl operators are a generalisation of partial derivatives introduced
by Dunkl [Dun89] in the context of orthogonal polynomials in several
variables. The constituents of those operators are: a reflection group
W ⊂ O(d) acting on the Euclidean space R

d and its root system Φ ,
a W -invariant function κ : Φ → C, and the algebra of polynomials
in d variables x1, . . . ,xd . Then, as in Section 2.2.1, we identify the
rational Cherednik algebra Hκ to its Dunkl representation generated
by the group algebra CW , the d Dunkl operators D1, . . . ,Dd , and the d
multiplication operators x1, . . . ,xd . The symmetry algebra we consider
is the centralizer of an osp(1|2) realisation inside the tensor product
of a Clifford algebra and Hκ. The symmetry algebra is in fact the
full centralizer of the osp(1|2) algebra realisation. This is considered
in generality in [Ost22]. It is related to the (Pin(d), osp(1|2)) Howe
duality. Other deformations of Howe dualities were recently studied
in the rational Cherednik algebra context [CD20; Ciu+20].

We recall here all the possibilities for rank three root systems.

(i) Three rank 1 root systems: A1 ⊕A1 ⊕A1, with Weyl group Z2 ×
Z2 ×Z2.

(ii) The sum of a rank 1 and a rank 2 root systems, so the infinite
family of dihedral root systems with an A1 part: A1 ⊕ I2(m)
(m ≥ 3). Their Coxeter group is Z2 ×D2m.

(iii) The irreducible rank 3 root systems A3, B3, C3 and H3 of respec-
tive Weyl groups S4, S3 oZ

3
2, S3 oZ

3
2 and A5 ×Z2.

This chapter addresses the reducible root systems of rank 3 (cases (i)
and (ii)) as they can all be studied using the same method. The study
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of the irreducible root systems A3, B3 and H3 (C3 has the same Weyl
group and is indiscernible in our context) requires different methods
and is subject to ongoing investigations.

Dihedral groups in the Dunkl operators context are well-studied
examples. They offer a tractable non-trivial behaviour and already
divide into two different cases depending on whether the parameter
m for the dihedral group is odd or even. The harmonic polynomials
of the dihedral Dunkl–Laplacian were already given in the original
paper of Dunkl [Dun89]. The complete finite-dimensional represen-
tation theory in the dihedral case for rational Cherednik algebras
is also known [Chm06]. They are often the first non-trivial exam-
ples one can hope to consider completely. Recent investigations on
the dihedral case include: closed formulas for intertwining opera-
tors [Xu19; DL21], the geometrical properties of the Calogero–Moser
space associated with dihedral groups [Bon18] and the complete de-
scription of the deformed unitary Howe dual pairs [Ciu+20].

Here we study the finite-dimensional irreducible representations of
the symmetry algebra of the dihedral Dunkl–Dirac operator acting
on a three-dimensional space. Albeit dihedral root systems are of
rank 2, the symmetry algebra becomes interesting only for dimension
three and higher. Adding the extra dimension by means of an A1
root system is the most general approach. Note that the symmetry
algebra associated with the reflection group D2m is a subalgebra of the
one associated with Z2 ×D2m and is not simply obtained by setting
the function κ to zero on the Z2 part. This is a difference with
the study of the S3 case [DOV18b]: the extra Z2 component adds
more constraints on the forms the representations can take. Another
difference is that restricting representations of the symmetry algebra
to representations of W now gives rise to projective representations
of W . Projective representations are representations of the double
covering of the group that are not isomorphic to representation of the
group. For a reflection group, considered as a subgroup ofO(d), there
are in general two double coverings W̃ + and W̃ −; see Section 2.2.3.
In general, as group algebras over C, they are isomorphic, and hence
their module categories are equivalent. However the whole picture
was not present for the root system A2 because the group S3 does
not admit two non-trivial double coverings. We give the detailed
construction of the representation of the double coverings of the
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direct sum of a dihedral group with Z2 in Section 5.4 following
Morris [Mor76].

The main results of this chapter and its structure are now reviewed.
Section 5.3 reviews the background of Dunkl operators in general
and in the dihedral cases. Section 5.5 first presents the general results
and definitions on the symmetry algebra, proves a useful proposi-
tion on the square of the central symmetry for any reflection group
acting on a three-dimensional space (Proposition 5.5.5), then con-
structs a new set of generators (Proposition 5.5.8), continues with
the construction of a pair of ladder operators (Proposition 5.5.10)
and finishes with a discussion on the possible unitary structures.
Section 5.6 states and proves the main results: a classification of the
finite-dimensional irreducible and unitary representations (Theo-
rems 5.6.1 and 5.6.2 for the odd and even case respectively). The
main ideas of the proofs are explained in Subsection 5.6.1 and the
details are given in Subsections 5.6.2 and 5.6.3. Finally, Section 5.7
studies the important example of the monogenic representation fami-
lies (Propositions 5.7.7, and 5.7.8). For the convenience of the reader,
we also included Section 5.4 to recall results on the double coverings
of reflections groups and write down the complete construction for
W = Z2 ×D2m of the irreducible finite-dimensional representations
of the double coverings W̃ − and W̃ + (Theorem 5.4.2).

5.3 The dihedral Dunkl–Dirac equation

In this section, the required theory of Dunkl operators is recalled,
both in the general case and in the specific dihedral case. The book
of Dunkl and Xu [DX14] contains the material for Dunkl operators.
The definitions of the generalized Dunkl–Laplace and Dunkl–Dirac
operators can be found in [DOV18a].

5.3.1 The dihedral Dunkl operators

Let I2(m) denote the root system associated with the dihedral group
D2m of order 2m. For m = 1,2,3,4,6, it is a crystallographic root
system, respectively A1, A1 ⊕A1, A2, B2 and G2.

We will consider for the remainder of the chapter m ≥ 2 and d = 3
and put W = Z2 × D2m acting on R

3. Recall its Coxeter presenta-
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tion (2.7)

W =
〈
σ0, σ1, σm | σ2

0 = σ2
1 = σ2

m = (σ0σ1)2 = (σ0σm)2 = (σ1σm)m = 1
〉
,

where σ0 is the generator for Z2. We choose the standard root system
Φ of A1 ⊕ I2(m) as

α0 = (0, 0, 1) αj = (sin(jπ/m), −cos(jπ/m), 0), j = 1, . . . ,2m, (5.1)

with the set of positive roots given by Φ+ = {α0,α1, . . . ,αm}.

Before proceeding any further, we warn the reader that in previous
works on A2 = I2(3) [DOV18b] and G2 = I2(6) [LO20], the root system
used is the natural embedding of the roots in the (1,1,1)-hyperplane.
In the A2 case, the change of variables to u, v and w corresponds to
x1 = v, x2 = u and w = x3 in this chapter. Here we decided to follow
the same convention for the dihedral groups as Dunkl [Dun89] and
Humphreys [Hum90]. The associated reflections σj are given in
matrix form by

σ0 =


1 0 0

0 1 0

0 0 −1

 , σj =


cos(2jπ/m) sin(2jπ/m) 0

sin(2jπ/m) −cos(2jπ/m) 0

0 0 1

 . (5.2)

The structure of dihedral groups depends on whether m is even or
odd. When it is even, the elements σ1 and σm are in two different
conjugacy classes; when m is odd, they are in the same. This has an
impact on the double coverings (see Section 5.4) of the group and
will impact slightly the representation theory.

With this in mind, a W -invariant function κ is defined by at most
three constants κ0 := κ(α0), κ1 := κ(α1) and κm := κ(αm) linked to
the W -orbits of α0, α1 and αm respectively. Understand that κ1 = κm
when m is odd. To this effect then, for positive j, κ(αj ) = κ1 when m
is odd; and κ(α2j) = κm, κ(α2j+1) = κ1 when m is even. The Dunkl
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operators (2.10) are then given, when m is odd, by

D1(f (x)) = ∂x1
f (x) +κ1

m∑
j=1

sin( jπm )(f (x)− σjf (x))

sin( jπm )x1 − cos( jπm )x2

;

D2(f (x)) = ∂x2
f (x)−κ1

m∑
j=1

cos( jπm )(f (x)− σjf (x))

sin( jπm )x1 − cos( jπm )x2

;

D3(f (x)) = ∂x3
f (x) +κ0

f (x)− σ0f (x)
x3

;

(5.3)

and, when m is even, by

D1(f (x)) = ∂x1
f (x) +κ1

m−1∑
j=1
j odd

sin( jπm )(f (x)− σjf (x))

sin( jπm )x1 − cos( jπm )x2

+κm
m∑
j=1
j even

sin( jπm )(f (x)− σjf (x))

sin( jπm )x1 − cos( jπm )x2

;

D2(f (x)) = ∂x2
f (x)−κ1

m−1∑
j=1
j odd

cos( jπm )(f (x)− σjf (x))

sin( jπm )x1 − cos( jπm )x2

(5.4)

−κm
m∑
j=1
j even

cos( jπm )(f (x)− σjf (x))

sin( jπm )x1 − cos(jπ/m)x2

;

D3(f (x)) = ∂x3
f (x) +κ0

f (x)− σ0f (x)
x3

.

For this reflection groupW = Z2×D2m, equation (2.57) becomes{
D, x

}
= 2ε

(
E+

3
2

+
m
2

(κ1 +κm) +κ0

)
. (5.5)

5.4 Double coverings

The general material has been presented in Section 2.2.3. In this
section, we will apply it to the group W = Z2 ×D2m. We have pre-
sentations by generators and relations of its double coverings from
Theorem 2.2.7.
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Corollary 5.4.1. The two central extensions of W̃ + and W̃ − of W have
the following presentations by generators and relations depending on the
parity of m.

• (m odd)

W̃ + =
〈
z, σ̃0, σ̃1, σ̃m

∣∣∣∣∣∣∣∣ z2 = σ̃2
0 = σ̃2

1 = σ̃2
m = 1;

(σ̃1σ̃m)m = 1; (σ̃0σ̃1)2 = (σ̃0σ̃m)2 = z

〉
,

W̃ − =
〈
z, σ̃0, σ̃1, σ̃m

∣∣∣∣∣∣∣∣ z2 = 1; σ̃2
0 = σ̃2

1 = σ̃2
m = z

(σ̃0σ̃1)2 = (σ̃0σ̃m)2 = (σ̃1σ̃m)m = z

〉
.

• (m even)

W̃ + =
〈
z, σ̃0, σ̃1, σ̃m

∣∣∣∣∣∣∣∣ z2 = σ̃2
0 = σ̃2

1 = σ̃2
m = 1;

(σ̃0σ̃1)2 = (σ̃0σ̃m)2 = (σ̃1σ̃m)m = z

〉
,

W̃ − =
〈
z, σ̃0, σ̃1, σ̃m

∣∣∣∣∣∣∣∣ z2 = 1; σ̃2
0 = σ̃2

1 = σ̃2
m = z

(σ̃0σ̃1)2 = (σ̃0σ̃m)2 = (σ̃1σ̃m)m = z

〉
.

For all presentations, the element z commutes with the rest.

From this corollary, we can construct all the finite-dimensional
irreducible representations for W̃ + and W̃ − in the odd and even
cases.

The classical idea followed here is to give all the conjugacy classes
and then construct as many non-equivalent irreducible finite-dimen-
sional representations, thus exhibiting them all. The results are sum-
marised in Theorem 5.4.2 at the end of the section. We included all
the details for W̃ + as this material is hard to find in recent literature
and seems to us of good pedagogical value.

5.4.1 Irreducible representations for the odd case

When m = 2p+ 1 is odd, there are 4p+ 5 = 2m+ 3 conjugacy classes
for W̃ +. For ease of notation, let τ̃ := σ̃1σ̃m be the even element of
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order m. We start by listing the conjugacy classes of W̃ +:

{1}, {z}, {σ̃0, zσ̃0},
{τ̃ , τ̃2p}, {τ̃2, τ̃2p−1}, . . . , {τ̃p, τ̃p+1},

{zτ̃, zτ̃2p}, {zτ̃2, zτ̃2p−1}, . . . , {zτ̃p, zτ̃p+1},
{σ̃0τ̃ , zσ̃0τ̃

2p}, {σ̃0τ̃
2, zσ̃0τ̃

2p−1}, . . . , {σ̃0τ̃
p, zσ̃0τ̃

p+1},
{zσ̃0τ̃ , σ̃0τ̃

2p}, {zσ̃0τ̃
2, σ̃0τ̃

2p−1}, . . . , {zσ̃0τ̃
p, σ̃0τ̃

p+1},
{σ̃m, τ̃ σ̃m, τ̃2σ̃m, . . . , τ̃

2pσ̃m, zσ̃m, zτ̃σ̃m, . . . , zτ̃
2pσ̃m},

{σ̃0σ̃m, σ̃0τ̃ σ̃m, σ̃0τ̃
2σ̃m, . . . , σ̃0τ̃

2pσ̃m, zσ̃0σ̃m, zσ̃0τ̃ σ̃m, . . . , zσ̃0τ̃
2pσ̃m}.

And indeed, counting the elements in the conjugacy classes gives:

1+1+2+p×2+p×2+p×2+p×2+(4p+2)+(4p+2) =16p+8 = 8m= |W̃ +|.

We now construct the 4p+ 5 non-equivalent irreducible finite-dimen-
sional representations.

Let V be a finite-dimensional vector space and X : W̃ + −→ Gl(V ) be
a non-trivial finite-dimensional irreducible representation of W̃ +.
Consider an eigenvector for τ̃ , z and σ̃0, denoted v1 ∈ V . As z2 = σ̃2

0 =
τ̃m = 1, we have that

zv1 = εv1, ε ∈ {−1,+1}; (5.6)

σ̃0v1 = δv1, δ ∈ {−1,+1}; (5.7)

τ̃v1 = ζ2`v1, ζ := eπi/m, ` ∈ {0,1, . . . ,m− 1}. (5.8)

Put v2 := σ̃mv1. It follows from τ̃ σ̃mτ̃ = σ̃m that

τ̃v2 = τ̃ σ̃mv1 = σ̃mτ̃
−1v1 = ζ−2`v2, σ̃mv2 = σ̃2

mv1 = v1,

zv2 = σ̃mzv1 = −σ̃mv1 = −v2, σ̃0v2 = σ̃0σ̃mv1 = zσ̃mσ̃0v1 = εδv2.

This means that 〈v1,v2〉 is a submodule of V ; as V is irreducible,
〈v1,v2〉 = V and thus dimV ≤ 2.

The process divides in two cases whether ζ2` = ζ−2` or not. First,
assume ζ2` , ζ−2`. Then ` ∈ {1, . . . ,m− 1}. In this case, v1 and v2 have
two different eigenvalues, and they are therefore linearly indepen-
dent, so the dimension of V is 2.



81 5.4 Double coverings

The matrices of the representation X in the basis {v1,v2} are given
by

X(τ̃) =

ζ2` 0

0 ζ−2`

 , X(σ̃m) =

0 1

1 0

 ,
X(z) =

ε 0

0 ε

 , X(σ̃0) =

δ 0

0 εδ

 .
(5.9)

Now count how many non-equivalent representations this gives. A
first remark is that we can ask of the imaginary part of ζ2` to be
positive. Indeed, if it is not the case then for ε = 1, switching v1
and v2 will make it so, and for ε = −1, changing v1 and v2 and
sending δ to −δ will give an equivalent representation. With the
positivity condition on the imaginary part of ζ2`, such repetitions
are avoided. This condition results in a restriction on the values `
can take: ` ∈ {1, . . . ,p}. The values of δ and ε are independent in the
set {−1,+1} and so there are a total of 4p non-equivalent irreducible
representations of dimension 2.

Second, assume ζ2` = ζ−2`. As m = 2p+ 1, this forces ζ2` = 1, so ` = 0.
Then the matrices in the generating set {v1,v2} are given by

X(τ̃) =

1 0

0 1

 , X(σ̃m) =

0 1

1 0

 ,
X(z) =

ε 0

0 ε

 , X(σ̃0) =

δ 0

0 εδ

 .
(5.10)

Further divide according to the value of ε. If ε = 1, then notice that
the actions on v1 + v2 and v1 − v2 are given by

τ̃(v1 + v2) = v1 + v2, σ̃m(v1 + v2) = v2 + v1,

τ̃(v1 − v2) = v1 − v2, σ̃m(v1 − v2) = −(v1 − v2),

z(v1 + v2) = v1 + v2, σ̃0(v1 + v2) = δ(v1 + v2),

z(v1 − v2) = v1 − v2, σ̃0(v1 − v2) = δ(v1 − v2).

Therefore, both 〈v1 + v2〉 and 〈v1 − v2〉 are submodules of V . The
irreducibility of V forces one of them to be trivial and the other, to
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generate V . So v2 = v1 or v2 = −v1. Adding the choice of value for δ,
this gives 4 one-dimensional irreducible representations.

When ε = −1, the vectors v1 and v2 have different eigenvalues for σ̃0,
so they are linearly independent, and thus v1 and v2 are a basis for a
two-dimensional representation. The two representations given by
δ = −1 and δ = 1 are equivalent after switching v1 and v2 so there is
only one more two-dimensional irreducible representation.

The total is 4p+ 5 irreducible representations, the same number as
conjugacy classes, so all of them have been found. The dimensions
match as indeed the sum of the squares of the dimensions gives the
order of the group: 4p × 22 + 4× 12 + 1× 22 = 16p+ 8 = |W̃ +|.

Similar steps will also give the 4p+ 5 irreducible representations of
W̃ −. The only differences are that the extra relations constrict the
values of ε according to the action of τ̃ and that σ̃m possibly is of
order 4, so δ takes values in {−1,+1,−i,+i}. All the representations
are given in Theorem 5.4.2.

Consider the negative double covering W̃ −. Its 4p + 5 conjugacy
classes are listed below

{1}, {z}, {σ̃0, zσ̃0},
{τ̃ , τ̃−1}, {τ̃2, τ̃−2}, . . . , {τ̃p, τ̃−p}, {zτ̃, zτ̃−1}, {zτ̃2, zτ̃−2}, . . . , {zτ̃p, zτ̃−p},

{σ̃0τ̃ , σ̃0τ̃
−1}, {σ̃0τ̃

2, σ̃0τ̃
−2}, . . . , {σ̃0τ̃

p, σ̃0τ̃
−p},

{zσ̃0τ̃ , zσ̃0τ̃
−1}, {zσ̃0τ̃

2, zσ̃0τ̃
−2}, . . . , {zσ̃0τ̃

p, zσ̃0τ̃
−p},

{σ̃m, τ̃ σ̃m, . . . , τ̃2pσ̃m, zσ̃m, zτ̃σ̃m, . . . , zτ̃
2pσ̃m},

{σ̃0σ̃m, σ̃0τ̃ σ̃m, . . . , σ̃0τ̃
2pσ̃m, zσ̃0σ̃m, zσ̃0τ̃ σ̃m, . . . , zσ̃0τ̃

2pσ̃m}.

The process is very similar and the constructed representations are
presented in Theorem 5.4.2.

Let V be a finite-dimensional vector space. Let X : W̃ −→ GL(V ) be
a finite-dimensional irreducible representation of W̃ −. Let v1 ∈ v be
an eigenvector for τ̃ , z and σ̃0. Because τ̃2m = z2 = 1 and σ̃4

0 = 1, the
values of the eigenvalues are restricted to

τ̃v1 = ζ`v1, ζ := eπi/m, ` ∈ {0,1, . . . ,2m};
zv1 = εv1, ε ∈ {−1,+1};
σ̃0v1 = δv1, δ ∈ {−1,+1,−i,+i}.
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Furthermore, the two additional restrictions τ̃m = σ̃2
0 = z become

ε = (−1)`, δ ∈

{−1,+1}, ε = 1,

{−i,+i}, ε = −1.

Indeed, τ̃mv1 = ζm` = (−1)`v1, but also τ̃mv1 = zv1 = εv1.

Define v2 := σ̃mv1. The matrices of the action of the generators on the
set {v1,v2} are given by

X(τ̃) =

ζ` 0

0 ζ−`

 , X(σ̃m) =

0 ε

1 0

 ,
X(z) =

ε 0

0 ε

 , X(σ̃0) =

δ 0

0 εδ

 .
(5.11)

As V is an irreducible W̃ − module, and as 〈v1,v2〉 is a submodule,
it means dimV ≤ 2. Distinguish between ζ` = ζ−` (` ∈ {0,m}) and
ζ` , ζ−` (` ∈ {1, . . . ,m− 1,m+ 1, . . . ,2m− 1}).

If ` = 0, then ε = (−1)0 = 1 and by an argument similar to the positive
case W̃ +, 〈v1 + v2〉 and 〈v1 − v2〉 are two submodules of V , and thus it
gives 4 one-dimensional non-equivalent irreducible representations
given by the actions

τ̃v1 = v1, σ̃mv1 = βv1, σ̃0v1 = δv1, zv1 = v1, (5.12)

with β,δ ∈ {−1,+1}.

When ` = m, then ε = (−1)m = −1 as m is odd. Then v1 and v2 have
two different eigenvalues for σ̃0 and so they are linearly independent
vector and they form a basis for V . The two representations given by
δ = −i and δ = +i are equivalent under the change of variables v2↔
v1. Thus, there is one two-dimensional irreducible representation
given by the actions

X(τ̃) =

1 0

0 1

 , X(σ̃m) =

0 −1

1 0

 ,
X(z) =

−1 0

0 −1

 , X(σ̃0) =

i 0

0 −i

 .
(5.13)
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Finally, when ζ` , ζ−`, we can ask of ζ` to have its imaginary part
positive as the cases with ` > m would be equivalent to those with
` < m under a switch of variables. So ` ∈ {1, . . .2p}. As ε = (−1)`

is fixed by `, and as there are two choices for δ, there are 4p non-
equivalent irreducible two-dimensional representations given by the
action expressed ins (5.11).

We have all the 4p+5 irreducible non-equivalent representations and
indeed

(4p+ 1)× 22 + 4× 12 = 16p+ 8 = |W̃ −|.

5.4.2 Irreducible representations for the even case

When m = 2p is even, there are 4p+ 6 = 2m+ 6 conjugacy classes for
W̃ +. Still keeping the shorthand notation τ̃ := σ̃1σ̃m they go as

{1}, {z}, {σ0, zσ0},
{τ̃ , zτ̃2p−1}, {τ̃2, zτ̃2p−2}, . . . , {τ̃p, zτ̃p}, {τ̃p+1, zτ̃p−1} . . . , {τ̃2p−1,−τ̃},
{σ̃0τ̃ , σ̃0τ̃

2p−1}, {σ̃0τ̃
2, σ̃0τ̃

2p−2}, . . . , {σ̃0τ̃
p−1, σ̃0τ̃

p+1}, {σ̃0τ̃
p},

{zσ̃0τ̃ , zσ̃0τ̃
2p−1}, {zσ̃0τ̃

2, zσ̃0τ̃
2p−2}, . . . , {zσ̃0τ̃

p−1, zσ̃0τ̃
p+1}, {zσ̃0τ̃

p},
{σ̃m, τ̃2σ̃m, . . . , τ̃

2p−2σ̃m, zσ̃m, zτ̃
2σ̃m, . . . , zτ̃

2p−2σ̃m},
{σ̃0σ̃m, σ̃0τ̃

2σ̃m, . . . , σ̃0τ̃
2p−2σ̃m,−σ̃0σ̃m, zσ̃0τ̃

2σ̃m, . . . , zσ̃0τ̃
2p−2σ̃m},

{τ̃ σ̃m, τ̃3σ̃m, . . . , τ̃
2p−1σ̃m, zτ̃σ̃m, zτ̃

3σ̃m, . . . , zτ̃
2p−1σ̃m},

{σ̃0τ̃ σ̃m, σ̃0τ̃
3σ̃m, . . . , σ̃0τ̃

2p−1σ̃m,−σ̃0τ̃ σ̃m, zσ̃0τ̃
3σ̃m, . . . , zσ̃0τ̃

2p−1σ̃m}.

Adding the elements of the conjugacy classes gives the order of the
group W̃ +:

1+1+2+(2p−1)×2+(p−1)×2+1+(p−1)×2+1+2p+2p+2p+2p = 16p.

Let V be a finite-dimensional vector space and X : W̃ + −→ GL(V )
be a non-trivial finite-dimensional irreducible representation of W̃ +.
Take v1 ∈ V to be an eigenvector for τ̃ , z and σ̃0. From τ̃m = z, z2 = 1
and σ̃2

0 = 1, it follows

zv1 = εv1, ε ∈ {−1,+1}; (5.14)

σ̃0v1 = δv1, δ ∈ {−1,+1}; (5.15)

τ̃v1 = ζ`v1, ζ := eπi/m, ` ∈ {0,1, . . . ,2m− 1}. (5.16)
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The main difference with the odd case is that τ̃ now has order 2m
instead of order m.

Define v2 := σ̃mv1. We have

τ̃v2 = τ̃ σ̃mv1 = σ̃mτ̃
−1v1 = ζ−`v2, σ̃mv2 = σ̃2

mv1 = v1,

zv2 = zσ̃mv1 = σ̃mzv1 = εv2, σ̃0v2 = σ̃0σ̃mv1 = zσ̃mσ̃0v1 = εδv2.

So 〈v1,v2〉 ⊂ V is a submodule and by irreducibility of V that means
V = 〈v1,v2〉. We condition on whether ζ` = ζ−`; this only happens
when ` ∈ {0,m}.

When ζ` , ζ−`, then ` ∈ {1, . . .m− 1,m+ 1, . . .2m− 1} and the matrices
realising the actions of the elements in the basis {v1,v2} are given
by

X(τ̃) =

ζ` 0

0 ζ−`

 , X(σ̃m) =

0 1

1 0

 ,
X(z) =

ε 0

0 ε

 , X(σ̃0) =

δ 0

0 εδ

 .
(5.17)

Notice that the condition τ̃m = z restricts the possible values of ε to
ε = (−1)`. Indeed, as ` is neither 0 norm then τ̃mv1 = ζm`v1 = (−1)`v1,
but also τ̃mv1 = zv1 = εv1.

τ̃v2 = τ̃ σ̃mv1 = σ̃mτ̃
−1v1 = ζ−`v2 = σ̃mτ̃

2m−1v1

= σ̃mτ̃
mτ̃m−1v1 = (−1)σ̃mτ̃

m−1v1 = εζ(m−1)`v2.

And for ζ−` to equal εζ(m−1)`, it is required that ε = −1.

We again demand that the imaginary part of ζ` is positive and thus
` ∈ {1, . . . ,m − 1}. There are 2p − 1 choices for ` and, for each `, 2
choices for δ: a total of 4p − 2 representations.

The cases following from ζ` = ζ−` follow almost the same argument
as the odd case. When ` = 0, the actions are given by

X(τ̃) =

1 0

0 1

 , X(σ̃m) =

0 1

1 0

 , X(z) =

ε 0

0 ε

 , X(σ̃0) =

δ 0

0 εδ

 ,
it gives 4 one-dimensional non-equivalent representations. The
actions are then σ̃mv1 = βv1 and σ̃0v1 = δv1 with β,δ ∈ {−1,+1}.
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There is no possible representation when ε = −1 as τ̃mv1 = v1 and
τ̃m = z.

When ` = m, it gives 4 one-dimensional non-equivalent represen-
tations with ε = 1. Namely σ̃mv1 = βv1 and σ̃0v1 = δv1 with β,δ ∈
{−1,+1}. There is again no possible representation when ε = −1 as
τ̃mv1 = v1 and τ̃m = z.

In total, we get 4p − 2 two-dimensional non-equivalent irreducible
representations from the first case and 8 one-dimensional non-equi-
valent irreducible representations from the second and third cases,
for a total of 4p + 6, which is equal to the number of conjugacy
classes. Hence, all of them have been found. Furthermore, indeed
(4p − 2)× 22 + 8× 12 = 16p = |W̃ +|.

The construction of the irreducible representations of the negative
double covering W̃ − follows in almost the same way, with only a
slight difference on σ̃m.

For the negative double covering W̃ −, the 4p + 6 conjugacy classes
are given by

{1}, {z}, {σ̃0, zσ̃0},
{τ̃ , τ̃−1}, {τ̃2, τ̃−2}, . . . , {τ̃p, τ̃−p}, {zτ̃, zτ̃−1}, {zτ̃2, zτ̃−2}, . . . , {zτ̃p, zτ̃−p},

{σ̃0τ̃ , σ̃0τ̃
−1}, {σ̃0τ̃

2, σ̃0τ̃
−2}, . . . , {σ̃0τ̃

p, σ̃0τ̃
−p},

{zσ̃0τ̃ , zσ̃0τ̃
−1}, {zσ̃0τ̃

2, zσ̃0τ̃
−2}, . . . , {zσ̃0τ̃

p, zσ̃0τ̃
−p},

{σ̃m, τ̃2σ̃m, . . . , τ̃
2p−2σ̃m, zσ̃m, zτ̃

2σ̃m, . . . , zτ̃
2p−2σ̃m},

{τ̃ σ̃m, τ̃3σ̃m, . . . , τ̃
2p−1σ̃m, zτ̃σ̃m, zτ̃

3σ̃m, . . . , zτ̃
2p−1σ̃m},

{σ̃0σ̃m, σ̃0τ̃
2σ̃m, . . . , σ̃0τ̃

2p−2σ̃m, zσ̃0σ̃m, zσ̃0τ̃
2σ̃m, . . . , zσ̃0τ̃

2p−2σ̃m},
{σ̃0τ̃ σ̃m, σ̃0τ̃

3σ̃m, . . . , σ̃0τ̃
2p−1σ̃m, zσ̃0τ̃ σ̃m, zσ̃0τ̃

3σ̃m, . . . , zσ̃0τ̃
2p−1σ̃m}.

Let V be a finite-dimensional vector space and X : W̃ − −→ GL(V )
be a finite-dimensional irreducible representation of W̃ −. Take an
eigenvector for τ̃ , z and σ̃0 and note it v1 ∈ V . Define afterwards
v2 := σ̃mv1. For τ̃2m = σ̃4

0 = z2 = 1, and σ̃2
m = z we have the following
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actions of the four generators on the set {v1,v2}:

X(τ̃) =

ζ` 0

0 ζ−`

 , X(σ̃m) =

0 ε

1 0

 ,
X(z) =

ε 0

0 ε

 , X(σ̃0) =

δ 0

0 εδ

 ,
(5.18)

with ζ = eπi/m, ε ∈ {−1,+1} and δ ∈ {−1,+1,−i,+i}. The additional
relations τ̃m = z and σ̃2

0 = z further constrain the values of ε and δ
to

ε = (−1)`, δ ∈

{−1,+1}, ε = 1,

{−i,+i}, ε = −1.

The cases differentiate according to whether ζ` = ζ−` or not.

When ζ` = ζ−`, then ` ∈ {0,m}. In both cases, because m is even,
then ζm` = 1. So ε = 1 because τ̃mv1 = sv1. In this case, we al-
ready remarked multiple time that v1 − v2 and v1 + v2 then generate
submodules of V and thus V is one-dimensional. There are 8 one-
dimensional non-equivalent irreducible representations defined by
the actions on v1:

τ̃v1 = µv1, σ̃mv1 = βv1 σ̃0v1 = δv1, zv1 = v1, µ,β,δ ∈ {−1,+1}.
(5.19)

When ζ` , ζ−`, then we can ask of ζ` to have a positive imaginary
part, because a change of variables would make those with negative
imaginary part equivalent to their positive counterpart. The 4p − 2
two-dimensional non-equivalent irreducible representations are then
given by the actions (5.18) with ` ∈ {1, . . . ,2p − 1}, ε = (−1)` and
δ ∈ {−1,+1} if ` is even, and δ ∈ {−i,+i} if ` is odd. All the irreducible
representations have thus been found.

In the following theorems, we summarise our results.

Theorem 5.4.2. Let m be a positive integer and W = Z2 × D2m. The
complete sets of non-equivalent irreducible representations of the two
double coverings W̃ + and W̃ − are given by the following tables.
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• (Odd m = 2p + 1). For the positive double covering W̃ +, the 4p+ 5
finite-dimensional non-equivalent irreducible representations are
given by 4 one-dimensional representations Xi and 4p + 1 two-
dimensional representations Yj = Yj(ε,δ) with actions given on
generators z, σ̃0, σ̃m and τ̃ := σ̃1σ̃m by

W̃ + X1 X2 X3 X4

z 1 1 1 1

σ̃0 1 −1 1 −1

σ̃m 1 1 −1 −1

τ̃ 1 1 1 1

W̃ + Y0 Y1 · · · Yj · · · Yp

z
(
−1 0
0 −1

) (
ε 0
0 ε

)
· · ·

(
ε 0
0 ε

)
· · ·

(
ε 0
0 ε

)
σ̃0

(
1 0
0 −1

) (
δ 0
0 εδ

)
· · ·

(
δ 0
0 εδ

)
· · ·

(
δ 0
0 εδ

)
σ̃m

(
0 1
1 0

) (
0 1
1 0

)
· · ·

(
0 1
1 0

)
· · ·

(
0 1
1 0

)
τ̃

(
1 0
0 1

) (
ζ2 0
0 ζ−2

)
· · ·

(
ζ2j 0
0 ζ−2j

)
· · ·

(
ζ2p 0
0 ζ−2p

)
where δ and ε take values in the set {−1,+1} and ζ := eπi/m.

The 4p + 5 non-equivalent finite-dimensional irreducible represen-
tations of the negative covering W̃ − are given by 4 one-dimensional
representations Xi and 4p + 1 two-dimensional representations
Yj = Yj(δ), with their actions on generators given in the next tables

W̃ − X1 X2 X3 X4

z 1 1 1 1

σ̃0 1 −1 1 −1

σ̃m 1 1 −1 −1

τ̃ 1 1 1 1
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W̃ − Ym Y1 · · · Yj · · · Y2p

z
(
−1 0
0 −1

) (
−1 0
0 −1

)
· · ·

(
(−1)j 0

0 (−1)j

)
· · ·

(
1 0
0 1

)
σ̃0

(
i 0
0 −i

) (
δ 0
0 −δ

)
· · ·

(
δ 0
0 (−1)jδ

)
· · ·

(
δ 0
0 δ

)
σ̃m

(
0 −1
1 0

) (
0 −1
1 0

)
· · ·

(
0 (−1)j
1 0

)
· · ·

(
0 1
1 0

)
τ̃

(
−1 0
0 −1

) (
ζ 0
0 ζ−1

)
· · ·

(
ζj 0
0 ζ−j

)
· · ·

(
ζ2p 0
0 ζ−2p

)
where ζ := eπi/m and δ takes value in {−1,+1} if j is even, and in
{−i,+i} if j is odd.

• (Even m = 2p). For the positive covering W̃ +, the 4p + 6 finite-
dimensional non-equivalent irreducible representations are given
by 8 one-dimensional representations Xi and 4p − 2 two-dimen-
sional representations Yj = Yj(δ) with actions given on generators
z, σ̃0, σ̃m and τ̃ := σ̃1σ̃m by:

W̃ + X1 X2 X3 X4 X5 X6 X7 X8

z 1 1 1 1 1 1 1 1

σ̃0 1 −1 1 −1 1 −1 1 −1

σ̃m 1 1 −1 −1 1 1 −1 −1

τ̃ 1 1 1 1 −1 −1 −1 −1

W̃ + Y1 · · · Yj · · · Y2p−1

z
(
−1 0
0 −1

)
· · ·

(
(−1)j 0

0 (−1)j

)
· · ·

(
−1 0
0 −1

)
σ̃0

(
δ 0
0 −δ

)
· · ·

(
δ 0
0 (−1)jδ

)
· · ·

(
δ 0
0 −δ

)
σ̃m

(
0 1
1 0

)
· · ·

(
0 1
1 0

)
· · ·

(
0 1
1 0

)
τ̃

(
ζ 0
0 ζ−1

)
· · ·

(
ζj 0
0 ζ−j

)
· · ·

(
ζ2p−1 0

0 ζ−(2p−1)

)
where δ ∈ {−1,+1} and ζ := eπi/m.

The 4p + 6 finite-dimensional non-equivalent irreducible represen-
tations of W̃ − are given by 8 one-dimensional representations Xi
and 4p − 2 two-dimensional representations Yj = Yj(δ) presented
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by their actions on generators in the next tables

W̃ − X1 X2 X3 X4 X5 X6 X7 X8

z 1 1 1 1 1 1 1 1

σ̃0 1 −1 1 −1 1 −1 1 −1

σ̃m 1 1 −1 −1 1 1 −1 −1

τ̃ 1 1 1 1 −1 −1 −1 −1

W̃ − Y1 · · · Yj · · · Y2p−1

z
(
−1 0
0 −1

)
· · ·

(
(−1)j 0

0 (−1)j

)
· · ·

(
−1 0
0 −1

)
σ̃0

(
δ 0
0 −δ

)
· · ·

(
δ 0
0 (−1)jδ

)
· · ·

(
δ 0
0 −δ

)
σ̃m

(
0 −1
1 0

)
· · ·

(
0 (−1)j
1 0

)
· · ·

(
0 −1
1 0

)
τ̃

(
ζ 0
0 ζ−1

)
· · ·

(
ζj 0
0 ζ−j

)
· · ·

(
ζ2p−1 0

0 ζ−(2p−1)

)
where ζ := eπi/m and δ ∈ {−1,+1} if j is even, and δ ∈ {−i,+i} if j is
odd.

5.5 The symmetry algebra of the Dunkl–Dirac
operator

In this section, we define the algebra we study by giving a generating
set of elements supercommuting with the Dunkl–Dirac operator D
and the vector variable x. The definition is not restricted to the
dihedral case and thus we take the opportunity to prove a result,
Proposition 5.5.5, that holds for any reflection group W acting on R

3.
We then return to the dihedral case and prove the main result of the
section, Proposition 5.5.10, that exhibits a pair of ladder operators
and the factorisations of their products. The section ends with a
small discussion on the unitary structure considered.

5.5.1 General symmetry algebra for 3D space

We study elements of the algebra Hκ ⊗Cl(3) with general reflection
group W and W -invariant function κ. We begin by presenting ele-
ments, called symmetries, that supercommute with the Dunkl–Dirac
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operator and the vector variable. Their commutation relations are
presented in Theorem 2.2.23.

The group algebra of the (positive) double covering W̃ + of the re-
flection group W is the first instance of such symmetries since its
elements supercommute with D and x [DOV18a]. In the realisation

W̃ ⊂Hκ ⊗Cl(3), its generators are obtained as

σ̃α :=
3∑
j=1

〈
α,ξj

〉
σα ⊗ ej , for α ∈ Φ . (5.20)

And we write σ̃j := σ̃αj .

Alternatively, a definition in terms of abstract generators and rela-
tions is available in Section 5.4. The commuting element z in the
abstract presentation is realised as −1 in Hκ ⊗Cl(3), thus the group
algebra in our realisation is in fact a quotient of the abstract group
algebra by z = −1.

We continue with three types of symmetries linked to polynomial
expressions in Clifford variables. The one-index symmetries have the
following general expression (2.65):

Oi :=
1
2

(
[
D, xi

]
− ei) =

1
2

([Di , x]− ei) =
1
2

 3∑
k=1

Cki ⊗ ek − ei

 , (5.21)

where Cki is defined in 2.20.

The one-index symmetries are included in the group algebra CW̃ .
They are however useful in order to simplify future expressions. If
the root system is normalized, they can be rewritten in terms of the
elements σ̃j as [DOV18a, Ex. 4.2]

Oi =
m∑
j=0

κ(αj )
〈
ξi ,αj

〉
σ̃j . (5.22)

The two-index symmetries are defined below, with a second expression,
see (2.66)

Oij := Lij + ε
2eiej +Oiej −Ojei , (5.23)

= Lij + ε
2eiej + eiOj − ejOi . (5.24)
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Finally, the three-index symmetry (2.67) has also two equivalent ex-
pressions given by

O123 := 1
2 (

[
D, x

]
− ε)e1e2e3 = −1

2e1e2e3(
[
D, x

]
− ε), (5.25)

but the following expansions will be more useful to work with

O123 = − ε2e1e2e3 −O1e2e3 −O2e3e1 −O3e1e2

+O12e3 +O31e2 +O23e1, (5.26)

= − ε2e1e2e3 − e2e3O1 − e3e1O2 − e1e2O3

+ e3O12 + e2O31 + e1O23. (5.27)

Remark 5.5.1. In (5.25), the factor 1
2 (

[
D, x

]
− ε) is the super-Casimir of

osp(1|2) [FSS00].

A word of warning: albeit the last equations make it look so, the
Clifford elements do not in general commute or anticommute with
the symmetries; only certain combinations of Clifford elements can
commute following Lemma 2.2.20. However, the Lij ’s and Cij ’s, being
purely elements of Hκ, commute freely with Clifford elements.

We are ready to define the algebra studied in this chapter. It is given
as a subalgebra of Hκ ⊗Cl(3) generated by the elements presented
above. The name of the algebra is derived from the fact that all its
elements supercommute with the osp(1|2)-realisation.

Definition 5.5.2. The symmetry algebra Oκ is the associative subalge-
bra of Hκ ⊗Cl(3) generated by the symmetries O12, O31, O23, O123 and
the group algebra of W̃ .

Remark 5.5.3. In Definition 2.2.17,Oκ was defined as the supercentraliser
of the osp(1|2)-realisation inside Hκ ⊗ Cl(3). The previous definition
comes from the other presentation of the total angular momentum algebra
derived from Theorem 2.2.23. As it gives explicit elements to work with,
it is better suited for the context of this chapter.

The two algebras are isomorphic for this low dimension since all
commutation relations are then given by Theorem 2.2.23. This is
not the case for higher dimensions. A precise determination of the
relation ideal in general is left for further investigation. This is a
hard problem.
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Instead of the commutation relations presented in Theorem 2.2.23,
we will use another set of generators better suited for our purpose.
The new set is given by equations (5.52) and (5.51), and the relations
are found in Lemma 5.5.7 and Proposition 5.5.8. In the general case,
we only need to say that the three-index symmetry O123 commutes
with every element of the symmetry algebra and state the commuta-
tion rules of the two-index symmetries. The other relations needed
in the proof of Proposition 5.5.5 are retrieved implicitly from the
definitions of the elements.

The following proposition shows clearly that the two-index symmetry
relations form an extension of the Lie algebra so(3) commutation
rules as taking κ to be the zero map sends the one-index symmetries
to 0.

We now rewrite more explicitly the relations of Theorem 2.2.23 in
this context.

Proposition 5.5.4 ([DOV18a]). The two-index symmetry commutation
rules are given by

[O12, O31] =O23 + {O123, O1}+ ε [O2, O3] ;

[O23, O12] =O31 + {O123, O2}+ ε [O3, O1] ;

[O31, O23] =O12 + {O123, O3}+ ε [O1, O2] .

(5.28)

It will be useful later on to have an expression for the square of
O123. Indeed, as O123 is the product of the super Casimir of osp(1|2)
with the pseudo-scalar e1e2e3 (see equation (5.25)), its square is the
Casimir of osp(1|2). Proposition 5.5.5 expresses O2

123 as a sum of
the squares of the other symmetries (considering a trivial symmetry
O∅ := i/2). This sum is thus central and furthermore, when κ is set
to 0, it reduces to the Casimir of the undeformed so(3) algebra. We
emphasize that this result does not assume anything on W outside it
acting on a three-dimensional space.

Proposition 5.5.5. For any reflection group W ⊂ O(3), the three-index
symmetry O123 squares to

O2
123 = −ε

4
+O2

1 +O2
2 +O2

3 + ε(O2
12 +O2

31 +O2
23). (5.29)
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Proof. The proof will be done for ε = 1. For ε = −1, the reader is
invited to look at [Lan22, Prop. 2]. The first step in the proof is to
use the two expressions (5.26) and (5.27) for O123 to put the Clifford
elements in the middle:

O2
123 =

(
−1

2e1e2e3−O1e2e3−O2e3e1 −O3e1e2 +O12e3+O31e2 +O23e1

)
×
(
−1

2e1e2e3− e2e3O1− e3e1O2− e1e2O3 + e3O12 + e2O31+ e1O23

)
.

In working out the 49 terms of this product, separate the 7 “diago-
nal terms” and the 42 “cross terms”. Simplifying with the Clifford
anticommutation relations gives

O2
123 = −1

4
−O2

1 −O
2
2 −O

2
3 +O2

12 +O2
31 +O2

23 +Q, (5.30)

with Q consisting of the 42 cross terms, all of them with symmetries
shouldering Clifford elements. The proof is completed once it is
shown that Q reduces to 2(O2

1 +O2
2 +O2

3).

For this purpose, replace the two-index symmetries at the left of the
central Clifford elements by their definition with Clifford elements
on the right, equation (5.23); and replace the two-index symmetries
at the right of the Clifford elements by their definition with Clifford
elements on the left, equation (5.24). After simplifications, this will
give

O2
123 = −1

4
−O2

1 −O
2
2 −O

2
3 +O2

12 +O2
31 +O2

23 (5.31)

− 1
2 ({O1, e1}+ {O2, e2}+ {O3, e3}) (5.32)

− 1
2 ({O12, e1e2}+ {O31, e3e1}+ {O23, e2e3}) (5.33)

− ((O1e1e2O2 +O2e2e1O1) + (O1e1e3O3 +O3e3e1O1)

+ (O2e2e3O3 +O3e3e2O2)) (5.34)

+ ((O2e1O12 −O12e1O2) + (O1e3O31 −O31e3O1)

+ (O3e2O23 −O23e2O3)) (5.35)

+ ((O12e2O1 −O1e2O12) + (O31e1O3 −O3e1O31)

+ (O23e3O2 −O2e3O23)) (5.36)

− ((O1e1e2e3O23 +O23e1e2e3O1)

+ (O31e1e2e3O2 +O2e1e2e3O31)

+ (O12e1e2e3O3 +O3e1e2e3O12)) (5.37)
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+ ((O31e2e3O12 −O12e2e3O31) + (O12e3e1O23 −O23e3e1O12)

+ (O23e1e2O31 −O31e1e2O23)) . (5.38)

It then remains to show that the summands (5.32) to (5.38) sum to
2(O2

1 +O2
2 +O2

3). For this purpose, rewrite summand (5.38) using
equation (5.23) for the leftmost two-index symmetries in the positive
terms and equation (5.24) for the rightmost two-index symmetries in
the negative terms:

(5.38) =
(
L31e2e3O12 + 1

2e1e2O12 +O3e1e2e3O12 +O1e2O12

− (O12e2e3L31 + 1
2O12e1e2 +O12e2O1 −O12e1e2e3O3)

)
+
(
L12e3e1O23 + 1

2e2e3O23 +O1e1e2e3O23 +O2e3O23

− (O23e3e1L12 − 1
2O23e2e3 +O23e3O2 −O23e1e2e3O1)

)
+
(
L23e1e2O31 + 1

2e3e1O31 +O2e1e2e3O31 +O3e1O31

− (O31e1e2L23 − 1
2O31e3e1 +O31e1O3 −O31e1e2e3O2)

)
.

Rearrange the terms to make some simplifications obvious

(5.38) = L31e2e3O12 +L12e3e1O23 +L23e1e2O31 (5.39)

− (O12e2e3L31 +O23e3e1L12 −O31e1e2L23) (5.40)

+ 1
2 ({O12, e1e2}+ {O23, e2e3}+ {O31, e3e1}) (5.41)

+ ((O1e1e2e3O23 +O23e1e2e3O1)

+ (O31e1e2e3O2 +O2e1e2e3O31)

+ (O12e1e2e3O3 +O3e1e2e3O12)) (5.42)

− ((O12e2O1 −O1e2O12) + (O31e1O3 −O3e1O31)

+ (O23e3O2 −O2e3O23)) . (5.43)

Already some simplifications are happening. Indeed, summand (5.33)
is the opposite of summand (5.41), and the same can be said of the
pairs (5.36) and (5.43), and (5.37) and (5.42).

Therefore the only part yet to be taken care of consists in the two
first lines (5.39) and (5.40). They can further be simplified by an-
other application of the different expressions forOij , equations (5.23)
and (5.24):

(5.39) + (5.40) = L31e2e3L12 + 1
2L31e3e1 +L31e1e2e3O2 +L31e3O1
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+L12e3e1L23 + 1
2L12e1e2 +L12e1e2e3O3 +L12e1O2

+L23e1e2L31 + 1
2L23e2e3 +L23e1e2e3O1 +L23e2O3

− (L12e2e3L31 − 1
2e3e1L31 +O1e3L31 −O2e1e2e3L31)

− (L23e3e1L12 − 1
2e1e2L12 +O2e1L12 −O3e1e2e3L12)

− (L31e1e2L23 − 1
2e2e3L23 +O3e2L23 −O1e1e2e3L23),

which can be rearranged into

(5.39)+(5.40)= (L31e2e3L12 −L12e2e3L31)

+ (L12e3e1L23 −L23e3e1L12)

+ (L23e1e2L31 −L31e1e2L23)

+ ({L31e3e1, +} {L12, e1e2}+ {L23, e2e3})
+ (L31e3O1 −O1e3L31) + (L12e1O2 −O2e1L12)

+ (L23e2O3 −O3e2L23)

+ (L31e1e2e3O2 +O2e1e2e3L31)

+ (L12e1e2e3O3 +O3e1e2e3L12)

+ (L23e1e2e3O1 +O1e1e2e3L23).

(5.44)

Consider now line (5.35). Again by applying the two definitions of
Oij :

(5.35) =O1e3L31 + 1
2O1e1 +O2

1 +O1e1e3O3

− (L31e3O1 − 1/2e1O1 −O3e3e1O1 −O2
1)

+O2e1L12 + 1
2O2e2 +O2

2 +O2e2e1O1

− (L12e1O2 − 1/2e2O2 −O1e1e2O2 −O2
2)

+O3e2L23 + 1
2O3e3 +O2

3 +O3e3e2O2

− (L23e2O3 − 1/2e3O3 −O2e2e3O3 −O2
3),

and the terms can be placed in a more telling way

(5.35) = 2(O2
1 +O2

2 +O2
3)

+ (O1e3L31 −L31e3O1) + (O2e1L12 −L12e1O2)

+ (O3e2L23 −L23e2O3)

+ 1
2 ({O1, e1}+ {O2, e2}+ {O3, e3})

+ (O1e2e3O3 +O3e3e1O1) + (O2e2e1O1 +O1e1e2O2)

+ (O3e3e2O2 +O2e2e3O3).

(5.45)
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With all this, the square is reduced to the following expression:

O2
123 = −1

4
+O2

1 +O2
2 +O2

3 +O2
12 +O2

31 +O2
23

+ 1
2 ({L31, e3e1}+ {L12, e1e2}+ {L23, e2e3})

+ (L31e2e3L12 −L12e2e3L31) + (L12e3e1L23 −L23e3e1L12)

+ (L23e1e2L31 −L31e1e2L23)

+L31e1e2e3O2 +O2e1e2e3L31 +L12e1e2e3O3 +O3e1e2e3L12

+L23e1e2e3O1 +O1e1e2e3L23,

and this can be rewritten as

O2
123 = −1

4
+O2

1 +O2
2 +O2

3 +O2
12 +O2

31 +O2
23 (5.46)

+
1
2


L12e1e2(1− e3e1L31 − e2e3L23 + 2e3O3)

+ L31e3e1(1− e1e2L12 − e2e3L23 + 2e2O2)

+ L23e2e3(1− e1e2L12 − e3e1L31 + 2e1O1)

 (5.47)

+
1
2


(1−L31e3e1 −L23e2e3 + 2O3e3)e1e2L12

+ (1−L12e1e2 −L23e2e3 + 2O2e2)e3e1L31

+ (1−L12e1e2 −L31e3e1 + 2O1e1)e2e3L23

 . (5.48)

The final step is to show that each of the two last components (5.47)
and (5.48) are 0. In each of them, replace the one-index symmetries
by their expression (5.21) in terms of Clifford elements and Cij . As
the Lij ’s and Cij ’s commute with Clifford elements, factor out the
Clifford elements. The coefficient of the Clifford variables will be
sums of Lij and Cij . They will cancel out by equation (2.26).

(5.47) = L12e1e2(C33 + e3e1(C31 −L31)− e2e3(L23 +C23))

+L31e3e1(C22 − e1e2(L12 +C12) + e2e3(C23 −L23))

+L23e2e3(C11 + e1e2(C12 −L12)− e3e1(L31 +C31)).

As the Lij and the Cij commute with Clifford elements, the commu-
tations relations of the Clifford elements then give

(5.47) = e1e2L12C33 + e2e3(L12C31 −L12L31) + e3e1(L12L23 +L12C23)
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+ e3e1L31C22 + e2e3(L31L12 +L31C12) + e1e2(L31C23 −L31L23)

+ e2e3L23C11 + e3e1(L23C12 −L23L12) + e1e2(L23L31 +L23L31),

and regrouping gives

= e1e2 (L12C33 +L31C23 +L23C31 −L31L23 +L23L31)

+ e3e1 (L31C22 +L23C12 +L12C23 +L12L23 −L23L12)

+ e2e3 (L23C11 +L31C12 +L12C31 +L31L12 −L12L31) .

Recall that Lij = −Lji , Cij = Cji and Lii = 0. Each line is then zero by
equation (2.26), replacing the tuplets (i, j,k, l) by (1,2,3,3), (3,1,2,2)
and (2,3,1,1) for the first, second and third line respectively.

This leaves only the terms of equation (5.29) and thus concludes the
proof.

Remark 5.5.6. Using the projector 6.17 introduced in the next Chapter,
Oste was able to prove this results in more generality [Ost22, Prop. 4.16]
with a much shorter proof. However, this requires to work in a realisation,
whereas the previous proof hold for the abstract algebra generated by the
symmetries seen as symbols.

5.5.2 Dihedral 3D symmetry algebra and ladder operators

Letm ≥ 2. We now specify toW = Z2×D2m. We denote the symmetry
algebra linked to this W by Om,κ as opposed to the general sym-
metry algebra Oκ. We begin by giving the explicit expressions of the
elements of CW̃ :

σ̃0 = e3σ0, σ̃j = (sin(jπ/m)e1 − cos(jπ/m)e2)σj . (5.49)

They generate the group algebra CW̃ with presentation given by

CW̃ =
〈
σ̃0, σ̃1, σ̃m

∣∣∣∣∣∣∣∣ σ̃2
0 = σ̃2

1 = σ̃2
m = 1,

(σ̃0σ̃1)2 = (σ̃0σ̃m)2 = −1,

(σ̃1σ̃m)m = (−1)m+1εm

〉
. (5.50)

Note that because the group is realised in Cl(3)⊗C[W ], there is no
need to add −1 as a generator. It is the positive double covering of
W (or the negative double covering if the Clifford elements square
to −1 instead of +1, see Corollary 5.4.1). Section 5.4 studies the
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double coverings abstractly. A few things can immediately be said
of W̃ nonetheless. The group depends on the parity of m, and the
generator σ̃0 of the Z2 part anti-commutes with σ̃1 and σ̃m whereas
σ0 commutes with σ1 and σm; so W̃ ;W ×Z2 in general. This is a
difference with the case W = S3 as S3 does not have a non-trivial
positive double covering [Sch07] (it can also readily be seen from
Corollary 5.4.1), however S3 ×Z2 does.

The remaining part of the section is dedicated to finding ladder oper-
ators, which will be crucial for the construction of representations of
Om,κ. Inspired by the construction of ladder operators in the so(3)
case [Dir81], we define

O0 := −iO12, O+ := iO31 +O23, O− := iO31 −O23. (5.51)

The algebraOm,κ is also generated byO0,O+,O−,O123 and CW̃ .

Define the following combinations of elements of CW̃

T0 := iκ0σ̃0,

T+ := −i
m∑
j=1

κ(αj )e
jπi/mσ̃j , T− := i

m∑
j=1

κ(αj )e
−jπi/mσ̃j .

(5.52)

They are linked with the one-index symmetries by equation (5.22):

T0 = iO3, T+ =O1 + iO2, T− =O1 − iO2, [T+, T−] = −2i [O1, O2] .

Furthermore, they can be expressed in another form according to the
parity of m. Put ζ := eπi/m. When m is odd, then all the κ(αj ) are the
same and so

T+ = −iκ1

m∑
j=1

ζj σ̃j , T− = iκ1

m∑
j=1

ζ−j σ̃j , (5.53)

and when m = 2p is even, then it is expressed as

T+ = −i(κ1T
1
+ +κmT

2
+ ), T− = +i(κ1T

1
− +κmT

2
− ), (5.54)

with T 1
± , and T 2

± the sums over odd and even indices:

T 1
+ =

p∑
j=1

ζ2j−1σ̃2j−1, T 2
+ =

p∑
j=1

ζ2j σ̃2j ,

T 1
− =

p∑
j=1

ζ1−2j σ̃2j−1, T 2
− =

p∑
j=1

ζ−2j σ̃2j .

(5.55)
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The next lemma gives useful commutation properties between the
new generators.

Lemma 5.5.7. The element O0 has the following commutation relations
with elements of CW̃ :

[O0, T0] = {O0, T+} = {O0, T−} = 0. (5.56)

Furthermore, T0, T+ and T− interact with O− and O+ as follows:

T0O+ = −O+T0, T0O− = −O−T0, (5.57)

T0T+ = −T+T0, T0T− = −T−T0, (5.58)

T+O− = −O+T−, T−O+ = −O−T+. (5.59)

Proof. Equations (5.56) are directly equivalent to [O12, σ̃0] = 0 and{
O12, σ̃j

}
= 0 for 1 ≤ j ≤m. For the first, [O0, T0] = 0, it follows from

the action of σ0 that σ̃0, and so T0, will commute with O12. For
the two others, {O0, T+} = 0 = {O0, T−}, expand σ̃j and O12 by their
definition to obtain a product of Clifford elements with one-index
symmetries and L12. We give the computations for σjL12,

σjL12 = σj(x1D2 − x2D1)

=
(
cos(2πj

m )x1 + sin(2πj
m )x2

)(
sin(2πj

m )D1 − cos(2πj
m )D2

)
σj

−
(
sin(2πj

m )x1 − cos(2πj
m )x2

)(
cos(2πj

m )D1 + sin(2πj
m )D2

)
σj

= (sin2(2πj
m ) + cos2(2πj

m ))L21σj = −L12σj .

The computations on the one-index symmetries follow from their
definition (5.21) and the Clifford part is direct, so

{
O12, σ̃j

}
= 0.

For the next expressions (5.57), (5.58) and (5.59), remark that O3
leaves O12 invariant and sends O31 and O23 to −O31 and −O23 re-
spectively, so O3O+ = −O+O3 and O3O− = −O−O3. This proves
equations (5.57). Additionally, σ̃0 and σ̃j anticommute because e3
anticommutes with e1 and e2, and because σ0 commutes with σj .
Therefore, {O3, O1} = 0 = {O3, O2}, and so, {O3, T±} = 0; proving equa-
tions (5.58).

Finally, equations (5.59) are proven from the expression (5.52). By
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direct computations, we have that σ̃jO± = e±2jπi/mO∓σ̃j and therefore

T+O− = −i
m∑
j=1

κ(αj )e
jπi
m σ̃jO− = −i

m∑
j=1

κ(αj )e
jπi
m e

−2jπi
m O+σ̃j

= −O+

i m∑
j=1

κ(αj )e
−jπi
m σ̃j

 = −O+T−,

and

T−O+ = i
m∑
j=1

κ(αj )e
−jπi
m σ̃jO+ = i

m∑
j=1

κ(αj )e
−jπi
m e

2jπi
m O−σ̃j = −O−T+.

This concludes the proof.

With the new set of generators, Proposition 5.5.4 translates to the
following.

Proposition 5.5.8. The linear combinations O0, O+ and O− satisfy

[O0, O+] = +O+ + {O123, T+}+ ε [T0, T+] ;

[O0, O−] = −O− + {O123, T−} − ε [T0, T−] ;

[O+, O−] = 2O0 − 2 {O123, T0}+ ε [T+, T−] .

(5.60)

Proof. It follows from the commutation rules (5.28) and the defini-
tions of T0, T+ and T− that:

[O0,O+]= [−iO12, iO31 +O23]

= [O12, O31]− i [O12, O23]

=O23+ 2O123O1+ ε [O2, O3] + i(O31+ 2O123O2+ ε [O3, O1])

=O+ + {O123, O1 + iO2}+ ε [O2, O3] + iε [O3, O1] ,

=O+ + {O123, T+}+ ε [O3, iO1 −O2]

=O+ + {O123, T+}+ iε [O3, T+] ,

and

[O0,O−]= [−iO12, iO31 −O23]

= (O23+2O123O1 +ε[O2, O3])− i(O31+2O123O2 + ε[O3, O1])
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= −O− + {O123, T−} − iε [O3, T−] .

Finally directly from the definitions of O0, O±, T0 and T±:

[O+, O−] = [iO31 +O23, iO31 −O23]

= −2i [O31, O23]

= 2O0 − 2 {O123, T0}+ [T+, T−] .

and similarly for the last equation.

As a corollary of Proposition 5.5.5, the square O2
123, and the products

O+O− and O−O+ have new expressions.

Corollary 5.5.9. The square of the three-index symmetry becomes in the
new generators

O2
123 = −ε

4
+ T+T− − T 2

0 − ε(O2
0 −O0 +O+O− + 2O123T0), (5.61)

= −ε
4

+ T−T+ − T 2
0 − ε(O2

0 +O0 −O−O+ − 2O123T0). (5.62)

The products O+O− and O−O+ can be expressed as

O+O− = εT+T− − (O0 − 1/2)2 − ε(εO123 + T0)2, (5.63)

O−O+ = εT−T+ − (O0 + 1/2)2 − ε(εO123 − T0)2. (5.64)

Proof. The formulas are obtained from changing the variables in the
expression of O2

123 of Proposition 5.5.5. First note that O2
0 = −O2

12.
Then compute

O+O− = (iO31 +O23)(iO31 −O23) = −O2
31 −O

2
23 − i [O31, O23] ,

and thus

O2
31 +O2

23 = −O+O− − i [O31, O23]

= −O+O− − iO12 − 2iO123O3 − iε [O1, O2]

= −O+O− +O0 − 2iO123O3 + ε
2 [T+, T−] .

Follow up with

T+T− = (O1 + iO2)(O1 − iO2) =O2
1 +O2

2 − i [O1, O2] ,
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hence,

O2
1 +O2

2 = T+T− − 1
2 [T+, T−] .

Using the expression for [O+, O−] to invert O+O− and T+T−, we have
the two equalities

O2
123 = −ε/4 + T+T− +O2

3 − ε(O+O−O
2
0 −O0 + 2iO123O3),

= −ε/4 + T−T+ +O2
3 − ε(O2

0 +O0 −O−O+ − 2iO123O3),

replacing iO3 = T0 and factorising finish the proof.

The next proposition introduces the two ladder operators and their
factorisations.

Proposition 5.5.10. Consider

L+ := 1
2 {O0, O+} , and L− := 1

2 {O0, O−} . (5.65)

They form a pair of ladder operators:

[O0, L+] = L+, [O0, L−] = −L−. (5.66)

Furthermore, they have the following factorisations:

L+L− = −
(
(O0 − 1/2)2 + ε(εO123 + T0)2

)(
(O0 − 1/2)2 − εT+T−

)
, (5.67)

L−L+ = −
(
(O0 + 1/2)2 + ε(εO123 − T0)2

)(
(O0 + 1/2)2 − εT−T+

)
. (5.68)

Proof. Start by expanding equation (5.66) by the definition of L±:

2 [O0, L±] = [O0, {O0, O±}] = {O0, [O0, O±]}
= {O0, ±O±}+ {O0, {O123, T±}} ± i {O0, ε [O3, T±]} ,

and as O123 is central (Theorem 2.2.23), and O3, T− and T+ anticom-
mute with O0 by Lemma 5.5.7, it reduces to

[O0, L±] = ±L±.

For the factorisation, we will only do the case ε = 1 so as to not hide
the essence of the proof with the extra care the sign calls for.
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The proof begins by proving the following claim

[O+O−, O0] = 0 = [O−O+, O0] , (5.69)

for the first equality; the second being similar and thus omitted. We
use Proposition 5.5.8 to replace the commutators of O+, O− and O0,
and we employ Lemma 5.5.7 to send O− in front

[O+O−, O0] =O+ [O−, O0] + [O+, O0]O−
=O+(O− − 2O123T− + 2iO3T−)

− (O+ + 2iO123T+ + 2iO3T+)O− = 0.

The claim (5.69) is proven.

In order to give the factorisation, we replace the ladder operators by
their definitions and we use the commutation relations of Proposi-
tion 5.5.8 and Lemma 5.5.7 to reach:

L+L− = (O123 + T0)2T+T− + (O0 − 1/2)2O+O−, (5.70)

L−L+ = (O123 − T0)2T−T+ + (O0 + 1/2)2O−O+. (5.71)

Since the actual computation is rather tricky, we will show the details
to obtain equation (5.70) and trust the reader to do the second. For
clarity, we will add a factor 4 to remove the fractions and underline
certain terms to identify where we will apply the relations. Start by
the definition of the ladder operators

4L+L− = (O0O+ +O+O0)(O0O− +O−O0)

=O0O+O0O− +O0O+O−O0 +O+O0O0O− +O+O0O−O0.

Apply the commutation relations of Proposition 5.5.8 pertaining to
[O0, O+] and equation (5.69) to the underlined terms to obtain

4L+L− =O0(O0O+ −O+ − 2O123T+ − 2iO3T+)O− +O2
0O+O−

+ (O0O+ −O+ − 2O123T+ − 2iO3T+)O0O−
+ (O0O+ −O+ − 2O123T+ − 2iO3T+)O−O0

= 2O2
0O+O− −O0O+O− − 2O0O123T+O− − 2iO0O3T+O−

+O0O+O0O− −O+O0O− − 2O123T+O0O− − 2iO3T+O0O−

+O0O+O−O0 −O+O−O0 − 2O123T+O−O0 − 2iO3T+O−O0.
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Use again Proposition 5.5.8 and equation (5.69) on the underlined
terms to get

4L+L−= 4O2
0O+O−−4O0O+O−+O+O−−2O123T+(O0O−+O−O0−O−)

− 4O0O123T+O− − 2iO3T+(O0O− +O−O0 −O−)− 4iO0O3T+O−.

At this point, replace the last instances ofO−O0 with Proposition 5.5.8
to obtain

4L+L− = 4O2
0O+O− − 4O0O+O− +O+O−

− 2O123T+(2O0O− − 2O123T− + 2iO3T−)

− 2iO3T+(2O0O− − 2O123T− + 2iO3T−)

− 4O0O123T+O− − 4iO0O3T+O−.

Make use of Lemma 5.5.7 to then send the underlined O0 and O3 in
front, which will give the expanded equation (5.70)

4L+L− = 4O2
0O+O− − 4O0O+O− +O+O− + 4O2

123T+T−

+ 8iO123O3T+T− − 4O2
3T+T−.

With this, we proved the first factorisation (5.70). To conclude, em-
ploy Corollary 5.5.9 to replace O+O− in equation (5.70):

L+L− = (O123 + iO3)2T+T−

+ (O0 − 1/2)2(T+T− − (O0 − 1/2)2 − (O123 + iO3)2)

=
(
(O123 + iO3)2 + (O0 − 1/2)2

)
T+T−

− (O0 − 1/2)2
(
(O0 − 1/2)2 + (O123 + iO3)2

)
,

and because O0 commutes with O123 and O3, it factorises as

= −
(
(O0 − 1/2)2 + (O123 + T0)2

)(
(O0 − 1/2)2 − T+T−

)
.

The same process applies, of course, for equation (5.71), using the
expression of O−O+ in Corollary 5.5.9. The two factorisations (5.67)
and (5.68) have been exhibited, concluding the proof.

Put τ̃ := σ̃1σ̃m, τ̃−1 = σ̃mσ̃1 and as before ζ = eπi/m. From Lemma 5.5.7,
the actions of the reflections on the symmetries and on the ladder
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operators are given by

σ̃0O0 =O0σ̃0, σ̃1O0 = −O0σ̃1, σ̃mO0 = −O0σ̃m,

σ̃0O+ = −O+σ̃0, σ̃1O+ = ζ2O−σ̃1, σ̃mO+ =O−σ̃m,

σ̃0O− = −O−σ̃0, σ̃1O− = ζ−2O+σ̃1, σ̃mO− =O+σ̃m,

σ̃0L+ = −L+σ̃0, σ̃1L+ = −ζ2L−σ̃1, σ̃mL+ = −L−σ̃m,
σ̃0L− = −L−σ̃0, σ̃1L− = −ζ−2L+σ̃1, σ̃mL− = −L+σ̃m.

(5.72)

τ̃L+ = ζ−2L+τ̃ , τ̃L− = ζ2L−τ̃ ,

τ̃−1L+ = ζ2L+τ̃
−1, τ̃−1L− = ζ−2L−τ̃

−1,

T+L− = L+T−, T−L+ = L−T+.

(5.73)

5.5.3 Unitary structure

The commutation relations of the two-index symmetries (5.60) of
the algebra Om,κ reduce to the commutation relations of so(3) (or of
sl(2)) when the map κ becomes zero. Any ∗-structure on Om,κ must
then reduce to either su(2) or su(1,1), of which only su(2) admits
finite-dimensional unitary representations. Let ∗ : Om,κ→Om,κ be
the anti-linear ((aX+bY )∗ = aX∗+bY ∗) anti-involution ((XY )∗ = Y ∗X∗,
(X∗)∗ = X) defined on generators by

O∗0 =O0, O∗± =O∓, O∗123 = −O123,

T ∗0 = −T0, T ∗± = T∓, σ̃ ∗j = σ̃j ,
(5.74)

for any reflection σ̃j ∈Om,κ. As a consequence, the ladder operators
satisfy L∗± = L∓.

Direct computations show that the relations are compatible with the
commutation relations (5.60). Furthermore, sending κ to 0 indeed
gives back the ∗-structure of su(2).

It would be possible to study unitarity with another structure, say
imposing σ̃ †j = −σ̃j , O†± = −O∓ and T †± = −T∓, but this would not
include the important monogenics example.

5.6 Finite-dimensional representations

This section classifies the finite-dimensional irreducible representa-
tions of Om,κ and verifies if they are unitary under the ∗-structure
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presented in Section 5.5.3. It assumes ε = 1.

The section is divided into three parts: first the theorems are pre-
sented, then the idea of the proofs are exhibited, and the last part
gives the details of the proofs of Theorems 5.6.1 and 5.6.2.

The techniques employed share some similarities with the construc-
tion of standard modules for the representation theory of rational
Cherednik algebras [Chm06; Dez03; Rou05]. We construct the irre-
ducible finite-dimensional Om,κ-representations from a certain class
of representations of W̃ . For the benefit of the reader, the complete
construction of the finite-dimensional irreducible representations
of the group W̃ is included in Section 5.4, and they are presented
in Theorem 5.4.2. The specific representations we need are those
for which the commuting element z ∈ W̃ acts as −id (ε = −1 in the
notation of Theorem 5.4.2); this comes from the realisation of the
group W̃ in Om,κ. These specific representations are called spin
representations [Mor76].

The existence of irreducible finite-dimensional Om,κ-representations,
and their unitarity, is constrained by the map κ. For an integer N
and a certain irreducible spin representation U of W̃ , Theorem 5.6.1
(m odd) and Theorem 5.6.2 (m even) present the conditions on κ
for the existence of an irreducible Om,κ-representation Lλ,Λ(U ) :=
Lλ,Λ,N ,κ(U ) of dimension 2N + 2. Note that the theorems take U and
N independently. Even if the conditions constraining κ depend on
both of them, it means that the W̃ -representation U does not fix the
dimension.

The theorems adopt some notational conventions. First, all indices
j,k ∈ {1, . . . ,N }. Second, a ≡m b is a short-hand for a ≡ b modm. The
tables are divided in families according to some conditions linked
to N , the data of U , and the values of λ and Λ. When m is even, we
denote m = 2p. The constants κ0, κ1 and κm will be real and positive.
Finally, the indices of λ in the tables indicate the several possibilities
of the parameter.

Theorem 5.6.1 (Conditions for irreducible and unitary representa-
tions, the odd cases). Let κ0 and κ1 be positive constants. Let N be a
non-negative integer and let U ' Y`(−1,δ) be an irreducible spin rep-
resentation of W̃ . If the conditions on κ0 and κ1 presented in the next
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tables are respected, then U extends to a 2N + 2 dimensional irreducible
representation Lλ,Λ(V ) of Om,κ. Moreover, the constant Λ lies in one of
the two families

Λ1 ∈ {±i(λ+ 1/2 +κ0δ)} or Λ2 ∈ {∓i(λ+ 1/2−κ0δ)}. (5.75)

It is unitary if κ0 and κ1 satisfy further conditions. Furthermore, all
irreducible finite-dimensional representations of Om,κ are of this form.

Case I: 2(N + `) + 1 ≡m 0,λ = λ1 =N + 1/2 +κ1m

(Λ,δ) Irreducibility Unitarity

(Λ1,1),
(Λ2,−1)

No restriction No restriction

(Λ2,1),
(Λ1,−1)

κ0 < {k/2, λ1 + 1/2− k/2 | odd k} κ0 < 1/2 or κ0 > λ1

Case I: 2(N + `) + 1 ≡m 0,λ = λ2 =N + 1/2−κ1m

(Λ,δ) Irreducibility Unitarity

(Λ1,1),
(Λ2,−1)

κ0 < {−λ2 − 1/2 + k/2 | odd k}
κ1 <

{
N−k+1

2m ,
N−j+1
m

∣∣∣∣ 2(k + `) ≡m 1, 2j + ` .m −1
} κ1 <

1
2m

(Λ2,1),
(Λ1,−1)

κ0 < {k/2, λ2 + 1/2− k/2 | odd k}
κ1 <

{
N−k+1

2m ,
N−j+1
m

∣∣∣∣ 2(k + `) ≡m 1, 2j + ` .m −1
} κ0 < 1/2 or κ0 > λ2

κ1 <
1

2m

Case II: 2(N + `) + 1 .m 0,λ = λ3 =N + 1/2

(Λ,δ) Irreducibility Unitarity

(Λ1,1),
(Λ2,−1)

κ1 <
{
N+1−k
m

∣∣∣∣ 2(k + `) ≡m 1
}

κ1 <min
(
N+1−k
m

∣∣∣∣ 2k + ` ≡m 1
)

(Λ2,1),
(Λ1,−1)

κ0 < {k/2, λ3 + 1/2− k/2 | odd k}
κ1 <

{
N+1−k
m

∣∣∣∣ 2(k + `) ≡m 1
} κ0 < 1/2 or κ0 > λ3

κ1 <min
(
N+1−k
m

∣∣∣∣ 2k + ` ≡m 1
)

Case III: even Nλ = λ4 =N/2 +κ1δ

(Λ,δ) Irreducibility Unitarity

(Λ1,1),
(Λ2,−1)

κ0 <
{

2k−N−1
2

∣∣∣∣ k > N/2, 2(k + `) .m 1
}

κ1 <
{
|λ4−k+1/2|

m

∣∣∣∣ 2(k + `) ≡m 1
} κ1 <min

 |N2 +κ0+ 1
2−k|

m

∣∣∣∣∣∣ (2k + `) ≡m 1


(Λ2,1),
(Λ1,−1)

κ0 <
{
k
2 ,
N−k+1

4 ,
N+1−2j

2

∣∣∣∣odd k,2(j + `).m1
}

κ1 <
{
|λ4−k+1/2|

m

∣∣∣∣ 2(k + `) ≡m 1
} κ0 < 1/2 or κ0 > N/2 + 1/2

κ1 <min

 |N2 +κ0+ 1
2−k|

m

∣∣∣∣∣∣ (2k + `) ≡m 1


Theorem 5.6.2 (Conditions for irreducible and unitary representa-
tions, the even cases). Denote m = 2p for a certain p ∈ N. Let κ0,
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κ1 and κm be positive constants. Let N be a non-negative integer and
U ' Y2`+1(−1,δ) be an irreducible spin representation of W̃ . If the condi-
tions on κ0, κ1 and κm of the following tables hold, then U extends to a
2N + 2 dimensional irreducible Om,κ-representation Lλ,Λ(V ). Moreover,
the constant Λ is of the form

Λ1 ∈ {±i(λ+ 1/2 +κ0δ)} or Λ2 ∈ {∓i(λ+ 1/2−κ0δ)}. (5.76)

It is unitary if κ0, κ1 and κm satisfy more restrictive conditions presented
thereafter. Furthermore, all irreducible finite-dimensional representations
of Om,κ are of this form.

Case I.i: N + ` ≡m 1− p,λ = λ1 =N + 1/2 + (κ1 +κm)p

(Λ,δ) Irreducibility Unitarity

(Λ1,1),
(Λ2,−1)

No restriction No restriction

(Λ2,1),
(Λ1,−1)

κ0 < {k/2, λ1 + 1/2− k/2 | odd k} κ0 < 1/2, or κ0 > λ1

Case I.i: N + ` ≡m 1− p,λ = λ2 =N + 1/2− (κ1 +κm)p

(Λ,δ) Irreducibility Unitarity

(Λ1,1),
(Λ2,−1)

κ0 < {−λ2 − 1/2 + k/2 | odd k}
κ1, κm <

{
N−k+1
m

∣∣∣∣ 2− k − ` ≡m 0
}

κ1 +κm <
{
N−k+1
m ,

N−j+1
p

∣∣∣∣ 2−k−`≡mp;
j.m0,p

}
κ1 +κm < 1/p

(Λ2,1),
(Λ1,−1)

κ0 < {k/2, λ2 + 1/2− k/2 | odd k}
κ1, κm <

{
N−k+1
m

∣∣∣∣ 2− k − ` ≡m 0
}

κ1 +κm <
{
N−k+1
m ,

N−j+1
p

∣∣∣∣ 2−k−`≡mp;
j.m0,p

}
κ0 < 1/2 or κ0 > λ2
κ1 +κm < 1/p

Case I.ii: N + ` ≡m 1,λ = λ3 =N + 1/2 + (κ1 −κm)p

(Λ,δ) Irreducibility Unitarity

(Λ1,1),
(Λ2,−1)

κm <
{
N−k+1
m

∣∣∣∣ 2− k − ` ≡m p
}

κm < min
(
N−k+1
m

∣∣∣∣2− k − ` ≡m p)
(Λ2,1),
(Λ1,−1)

κ0 < {k/2, λ3 + 1/2− k/2 | odd k}
κm <

{
N−k+1
m

∣∣∣∣2− k − ` ≡m p} κ0 < 1/2 or κ0 > λ3

κm <min
(
N−k+1
m

∣∣∣∣2− k − ` ≡m p)
Case I.ii: N + ` ≡m 1,λ = λ4 =N + 1/2− (κ1 −κm)p

(Λ,δ) Irreducibility Unitarity

(Λ1,1),
(Λ2,−1)

κ1 <
{
N−k+1
m

∣∣∣∣ 2− k − ` ≡m p
}

κ1 −κm <
{
N−k+1
m ,

N−j+1
p

∣∣∣∣ 2−k−`≡m0;
2−j−`.m0,p

} κ1 −κm < 1/p

κ1 <min
(
N−k+1
m

∣∣∣∣2− k − ` ≡m p)
(Λ2,1),
(Λ1,−1)

κ0 < {k/2, λ4 + 1/2− k/2 | odd k}
κ1 <

{
N−k+1
m

∣∣∣∣2− k − ` ≡m p}
κ1 −κm <

{
N−k+1
m ,

N−j+1
p

∣∣∣∣ 2−k−`≡m0;
2−j−`.m0,p

}
κ0 < 1/2 or κ0 > λ4
κ1 −κm < 1/p

κ1 <min
(
N−k+1
m

∣∣∣∣2− k − ` ≡m p)
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Case II: (N + `) .m 1, 1− pλ = λ5 =N + 1/2

(Λ,δ) Irreducibility Unitarity

(Λ1,1),
(Λ2,−1)

κ1 +κm <
{
N−k+1
p

∣∣∣∣ 2− k − ` ≡m p
}

|κ1 −κm| <
{
N−k+1
p

∣∣∣∣ 2− k − ` ≡m 0
} κ1 +κm <min

(
N−k+1
m

∣∣∣∣2− k − ` ≡m p)
|κ1−κm| <min

(
N−k+1
p

∣∣∣∣ 2−k−` ≡m 0
)

(Λ2,1),
(Λ1,−1)

κ0 < {k/2, λ5 + 1/2− k/2 | odd k}
κ1 +κm <

{
N−k+1
p

∣∣∣∣ 2− k − ` ≡m p
}

|κ1 −κm| <
{
N−k+1
p

∣∣∣∣ 2− k − ` ≡m 0
}

κ0 < 1/2 or κ0 > N − 1/2

κ1 +κm <min
(
N−k+1
m

∣∣∣∣2− k − ` ≡m p)
|κ1−κm| <min

(
N−k+1
p

∣∣∣∣2−k−` ≡m 0
)

Case III: even Nλ = λ6 =N/2 +κ0δ

(Λ,δ) Irreducibility Unitarity

(Λ1,1),
(Λ2,−1)

κ0 <
{
N−2k+1

2

∣∣∣∣ 2− k − ` .m 0,p
}

κ1 +κm <
{
|λ6−k+1/2|

p

∣∣∣∣ 2− k − ` ≡m p
}

|κ1−κm| <
{
|λ6−k+1/2|

p

∣∣∣∣ 2− k − `≡m 0
}

κ1+κm <min
( |λ6−k+ 1

2 |
p

∣∣∣∣2−k−` ≡m p)
|κ1−κm|<min

( |λ6−k+ 1
2 |

p

∣∣∣∣2−k−`≡m 0
)

(Λ2,1),
(Λ1,−1)

κ0 <
{
k
2 ,

N−k+1
4 ,

2j−N−1
2

∣∣∣∣ odd k;
2−j−`.m0,p

}
κ1 +κm <

{
|λ6−k+1/2|

p

∣∣∣∣ 2− k − ` ≡m p
}

|κ1−κm| <
{
|λ6−k+1/2|

p

∣∣∣∣2− k − `≡m0
}

κ0 < 1/2 or κ0 > N/2 + 1/2

κ1+κm<min
(|λ6−k+ 1

2 |
p

∣∣∣∣2− k − `≡m p)
|κ1−κm| <min

( |λ6−k+ 1
2 |

p

∣∣∣∣2−k−`≡m 0
)

5.6.1 Preliminary results and ideas of the proofs

The proofs are straightforward, but long. They are constructive: in
doing them, all the irreducible finite-dimensional representations
are found, and the conditions are naturally derived from the con-
structions. The idea behind them is akin to the standard module
construction, so the first step is to study representations of Om,κ

by starting from an irreducible spin representation of the group W̃ .
Note that unlike a semisimple Lie algebra or a rational Cherednik
algebra, the algebra Om,κ does not have a triangular decomposition
because the action of the group W̃ interchanges L+ and L−, see equa-
tions (5.72) and (5.73).

However, let W̃0 denote the subgroup of W̃ generated by the ele-
ments commuting with O0. Then the associative subalgebra of Om,κ

generated by L−, L+, O0, O123 and W̃0 does exhibit a triangular de-
composition. It depends on the reducibility of W . Proposition 6.4.17
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of the following chapter formalises this observation.

Let U be an irreducible W̃ -representation. It decomposes into ir-
reducible W̃0-representations, and thus specifically for the case at
hand, into two one-dimensional representations, see Section 5.4. The
elements O0 and O123 commute with W̃0 and they act thus by scalar
multiplication on W̃0-representations.

From there, we use the triangular decomposition of the subalgebra
generated by L−, L+, O0, O123 and W̃0 and then work out the action
of the rest of the symmetry algebra Om,κ.

We show that all the representations Lλ,Λ(U ) of Theorem 5.6.1 and
Theorem 5.6.2 are obtained from the sets of eigenvectors given by
Lemma 5.6.3, and we give the restrictions on the function κ by ex-
amining the action of the ladder operators on them. As we cover all
the possible cases, a complete set of finite-dimensional irreducible
representations of Om,κ is exhibited.

Lemma 5.6.3. Let V be a finite-dimensional irreducible representation
of Om,κ. There exists a set of eigenvectors of O0 and O123

B =
{
v+
k , v

−
k

∣∣∣ 0 ≤ k ≤N
}

(5.77)

that generates V , with each pair 〈v−k , v
+
k 〉 generating an irreducible spin

representation of W̃ and L+v
+
0 = 0, L−v+

N = 0.

Proof. We begin by decomposing V into irreducible spin represen-
tations of W̃ and exhibit an O0- and O123-eigenvector v+

0 from the
further decomposition into W̃0-representations that satisfies the con-
dition of the lemma. We then show that putting v+

k := Lk−v
+
0 and

v−k := σ̃mv
+
k in the set B proves the lemma.

As V is a Om,κ-representation, it is also a W̃ -representation. Fur-
thermore, in its realisation in Om,κ, a representation of W̃ must be a
spin representation: abstractly W̃ has a commuting element z that
acts as −1 or +1 on the representation, but the realisation forces z
to act as −1. By Maschke’s Theorem, the W̃ -representation V is ex-
pressible as a direct sum of irreducible spin representations of W̃ .
From Theorem 5.4.2, all the irreducible spin representation of W̃ are
two-dimensional.
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Each of the irreducible spin representations further decomposes as
the sum of two one-dimensional W̃0-representations. Since O0 and
O123 commute with W̃0, they act as multiples of the identity on
W̃0-representations. Let v be any such generator. The element σ̃mv
generates another W̃0-representation and the pair (σ̃mv,v) generates
an irreducible spin W̃ -representation. As L+ and L− form a pair of
ladder operators with respect to O0, we have that

O0L
k
±v =

([
O0, L

k
±
]
+Lk±O0

)
v = (±kLk± +Lk±O0)v. (5.78)

Hence, Lk+v and Lk−v are also eigenvectors of O0, with their eigenval-
ues respectively raised or lowered by k. Since V is finite-dimensional,
one of the generators in the W̃0-decomposition must be annihilated
by L+; denote it by v+

0 . Let λ and Λ be the eigenvalues for O0 and
O123 of this element

O0v
+
0 = λv+

0 , O123v
+
0 =Λv+

0 . (5.79)

Applying L− lowers the eigenvalue and changes the W̃0-representa-
tion, as is seen by (5.72). In particular, v+

k := L−v
+
0 is an eigenvector

of O0 of eigenvalue λ− k

O0v
+
k = (−kLk− +Lk−O0)v+

0 = (λ− k)v+
k . (5.80)

As all the eigenvalues are distinct, there must be a N such that
L−v

+
N = 0 since the representation is finite-dimensional. Hence, we

have exhibited two elements v+
0 and v+

N satisfying

L+v
+
0 = 0, L−v

+
N = LN+1

− v+
0 = 0. (5.81)

Furthermore, v−k := σ̃mv
+
k is also an eigenvector of O0 and O123, in-

deed

O0v
−
k = −σ̃mO0v

+
k = (k −λ)v−k , O123v

−
k = σ̃mO123v

+
k =Λv−k . (5.82)

There is thus a set of linearly independent eigenvectors of O123 and
O0

B = {v+
k | k = 0, . . . ,N } ∪ {v−k | k = 0, . . . ,N }. (5.83)

It is a spanning set of V because V is irreducible.
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Remark that the eigenvectors v+
k all have distinctO0-eigenvalues; it is

however possible that v−j has the same eigenvalue as one v+
k . Note also

that Lk+v
−
0 = (−1)kv−k and so we can also write v−k = (−1)kLk+v

−
0 .

The proof of the lemma gives for each finite-dimensional represen-
tation of Om,κ a set of data: two eigenvalues λ,Λ and a spin W̃ -
representation U = 〈v+

0 ,v
−
0 〉. Hence, we denote irreducible represen-

tations of Om,κ by Lλ,Λ(V ).

Note however that the lemma does not impose a unique choice of data
(λ,Λ,U ) to identify the representation V . Indeed, we see immediately
from (5.82) that there could have been another choice for v+

0 and v+
N

since
L+v

−
N = 0, L−v

−
0 = 0, (5.84)

and the two sets of data (λ,Λ,U ) and (N −λ,Λ,U ′ = 〈v−N ,v
+
N 〉) refer

to the same Om,κ-representation. This is taken into account into the
classification, see the cases to solve the system (5.137).

Furthermore on a representation Lλ,Λ(V ), we define unitarity with
respect to the ∗-structure from Section 5.5.3. We define abstractly on
Lλ,Λ(V ) a sesquilinear form

〈−,−〉 : Lλ,Λ(V )×Lλ,Λ(V )→C (5.85)

extending the unitary structure of U normalized by
〈
v+

0 ,v
+
0

〉
= 1, such

that, for all X ∈Om,κ and v,w ∈ Lλ,Λ(V ),

〈Xv,w〉 = 〈v,X∗w〉 . (5.86)

The next lemma gives a condition on unitarity assuming a specific
form for the action of L+. (It will be proven below that indeed L+ acts
like this.)

Lemma 5.6.4 (Unitarity condition). If L+ acts on v+
k as L+v

+
k = A(k)v+

k−1,
for certain constants A(k), then Lλ,Λ(V ) is unitary when A(k) > 0 for
1 ≤ k ≤N .

Proof. As O∗0 =O0, we can use (5.80) and (5.82),〈
v+
k ,v

+
l

〉
= hkδk, l =

〈
v−k ,v

−
l

〉
,
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〈
v+
k ,v
−
l

〉
= 0,

〈
v+

0 ,v
+
0
〉

= h0 = 1.

The fact that L∗± = L∓ gives a recursive structure for the hk linked
with A(k):

hk :=
〈
v+
k ,v

+
k

〉
=

〈
L−v

+
k−1,v

+
k

〉
=

〈
v+
k−1,L+v

+
k

〉
=

〈
v+
k−1,A(k)v+

k−1

〉
= A(k)hk−1.

Therefore, to have an inner product and unitarity, it must be that
A(k) > 0 for 1 ≤ k ≤N .

Assume that L+v
+
k = A(k)v+

k−1 and L−v
−
k = A(k)v−k−1 for certain A(k)

(as will be proved later). For both even and odd case, the proof of
Lemma 5.6.4 indicates that there is an orthonormal basis, provided
the representation is unitary.

5.6.2 Proof of Theorem 5.6.1

We will show that the set B of Lemma 5.6.3 is a basis of a 2N + 2 irre-
ducible representation ofOm,κ under the conditions of Theorem 5.6.1
on κ and characterised by λ, Λ and a spin W̃ -representation.

Let m = 2p + 1, N ∈ N, ` ∈ {0,1, . . . ,p} and δ ∈ {−1,+1}. Put U =
Y`(−1,δ), an irreducible spin representation of W̃ .

Consider the standardOm,κ-representation Lλ,Λ(V ) :=Om,κ⊗U from
the proof of Lemma 5.6.3. Its generating set of eigenvectors of O0
and O123 is

B = {v+
k := Lk−v0 | k = 0, . . . ,N } ∪ {v−k := σ̃mv

+
k | k = 0, . . . ,N }. (5.87)

Recall that Lk+v
−
0 = (−1)kv−k and so v−k = (−1)kLk+v

−
0 . The actions of

O123 and O0 on the generators are

O0v
±
k = ±(λ− k)v±k , O123v

±
k =Λv±k . (5.88)

The action of τ̃ , σ̃m and σ̃0 on U is given in Theorem 5.4.2. They
extend to give the actions of τ̃ , σ̃m and σ̃0 on the vectors v±k :

τ̃v+
k = ζ2kLk−τ̃v0 = ζ2k+2`v+

k ; τ̃v−k = (−1)kζ−2kLk+τ̃v
−
0 =ζ−2(k+`)v−k ;

σ̃mv
+
k = (−1)kLk+σ̃mv

+
0 = v−k ; σ̃mv

−
k = (−1)2kLk−σ̃mv

−
0 = v+

k ;
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σ̃0v
+
k = (−1)kLk−σ̃0v0 = (−1)kδv+

k ; σ̃0v
−
k = (−1)2kLk+σ̃0v

−
0 = (−1)k+1δv−k .

Because σ̃j = (−1)j+1τ̃ j σ̃m, we have

σ̃jv
±
k = (−1)j+1τ̃ j σ̃mv

±
k = (−1)j+1ζ∓2(k+`)v∓k . (5.89)

The actions of the operators T0, T+ and T− are then given by

T0v
±
k = iO3v

±
k = ±i(−1)kκ0δv

±
k ,

T+v
±
k = −iκ1

 m∑
j=1

(−1)j+1ζj(1∓2(k+`))

v∓k ,
T−v

±
k = iκ1

 m∑
j=1

(−1)j+1ζj(−1∓2(k+`))

v∓k .
The sum of roots of unity either gives m if the exponent of ζ is
divisible by m, or 0 as then the sum covers all the roots of unity over
the circle. Denote the function

1m(2x+ 1) =
1
m

m∑
j=1

(−1)jζj(2x+1) =

1, 2x+ 1 ≡m 0;

0, else.
(5.90)

So the actions of T+ and T− are expressed by

T+v
±
k = −iκ1m1m(1∓ 2(k + `))v∓k , T−v

±
k = iκ1m1m(−1∓ 2(k + `))v∓k .

That gives expressions for the combinations T+T− and T−T+:

T−T+v
±
k = κ2

1m
21m(−1± 2(k + `))1m(1∓ 2(k + `))v±k

= κ2
1m

21m(1∓ 2(k + `))v±k ,

T+T−v
±
k = κ2

1m
21m(1± 2(k + `))1m(−1∓ 2(k + `))v±k

= κ2
1m

21m(1± 2(k + `))v±k .

Use the factorisations (5.67) and (5.68) to give the actions of L+ on
v+
k and of L− on v−k :

L+v
+
k = L+L−v

+
k−1

= −
(
(O0 − 1/2)2 + (O123 + iO3)2

)(
(O0 − 1/2)2 − T+T−

)
v+
k−1



5. The dihedral Dunkl–Dirac symmetry algebra 116

= −((λ− k + 1/2)2 + (Λ+ (−1)k−1iκ0δ)2)×
((λ− k + 1/2)2 −κ2

1m
21m(2(k + `)− 1))v+

k−1,

and for L−v−k ,

L−v
−
k = −L−L+v

−
k−1

=
(
(O0 + 1/2)2 + (O123 − iO3)2

)
×(

(O0 + 1/2)2 − T−T+

)
v−k−1

= ((λ− k + 1/2)2 + (Λ+ (−1)k−1iκ0δ)2)×
((λ− k + 1/2)2 −κ2

1m
21m(2(k + `)− 1))v+

k−1.

So denote

A(k) := A(1)(k)A(2)(k) with

A(1)(k) := −
(
(λ− k + 1/2)2 + (Λ− (−1)kiκ0δ)2

)
A(2)(k) :=

(
(λ− k + 1/2)2 −κ2

1m
21m(2(k + `)− 1)

)
.

(5.91)

Then the actions of L+ and L− on v+
k and v−k are denoted succinctly

as

L+v
+
k = A(k)v+

k−1 = L+L−v
+
k−1, L−v

−
k = −A(k)v−k−1 = −L−L+v

−
k−1,

L+L−v
−
k = A(k)v−k , L−L+v

+
k = A(k)v+

k .

Remark that the conditions of Lemma 5.6.4 are satisfied.

The actions of O± are obtained from the expression of L± (5.65).
Indeed, we have

L± = 1/2 {O0, O±} =O±O0 + 1/2 [O0, O±]

=O±O0 ± 1/2O± + (O123 ± iO3)T±.
(5.92)

And so, after some computations, the actions are

O−v
+
k =

v+
k+1 − 2i(Λ− (−1)k+1iκ0δ)κ1m1m(1− 2(k + `))v−k

λ− k − 1/2
, (5.93)

O−v
−
k =
−A(k)v−k−1 − 2i(Λ− i(−1)kκ0δ)κ1m1m(2(k + `)− 1)v+

k

k −λ− 1/2
, (5.94)

O+v
+
k =

A(k)v+
k−1+ 2i(Λ+ i(−1)k+1κ0δ)κ1m1m(1− 2(k + `))v−k

λ− k + 1/2
, (5.95)



117 5.6 Finite-dimensional representations

O+v
−
k =
−v−k+1 + 2i(Λ+ i(−1)kκ0δ)κ1m1m(1 + 2(k + `))v+

k

k −λ+ 1/2
, (5.96)

with the conditions λ , k + 1/2 for (5.93); λ , 1/2 − k for (5.94);
λ , k − 1/2 for (5.95), and λ , k + 1/2 for (5.96).

These actions enable us to conclude that B is a basis.

The representation Lλ,Λ(V ) will be irreducible if A(k) , 0 for 1 ≤
k ≤ N since it then means that all elements of V can be reached by
acting with ladder operators. Furthermore, we know that L+v

+
0 = 0

and L−v
+
N = 0 and this can be translated as conditions on A(0) and

A(N + 1): L−L+v
+
0 = A(0)v+

0 = 0,

L+L−v
+
N = A(N + 1)v+

N = 0.
(5.97)

This gives the system of equations
((λ+ 1/2)2+ (Λ− iκ0δ)2)((λ+ 1/2)2−κ2

1m
21m(2` − 1))=0,(

(λ−N − 1/2)2 + (Λ+ (−1)N iκ0δ)2
)
×(

(λ−N − 1/2)2 −κ2
1m

21m(2(N + `) + 1)
)

= 0,

A(k) , 0, 1 ≤ k ≤N.

(5.98)

We now solve the system (5.98). There are three cases to be consid-
ered; the other possibilities reduce to one of these and the verification
is left to the reader.

5.6.2.1 Type I: 1m(2(N +`) + 1) = 1, (λ+ 1/2)2 + (Λ− iκ0δ)2 = 0, (λ−N −
1/2)2 −κ1m

2 = 0;

5.6.2.2 Type II: 1m(2(N + `) + 1) = 0, (λ+ 1/2)2 + (Λ− iκ0δ)2 = 0, (λ−
N − 1/2)2 = 0;

5.6.2.3 Type III: (λ + 1/2)2 + (Λ + iκ0δ)2 = 0, (λ − N − 1/2)2 + (Λ +
(−1)N iκ0δ)2 = 0.

The first two depend on the relation between N and U . The last one
will only be possible when N is even. The value of Λ will always
depend on λ and δ, in particular:

Λ1 = i(λ+ 1/2 +κ0δ), or Λ2 = −i(λ+ 1/2−κ0δ). (5.99)

Note that the pairs (Λ1,δ) and (−Λ2,−δ) yield the same irreducible
representation. We can thus only consider Λ1 in what follows.
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5.6.2.1 Cases of type I

When 2(N + `) + 1 ≡m 0, the system (5.98) is solved through tak-
ing

(λ+ 1/2)2 + (Λ− iκ0δ)2 = 0; (5.100)

(λ−N − 1/2)2 −κ2
1m

2 = 0. (5.101)

There are two possibilities for λ, namely

λ1 =N + 1/2 +κ1m, or λ2 =N + 1/2−κ1m. (5.102)

First option: λ1 =N+1/2+κ1m. TheO0-eigenvalues are then

O0v
+
k = (N + 1/2 +κ1m− k)v+

k , O0v
−
k = (k −N − 1/2−κ1m)v−k .

They are all distinct because κ1 > 0.

Take Λ1 = i(λ1 + 1/2 +κ0δ) and consider the equation A(k) = 0. It is
evident that for this λ1, the second factor A(2)(k) > 0. Study the first
factor A(1)(k). When k is even, then (−1)k−1 = −1 and

A(1)(k) = (λ1 − k + 1/2)2 + (Λ1 − iκ0δ)2

= (N − k +κ1m+ 1)2 − (N +κ1m+ 1)2 < 0,

so A(k) > 0 and in particular it is not 0.

When k is odd however,

A(1)(k) = (λ1 − k + 1/2)2 + (Λ1 + iκ0δ)2

= (N − k +κ1m+ 1)2 − (λ1 + 1/2 + 2κ0δ)2,

so as long as κ0 , −k/(2δ) or κ0 , −(λ1 − k/2 + 1/2)/δ, it is not
zero.

For Λ2, similar computations show that A(k) , 0 as long as κ0 <
{k/2δ, (λ1 − k/2 + 1/2)/δ | odd k}.

Finally, unitarity requires that A(k) > 0 for all k ∈ {1, . . . ,N } by Lem-
ma 5.6.4. It is satisfied for even k. For odd k, remark first that
it is different according to the value of δ. When δ = −1 then the
conditions

0 < κ0 < 1/2 or κ0 > λ1. (5.103)
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ensures (λ1 − k + 1/2)2 − (λ1 + 1/2 − 2κ0)2 < 0 for all 1 ≤ k ≤ N , and
so A(k) > 0 for all 1 ≤ k ≤ N . When δ = 1 then it will always be
that (λ− k + 1/2)2 − (λ+ 1/2 + 2κ0)2 < 0 as κ0 > 0, there are thus no
restriction for unitarity here.

For Λ2 the unitarity analysis condition switches: when δ = −1, it is
always unitary, and when δ = 1, it is unitary provided κ0 < 1/2 or
κ0 > λ1.

Second option: λ2 =N + 1/2−κ1m. In this case, the eigenvalues of
O0 may not be all distinct

O0v
+
k = (N + 1/2−κ1m− k)v+

k , O0v
−
k = (k −N − 1/2 +κ1m)v−k .

If κ1 = (2N + 1 − k − j)/2m, the elements v+
k and v−j share the same

eigenvalue. They would be linearly independent if the action of σ̃0
would be different, that is if k and j have the same parity. For the
action of τ̃ , they share eigenvalue if k + j ≡m 2`. The value of κ1 is
thus restricted by

κ1 ,
{2N+1−(k+j)

2m

∣∣∣∣ j + k ≡2 1; j + k ≡m 2`
}
. (5.104)

The condition A(k) , 0 prevents κ0 from taking some values for odd
1 ≤ k ≤N by studying A(1)(k):

κ0 , k/2δ, or κ0 , (λ2 + 1/2− k)/2δ. (5.105)

It also prevents some values of κ1 by studying the factorA(2)(k):κ1 ,
N−k+1

2m , for k such that 2(k + `) ≡m 1;

κ1 ,
N−k+1
m , for other k.

(5.106)

The cases covered by these two inequations contain the values (5.104)
of κ1 for which the O0-, σ̃0- and τ̃-eigenvalues of v+

k and v−j are the
same. We now have all conditions to ensure A(k) , 0.

To find the additional restrictions necessary for unitarity, we concen-
trate only on Λ1 = i(λ2 + 1/2 +κ0δ) as the previous case has shown
Λ2 follows from it.

First, when δ = 1, then always A(1)(k) < 0 because κ0 > 0. So A(k) > 0
whenever κ1 < (N + 1 − k)/m for k such that 2(k + `) ≡m 1 or κ1 <
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(N + 1 − k)/2m for k such that (2k + `) .m 1. So A(k) > 0 for all k if
κ1 < 1/2m.

When δ = −1, if k is even, A(1)(k) < 0 and A(k) > 0 when κ1 < (N + 1−
k)/m, for k such that 2(k+`) ≡m −1, or κ1 < (N +1−k)/2m, for other k.
As 2(N + `) ≡m −1, then to be unitarity it is necessary that κ1 < 1/m.
This condition means that, for odd k, we do not need to consider the
possibility of A(k) > 0 by virtue of A(1)(k) > 0 and A(2)(k) < 0: this
would lead to a contradiction. So, for odd k, still κ1 < (N + 1− k)/m
for 2(k + `) ≡m 1 and κ1 < (N − 1− k)/2m for other k; but additionally
κ0 must be restricted to κ0 < k/2 or κ0 > λ2 + 1/2− k/2. Combining
everything means that unitarity will follow from κ1 < 1/2m, and
κ0 < 1/2 or κ0 > λ2.

5.6.2.2 Cases of type II

For this type, 2(N + `) .m −1 and equations (5.98) are

(λ+ 1/2)2 + (Λ− iκ0δ)2 = 0; (5.107)

(λ−N − 1/2)2 = 0. (5.108)

The second equation gives λ3 = N + 1/2 and all the O0-eigenvalues
of v±k are distinct. We study the conditions for Λ1 = i(λ3 + 1/2 +
κ0δ).

Consider both factors A(1)(k) and A(2)(k) of A(k). The first one for k
even is

A(1)(k) = (λ3 − k + 1/2)2 + (Λ1 + (−1)k−1iκ0δ)2

= (N + 1− k)2 − (N + 1)2 < 0,

so it is never 0. For odd k,

A(1)(k) = (λ3 − k + 1/2)2 + (Λ1 + (−1)k−1iκ0δ)2

= (N + 1− k)2 − (N + 1 + 2κ0δ)2

and so, as long as κ0 , −k/(2δ) or κ0 , −(N + 1− k/2)/δ, it will not be
zero.

However, the second term A(2)(k) may be zero in either cases, adding
constraints on κ1. Indeed, if 2(k + `)− 1 ≡m 0, then

A(2)(k) = (λ3 − k + 1/2)2 −κ2
1m

2 = (N + 1− k)2 −κ2
1m

2
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and so κ1 , (N + 1− k)/m when 2(k + `) ≡m 1. For other k, A(2)(k) > 0
as A(2)(k) = (λ3 − k + 1/2)2 > 0.

To achieve unitarity, the two factors A(k) must have different signs.
The situation depends on the parity of k and on δ.

Start with δ = 1. Then A(1)(k) < 0 and so A(2)(k) must be positive: this
happens when κ1 < (N + 1 − k)/m for the k such that 2(k + `) ≡m 1.
Unitarity happens then when κ1 < min((N + 1 − k)/m | 2(k + `) ≡m
1).

For δ = −1, then even k implies A(1)(k) < 0 and so A(k) > 0 with the
additional condition κ1 < (N + 1− k)/m, for k such that 2(k + `) ≡m 1.
For odd k, it is further required that κ0 < k/2 or κ0 > λ3 + 1/2− k/2,
with still the same condition on κ1. Therefore, A(k) > 0 for all 1 ≤
k ≤ N if κ1 < min((N + 1 − k)/m | 2(k + `) ≡m 1), and κ0 < 1/2 or
κ0 > λ3.

5.6.2.3 Cases of type III

For those cases, the solutions to equations (5.98) are given by

(λ+ 1/2)2 + (Λ− iκ0δ)2 = 0; (5.109)

(λ−N − 1/2)2 + (Λ+ (−1)N iκ0δ)2 = 0. (5.110)

We study them for Λ1 = i(λ + 1/2 + κ0δ). Equation (5.110) divides
according to the parity of N . When it is even,

(λ−N − 1/2)2+ (Λ1+ (−1)N iκ0δ)2 = (λ−N −1/2)2− (λ+1/2 +2κ0δ)2,

and so λ4 =N/2 +κ0δ.

When N is odd,

(λ−N − 1/2)2 + (Λ+ (−1)N iκ0δ)2 = (λ−N − 1/2)2 − (λ+ 1/2)2,

and so λ5 =N/2 solves the equation.

In the study of the S3 case [DOV18b, Sect. 4.3.2], namely the subal-
gebra of m = 3 case without A1 part, there was no representation for
odd N due to incompatibility with the relation involving [O0, O−] of
Proposition 5.5.8. For the same reason, there will also be none in the
present chapter.

We begin by showing that λ5 = N/2 for odd N is not possible and
then take care of the case λ4 =N/2 +κ0δ for even N .
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Odd N and λ5 =N/2. In this case, the integer j0 = (N − 1)/2 is such
that

O0v
+
j0

= 1
2v

+
j0
, O0v

+
j0+1 = −1

2v
+
j0+1,

O0v
−
j0

= −1
2v
−
j0
, O0v

−
j0+1 = 1

2v
−
j0+1.

(5.111)

We will show that the relation (5.60) is not respected, thus showing
the impossibility of representation. The actions of O+ and O− previ-
ously found (equations (5.93)–(5.96)) do not work here because their
denominator is 0. We can circumvent this by studying

v+
j0+1 = L−v

+
j0

= (O−O0 + 1
2 [O0, O−])v

+
j0

(5.112)

=O−(O0 − 1
2 )v+

j0
+ 2i(O123 − T0)T−v

+
j0

(5.113)

= iκ1m(Λ1 − (−1)j0κ0)1m(−1 + 2(j0 + `))v−j0 (5.114)

This forces 1 + (2j0 + `) ≡m 0 as v+
j0+1 must not be zero. So v−j0 is a

multiple of v+
j0+1. But if this is the case, then studying [O0, O−] leads

to a contradiction. Indeed, by (5.60)

[O0, O−]v
+
j0

= −O−v+
j0

+ 2(O123 − T0)T−v
+
j0

(5.115)

O0O−v
+
j0
− 1

2O−v
+
j0

= −O−v+
j0

+ 2κ1m(Λ1 − (−1)j0κ0)v−j0 (5.116)

O0O−v
+
j0

= −1
2O−v

+
j0

+ 2v+
j0+1. (5.117)

However, from the two factorisations (5.63–5.64) we get that O−v
+
j0

=
av+
j0+1, which would force v+

j0+1 = 0 from the last equation, a contra-
diction. There are thus no representation in this case.

Even N and λ4 =N/2 +κ0δ. The eigenvectors for O0 are

O0v
+
k = (N/2 +κ0δ − k)v+

k , O0v
−
j = (j −N/2−κ0δ)v−j (5.118)

and so the eigenvalues of v+
k and v−j are the same if κ0 = (k + j −

N )/2δ.

If the integers k and j have the same parity, then they are linearly
independent because the action of σ̃0 differs by a sign on them:
σ̃0v

+
k = (−1)kδv+

k and σ̃0v
−
j = −(−1)jδ. If they do not have the same

parity, then those values of κ0 will be prohibited by conditions stem-
ming from A(k) , 0, and thus all the vectors v±k are linearly indepen-
dent.
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Consider the values of κ0 and κ1 for which A(k) = 0. The first factor
of A(k) = −A(1)(k)A(2)(k) is

A(1)(k) = (λ4 − k + 1/2)2 − (λ4 + 1/2 +κ0δ − (−1)kκ0δ)2 (5.119)

It is zero only for odd k if κ0 = −k/(2δ) or κ0 = −(λ4 + 1/2− k/2)/δ. So
κ0 cannot be a half-integer k/2 for odd 1 ≤ k ≤N − 1.

The second factor is

A(2)(k) = (λ4 − k + 1/2)2 −κ2
1m

21m(2(k + `)− 1). (5.120)

This is zero when κ1 = ±(λ4 − k + 1/2)/m for k such that 2(k + `) ≡m 1,
or when κ0 = (k −N/2− 1/2)/δ for other k. So A(k) , 0 if κ0 and κ1
avoid the previously-mentioned values.

The analysis of unitarity by the condition A(k) > 0 of Lemma 5.6.4
is easier done by considering δ = 1 and δ = −1 separately. First
δ = 1. In this case, the first factor A(1)(k) is always negative. The
positivity of the second factor requires κ1 < |N/2 + κ0 − k + 1/2|/m
when k is such that 2(k+`) ≡m 1. So the unitarity is guaranteed when
κ1 <min(|N/2 +κ0 − k + 1/2|/m | 2(k + `) ≡m 1), and those are the only
cases.

When δ = −1 then for even k, always A(1)(k) < 0, but for odd k, it
requires |N/2−κ0 + 1/2− k| < |N/2− 3κ0 + 1/2| and so, to be true for
all odd k, then either κ0 < 1/2 or κ0 > N/2 + 1/2. Along with this,
the second factor A(2)(k) is positive for k such that 2(k + `) ≡m 1 only
when κ1 < |N/2 +κ0 − k + 1/2|/m.

The three cases cover all possibility and thus we have proven Theo-
rem 5.6.1.

5.6.3 Proof of Theorem 5.6.2

We prove that the set B of Lemma 5.6.3 is a basis of a (2N + 2)-
dimensional irreducible representation of Om,κ characterized by two
constants Λ and λ under the conditions on κ of Theorem 5.6.2.

Let m = 2p, N ∈ N, ` ∈ {0,1, . . . ,p − 1} and δ ∈ {−1,+1}. Put U =
Y2`+1(δ) an irreducible spin representation of W̃ . By Lemma 5.6.3
and the discussion following it, consider the Om,κ-representation
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Lλ,Λ(V ) with its generating set of 2N + 2 eigenvectors of O0 and
O123

B = {v+
k := Lk+v

+
0 , v

−
k := σ̃mv

+
k | k = 0, . . . ,N }. (5.121)

The representation U is generated by v+
0 and v−0 and the O0- and

O123-eigenvalues on v±k are

O0v
±
k = ±(λ− k)v±k , O123v

±
k =Λv±k . (5.122)

The actions of the group elements on v±k are given below, with the ac-
tion on v±0 extracted from Theorem 5.4.2. Recall that ζ = eπi/m:

τ̃v+
k = ζ2kLk−τ̃v

+
0 = ζ2(k+`)+1v+

k , τ̃v−k = ζ−2(k+`)−1v−k ,

σ̃0v
+
k = (−1)kLk−σ̃0v

+
0 = (−1)kδv+

k , σ̃0v
−
k = (−1)2kLk+σ̃0v

−
0 =(−1)k+1δv−k ,

σ̃mv
+
k = (−1)kLk+σ̃mv

+
0 = v−k , σ̃mv

−
k = v+

k .

Recall that T0 = iκ0σ̃0 and so its action on v±k is simply given by
T0v

±
k = ±i(−1)kκ0δv

±
k . The actions of T+ and T− are obtained from

σ̃j = (−1)j+1τ̃ j σ̃m and equation (5.54), because m is even:

T±v
+
k = ∓i(κ1T

1
± +κmT

2
± )v+

k , T±v
−
k = ∓i(κ1T

1
± +κmT

2
± )v−k .

On the odd root components T 1
+ and T 1

− , the action is given by

T 1
+ v
±
k =

p∑
j=1

ζ2j−1σ̃2j−1v
±
k =

p∑
j=1

ζ2j−1(−1)2j τ̃2j−1σ̃mv
±
k

=
p∑
j=1

ζ(2j−1)(1∓1∓2(k+`))v∓k ,

T 1
− v
±
k =

p∑
j=1

ζ(2j−1)(−1∓1∓2(k+`))v∓k ,

and on the even roots components T 2
+ and T 2

− , by

T 2
+ v
±
k =

p∑
j=1

ζ2j+1σ̃2jv
±
k =

p∑
j=1

(−1)2jζ2j τ̃2j σ̃mv
±
k
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= −
p∑
j=1

ζ2j(1∓1∓2(k+`))v∓k ,

T 2
− v
±
k = −

p∑
j=1

ζ2j(−1∓1∓2(k+`))v∓k .

Define

Gκ(X) := p(κ11′m(X)−κm1p(X)); (5.123)

1p(X) :=

1, X ≡p 0;

0, else;
1′m(X) :=


−1, X ≡m p;

1, X ≡m 0;

0, else.

The actions of T+ and T− on v−k and v+
k are then expressed with this

shorthand notation as

T+v
−
k = −iGκ(1− k − `)v+

k , T+v
+
k = −iGκ(k + `)v−k , (5.124)

T−v
−
k = iGκ(k + `)v+

k , T−v
+
k = iGκ(1− k − `)v−k . (5.125)

For ease of notation, define

Hκ(x) := p2((κ2
1 +κ2

m)1p(x)− 2κ1κm1′m(x)) =


p2(κ1 +κm)2, x ≡m p;

p2(κ1 −κm)2, x ≡m 0;

0, else.

The actions of T+T− and T−T+ on v+
k and v−k are given below

T−T+v
+
k =Hκ(k + `)v+

k , T−T+v
−
k =Hκ(1− k − `)v−k , (5.126)

T+T−v
+
k =Hκ(1− k − `)v+

k , T+T−v
−
k =Hκ(k + `)v−k . (5.127)

We now employ the factorisations (5.67) and (5.68) to get conditions
on the actions of L+ and L− on the vectors v+

k and v−k :

L+v
+
k = L+L−v

+
k−1

= −
(
(O0 − 1/2)2 + (O123 + iO3)2

)(
(O0 − 1/2)2 − T+T−

)
v+
k−1

= −
((

(λ− k + 1/2)2 + (Λ+ (−1)k−1iκ0δ)2
)
×(

(λ− k + 1/2)2 −Hκ(2− (k + `))
))
v+
k−1,
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and

L−v
−
k = −L−L+v

−
k−1

=
(
(O0 + 1/2)2 + (O123 − iO3)2

)(
(O0 + 1/2)2 − T−T+

)
v−k−1

=
((

(k −λ− 1/2)2 + (Λ+ (−1)k−1iκ0δ)2
)
×(

(k −λ− 1/2)2 −Hκ(2− (k + `))
))
v−k−1.

Put

A(k) := A(1)(k)A(2)(k), with (5.128)

A(1)(k) :=
(
(λ− k + 1/2)2 + (Λ− (−1)kiκ0δ)2

)
(5.129)

A(2)(k) :=
(
(λ− k + 1/2)2 −Hκ(2− k − `)

)
. (5.130)

So the actions are simply

L+v
+
k = A(k)v+

k−1, L−v
−
k = −A(k)v−k−1, (5.131)

L+L−v
−
k = A(k)v−k , L−L+v

+
k = A(k)v+

k . (5.132)

The actions of O+ and O− follow like the previous case from express-
ing L± =O±O0 + [O0, O±] /2:

O−v
+
k =

v+
k+1 − 2i(Λ− (−1)k+1iκ0δ)Gκ(1− k − `)v−k

λ− k − 1/2
, (5.133)

O−v
−
k =
−A(k)v−k−1 − 2i(Λ− i(−1)kκ0δ)Gκ(k + `)v+

k

k −λ− 1/2
, (5.134)

O+v
+
k =

A(k)v+
k−1 + 2i(Λ+ i(−1)k+1κ0δ)Gκ(k + `)v−k

λ− k + 1/2
, (5.135)

O+v
−
k =
−v−k+1 + 2i(Λ+ i(−1)kκ0δ)Gκ(1− k − `)v+

k

k −λ+ 1/2
, (5.136)

with the restrictions λ , k + 1/2 for (5.133); λ , 1/2 − k for (5.134);
λ , k − 1/2 for (5.135), and λ , k + 1/2 for (5.136).

The system to solve for the irreducibility of Lλ,Λ(V ) is

(
(λ+ 1/2)2 + (Λ− iκ0δ)2

)(
(λ+ 1/2)2 −Hκ(2− `)

)
= 0,(

(λ−N − 1/2)2 + (Λ+ (−1)N iκ0δ)2
)(

(λ−N − 1/2)2 −Hκ(1−N − `)
)

= 0,

A(k) , 0, 1 ≤ k ≤N.

(5.137)
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The values of ` and N influence the value of Hκ(1−N − `) and justify
the division in the following types. All other ways to solve the first
two equations of (5.137) are equivalent to one of these by a renaming
of the generators v±k , see the discussion around equation (5.84).

5.6.3.1 Type I.i: 1−N − ` ≡m p; (λ+ 1/2)2 = −(Λ− iκ0δ)2, and (λ−N −
1/2)2 =Hκ(1−N − `).

5.6.3.2 Type I.ii: 1−N − ` ≡m 0; (λ+ 1/2)2 = −(Λ− iκ0δ)2, and (λ−N −
1/2)2 =Hκ(1−N − `).

5.6.3.3 Type II: Hκ(1−N − `) = 0; (λ+ 1/2)2 = −(Λ− iκ0δ)2, and N −λ+
1/2 = 0.

5.6.3.4 Type III: (λ+ 1/2)2 = −(Λ− iκ0δ)2, and (λ−N − 1/2)2 = −(Λ+
(−1)N iκ0δ)2.

The choice of these specific types is simply to normalize the expres-
sions of Λ as either

Λ1 = i(λ+ 1/2 +κ0δ), or Λ2 = −i(λ+ 1/2−κ0δ). (5.138)

The two possibilities exist for Λ, but the representations are the same
under the switch (Λ1,δ)→ (−Λ2,−δ) so we will always only consider
Λ1 = i(λ+ 1/2 +κ0δ).

5.6.3.1 Cases of type I.i

The condition on Hκ(1−N − `) is equivalent to N + ` ≡m 1− p.

There are two possible values for λ:

λ1 =N + 1/2 + (κ1 +κm)p, λ2 =N + 1/2− (κ1 +κm)p. (5.139)

First option: λ1 =N +1/2+(κ1 +κm)p. All the eigenvectors v±k have
different eigenvalues. The condition A(k) , 0 is achieved with only
some conditions on κ0. Indeed, the positivity conditions κ1,κm > 0
implies that (κ1 +κm)2 > (κ1 −κm)2 and thus the second factor A(2)(k)
of A(k) is always positive:

A(2)(k) = (λ1 − k + 1/2)2 −Hκ(2− k − `)
= (N − k + 1 + (κ1 +κm)p)2 −Hκ(2− k − `) > 0. (5.140)
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The first factor A(1)(k) = (λ1 − k + 1/2)2 + (Λ+ (−1)k+1iκ0δ)2 is always
negative for even k, but it is zero if κ0 = −k/(2δ) or κ0 = −(2λ − k +
1)/(2δ) for odd k.

When δ = 1, the representation will be unitary without restriction.
When δ = −1, it will be unitary if κ0 < 1/2 or κ0 > λ1.

Second option: λ2 =N + 1/2− (κ1 +κm)p. As

O0v
+
k = (N − k + /2− (κ1 +κm)p)v+

k ,

O0v
−
j = (j −N − 1/2 + (κ1 +κm)p)v−j ,

then v+
k and v−j will have the same O0-eigenvalue when κ1 + κ2 =

(2N + 1− k − j)/2p, values. Then this will imply A(k) = 0.

In addition to the conditions on κ0, κ0 < 1/2 or κ0 > λ1 for δ =
−1, some conditions on κ1 and κm appear from the irreducibility
condition A(k) , 0. The factor A(1)(k) is not zero as long as κ0 , −k/2δ
or κ0 , −(N − k + 1/2)/δ for odd k, but it might be the case that the
second factor A(2)(k) becomes 0.

For A(2)(k) = 0, the following equation must hold

(N − k + 1− (κ1 +κm)p)2 −Hκ(2− k − `) = 0.

According to the value of k, we have to solve the following system of
equations

N − k + 1− (κ1 +κm)p = ±(κ1 −κm)p, 2− k − ` ≡m 0;

N − k + 1− (κ1 +κm)p = ±(κ1 +κm)p, 2− k − ` ≡m p;

N − k + 1− (κ1 +κm)p = 0, else;

(5.141)

and so Lλ,Λ(V ) is not irreducible when
κ1 = (N − k + 1)/(2p), κm = (N − k + 1)/(2p), 2− k − ` ≡m 0;

κ1 +κm = (N − k + 1)/(2p), 2− k − ` ≡m p;

κ1 +κm = (N − k + 1)/p, else.

Lemma 5.6.4 states that the representation will be unitary when all
the A(k) > 0. If δ = 1, it suffices that κ0 > 0 and κ1 +κm < 1/p. When
δ = −1, sufficient conditions for that are: 0 < κ0 < 1/2 or κ0 > N − 1/2
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with κ1 + κm < 1/p. Indeed, A(2)(k) > 0, and so A(k) > 0, under the
following restrictions:
κ1,κm > (N − k + 1)/2p or κ1,κm < (N − k + 1)/2p, 2− k − ` ≡m 0;

κ1 +κm < (N − k + 1)/2p, 2− k − ` ≡m p;

κ1 +κm < (N − k + 1)/p, else;

and as 2−N − ` .m p,0, then the condition κ1 +κm < 1/p is sufficient
for the inequality A(k) > 0 to hold for all k.

5.6.3.2 Cases of type I.ii

The condition Hκ(1−N − `) = (κ1 −κm)p is equivalent to N + ` ≡m 1.
There are two possibilities for λ, namely λ3 = N + 1/2 + (κ1 − κm)p
or λ4 = N + 1/2 − (κ1 − κm)p, and for each of these, we study Λ1 =
i(λj + 1/2 +κ0δ). We assume here that κ1 > κm as, if it is not the case,
it suffices to switch the analysis of λ3 and λ4.

First option: λ3 = N + 1/2 + (κ1 − κm)p There might be some O0-
eigenvectors with equal eigenvalues as

O0v
+
k =N − k + 1/2 + (κ1 −κm)p, O0v

−
j = j −N − 1/2− (κ1 −κm)p,

and they are equal if κm −κ1 = (2N + 1− k − j)/2p.

The analysis on A(k) proceeds similarly to the previous case, but with
a slight difference on the second factor of A(k). Indeed, if 2−k−` ≡m p
then

A(2)(k) = (λ3 − k + 1/2)2 −Hκ(2− k − `)
= (N − k + 1 + (κ1 −κm)p)2 − (κ1 +κ2)2p2

and this is 0 if and only if

κ1 = −(N − k + 1)/2p, κm = (N − k + 1)/2p.

Then A(2)(k) will be positive if κ1 > 0 > −(N − k + 1)/2p and 0 < κm <
(N − k + 1)/2p. For the other values of k, then always A(2)(k) > 0.
Naturally, A(1)(k) > 0 for even k, and is zero when κ0 = −k/2δ or
κ0 = −(λ3 − k + 1/2)/δ for odd k.

When δ = 1, the condition for unitarity is then that κm < (N −k+1)/2p
for the biggest k such that 2− k − ` ≡m p and, if δ = −1, that κ0 < 1/2
or κ0 > λ3.
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Second option: λ4 = N + 1/2 − (κ1 − κm)p. The eigenvalues of v±k
might be the same, as

O0v
+
k = (N + 1

2 − k − (κ1 −κm)p)v+
k , O0v

−
j = (j −N − 1

2 + (κ1 −κm)p)v−j ,

and so they are the same if κ1 −κm = (2N − j − k + 1)/2p.

We get the following conditions on κ1 and κm by analysing when
A(2)(k) = 0, or equivalently when

(λ4 − k + 1/2)2 = (N − k + 1− (κ1 −κm)p)2

=


(κ1 +κm)2p2, 2− k − ` ≡m p;

(κ1 −κm)2p2, 2− k − ` ≡m 0;

0, else.

It gives the following restrictions, for k such that 2−k−` ≡m p, j such
that 2− j − ` ≡m 0 and q such that 2− q − ` .m 0,p

κ1 , (N − k + 1)/(2p), κm , −(N − k + 1)/(2p),

κ1 −κm , (N − j + 1)/(2p), κ1 −κm , (N − q+ 1)/p.

It is unitary if furthermore A(k) > 0 for all k. This is achieved by
requiring κ1 −κ2 < 1/p and 0 < κ1 < (N − k + 1)/2p for the biggest k
such that 2− k − ` ≡m 0, when δ = 1, and by adding 0 < κ0 < 1/2 or
κ0 > λ4 − k + 1/2, if δ = −1. Note that the first condition ensures that
λ4 > k.

5.6.3.3 Cases of type II

This case results in

λ5 =N + 1/2, (5.142)

and we do the study for Λ1 = i(λ5 + 1/2 + κ0δ). All the v±k have
different eigenvalues.

Similar analysis of A(k) , 0 gives κ0 , −k/2δ and κ0 , −(λ−k+ 1/2)/δ
for k odd if the representation is to be irreducible. Furthermore,
A(2)(k) might be zero. Indeed, (λ−k+1/2)2 =Hκ(2−k−`) when(N − k + 1)2 = (κ1 +κ2)2p2, 2− k − ` ≡m p;

(N − k + 1)2 = (κ1 −κ2)2p2, 2− k − ` ≡m 0.
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Or more precisely, we get the conditionsκ1 +κ2 = (N − k + 1)/p, 2− k − ` ≡m p;

|κ1 −κ2| = (N − k + 1)/p, 2− k − ` ≡m 0.
(5.143)

The analysis proceeds in a similar fashion. The factor A(2)(k) > 0 as
soon as κ1+κm < (N−k+1)/m for 2−k−` ≡m p or |κ1−κm| < (N−k+1)/p
for 2− k − ` ≡m 0, or without condition on κ1 and κm for other k. For
δ = 1, then A(1)(k) < 0. For δ = −1 then A(1)(k) < 0 for even k and if
κ0 < k/2 or κ0 > λ5 + 1/2− k/2 for odd k. Taking the minimum, or the
maximum, of those set will ensure that A(k) > 0 for all k.

5.6.3.4 Cases of type III

We study Λ1 = i(λ+ 1/2 +κ0δ). The O0-eigenvalue λ takes different
values according to the parity of N . When N is even, then

(λ−N − 1/2)2 + (Λ+ iκ0δ)2 = 0, (5.144)

so λ6 =N/2 +κ0δ. When N is odd, then λ7 =N/2.

We begin by showing that λ7 = N/2 for odd N does not happen by
the same argument as the S3 case [DOV18b, Sect. 4.3.2] and then
continue with the case λ6 =N/2 +κ0δ for even N .

Odd N and λ7 =N/2 If λ7 =N/2, the integer j0 = (N − 1)/2 is such
that

O0v
+
j0

= 1
2v

+
j0
, O0v

+
j0+1 = −1

2v
+
j0+1, O0v

−
j0

= −1
2v
−
j0
, O0v

−
j0+1 = 1

2v
−
j0+1.

(5.145)

We will show that the commutation relation (5.60) involving [O0, O−]
is not respected, thus showing the impossibility of the existence of
a representation. The actions of O+ and O− previously found (equa-
tions (5.133)–(5.136)) do not work here because their denominator is
0. We can circumvent this by noticing that

v+
j0+1 = L−v

+
j0

= (O−O0 + 1
2 [O0, O−])v

+
j0

(5.146)

=O−(O0 − 1
2 )v+

j0
+ 2(O123 − T0)T−v

+
j0

(5.147)

= i(Λ1 − (−1)j0κ0)Gκ(1− j0 − `)v−j0 . (5.148)
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This forces Gκ(1 − j0 − `) , 0 as v+
j0+1 must not be zero. So v−j0 is a

multiple of v+
j0+1. But if this is the case, then studying the two sides

of the commutator [O0, O−] leads to a contradiction from the factori-
sations (5.63–5.64). Indeed, plugging in the last equation:

[O0, O−]v
+
j0

= −O−v+
j0

+ 2(O123 − T0)T−v
−
j0

(5.149)

O0O−v
+
j0
− 1

2O−v
+
j0

= −O−v+
j0

+ 2v+
j0+1 (5.150)

O0O−v
+
j0

= −1
2O−v

+
j0

+ 2v+
j0+1, (5.151)

which is an impossible equation because v+
j0+1 , 0. There are thus no

representations in this case.

Even N and λ6 = N/2 + κ0δ. The O0-eigenvalues of v+
k and v−j

are

O0v
+
k =N/2 +κ0δ − k, O0v

−
j = j −N/2−κ0δ. (5.152)

So they are the same if κ0 = (k + j −N )/2δ. If j and k have the same
parity, then v+

k and v−j are distinguishable under the action of σ̃0. If
they have the same parity, then the value of κ0 is restricted by the
study of A(k) , 0.

We study A(k) = 0. The first factor of A(k) = −A(1)(k)A(2)(k) is zero for
some values of κ0

A(1)(k) = (λ6 − k + 1/2)2 − (λ6 + 1/2 +κ0δ+ (−1)kκ0δ)2 = 0. (5.153)

For even k, then it forces κ0 = (k −N − 1)/2δ. For odd k, it forces
κ0 = −k/2δ or κ0 = −(λ6 − k/2 + 1/2)/δ = −(N − k + 1)/4δ.

The other factor can also cancel as

A(2)(k) = (λ6 − k + 1/2)2 −Hκ(2− k − `) = 0. (5.154)

For 2− k − ` ≡m p then this happens if and only if κ1 +κm = ±(λ6 + k +
1/2)/p. For 2− k − ` ≡m 0 if κ1 −κm = ±(λ6 − k + 1/2)/p. For the other
k, this also happens if κ0 = (N − 2k + 1)/2δ.

Unitarity is studied from the condition A(k) > 0, for 1 ≤ k ≤ N , of
Lemma 5.6.4. The first factorA(1)(k) is negative under the assumption
that |N/2 +κ0δ+ 1/2− k| < |N/2 +κ0δ+ 1/2|, even k;

|N/2 +κ0δ+ 1/2− k| < |N/2 + 3κ0δ+ 1/2|, odd k.
(5.155)
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The first is then δκ0 > (k −N − 1)/2. The second divides according to
k: κ0δ > −k/2 or κ0δ < (k −N − 1)/4, k < (N + 1)/3,

κ0δ < −k/2 or κ0δ > (k −N − 1)/4, k > (N + 1)/3.
(5.156)

For δ = 1, this is always the case. If δ = −1 then, for all k, it will
require κ0 < 1/2 or κ0 > N/2 + 1/2.

The second factor A(2)(k) is always positive when k is such that 2−k−
` .m 0,p. When 2− k − ` ≡m p then it is positive if κ1 +κm < |λ6 − k +
1/2|/p. And for 2− k − ` ≡m 0, then |κ1 −κm| < |λ6 − k + 1/2|/p.

The cases considered complete the proof of Theorem 5.6.2.

5.7 The monogenic representations

This section contains a concrete realisation of a family of represen-
tations of the symmetry algebra Om,κ. It consists of the spaces of
monogenics of the Dunkl–Dirac operator. They are built with the
Fischer decomposition (Theorem 5.7.3) from the two-dimensional
Dunkl–Laplace harmonics given by Dunkl [Dun89; DX14] and takes
the third dimension, with its A1 root system contribution, into ac-
count via a Cauchy–Kovalevskaya extension (Theorem 5.7.4). Note
that this section assumes ε = 1.

Let Pn(Rd) denote the space of polynomials of degree n in d variables.
LetMn(R3,C2) := kerD ∩ (Pn(R3)⊗C2) be the space of Dunkl mono-
genics of degree n in 3 variables. Here we make the identification of
a spinor representation of the Clifford algebra Cl(3) with C

2 using
Pauli matrices with an extra sign. Let δ ∈ {−1,+1}. Realise the Clifford
elements as one set of Pauli matrices:

e1 7→

0 1

1 0

 , e2 7→

0 −i

i 0

 , e3 7→

δ 0

0 −δ

 .
The difference given by δ is to account for the two two-dimensional
irreducible representations of the Clifford algebra Cl(3). The pseudo-
scalar e1e2e3 acts as iδ.

Using the Cauchy–Kovalevskaya extension and the Fischer decompo-
sition theorem, we will construct a basis for the Dunkl monogenics



5. The dihedral Dunkl–Dirac symmetry algebra 134

Mn(R3,C2) of degree n in 3 variables from the harmonics of the
Dunkl–Laplace operator in two dimensions.

There is another realisation of osp(1|2) inside the algebra obtained
by restricting to the x1 and x2 coordinates. Here we use the fact
that the root system is reducible. Let the following denote the 2D
counterparts of the operators defined in Section 5.3

D̂ := D1e1 + D2e2, x̂ := x1e1 + x2e2,

D̂
2

= D2
1 + D2

2 =: ∆̂κ, x̂2 = x2
1 + x2

2 =: x̂2, (5.157)

Ê := x1∂x1
+ x2∂x2

, γ̂ :=
m
2

(κ1 +κm).

The operators D̂ and x̂ respect{
D̂, x̂

}
= 2(Ê+ 1 + γ̂), (5.158)

and they interact with the sl(2) triple x̂2, ∆̂κ, Ê as follows:[
D̂, x̂2

]
= 2 x̂,

[
Ê, D̂

]
= −D̂,[

∆̂κ, x̂
]

= 2D̂,
[
Ê, x̂

]
= x̂.

(5.159)

Recall some basic facts from hypergeometric analysis. The Pochham-
mer symbol (a)n is defined as (a)0 = 1; (a)1 = a and (a)n = an−1(a +
n− 1) = a(a+ 1) . . . (a+n− 1). The hypergeometric series rFs is given
by

rFs

(
a1, . . . , ar
b1, . . . , bs

∣∣∣∣∣ z) :=
∞∑
k=0

(a1)k . . . (ar )k
(b1)k . . . (bs)k

zk

k!
. (5.160)

We will need some special orthogonal polynomials to present the
results. The Jacobi polynomial of degree n is given for constants a, b
as

P
(a,b)
n (x) :=

(a+ 1)n
n! 2F1

(
−n, n+ a+ b+ 1

a+ 1

∣∣∣∣∣ 1− x
2

)
(5.161)

and they fulfil the identity

(x+ y)nP (a,b)
n

(
x − y
x+ y

)
=

(a+ 1)n
n!

xn2F1

(
−n, −n− b
a+ 1

∣∣∣∣∣ −yx
)
. (5.162)
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Dunkl and Xu defined [DX14] the generalized Gegenbauer polynomials
by

G
(λ,µ)
2n (x) =

(λ+µ)n
(µ+ 1/2)n

P
(λ−1/2,µ−1/2)
n (2x2 − 1),

G
(λ,µ)
2n+1(x) =

(λ+µ)n+1

(µ+ 1/2)n+1
xP

(λ−1/2,µ+1/2)
n (2x2 − 1).

(5.163)

The following proposition is extracted from the original paper of
Dunkl [Dun89] in the updated formulation of the book [DX14] and
gives a basis for the harmonics of the Dunkl-Laplacian.

Proposition 5.7.1 ([Dun89, Sects 3.14 and 3.19]). Let n be a natural
number and D2m be the dihedral group of order 2m. There is a basis of the
space of D2m Dunkl harmonicsHn(R2) := ker ∆̂κ ∩Pn(R2) given by pairs
of polynomials φ+

n , φ−n of degree n depending on the parity of m. Denote
z := x1 + ix2 and z := x1 − ix2.

• (Odd m). Recall that then κ1 = κm. Decompose n by Euclidean
division as n = km+ ` for 0 ≤ ` < m.

φ+
n(x1,x2) = z`

n∑
j=0

(κ1)j(κ1 + 1)n−j
j!(n− j)!

zmjzm(n−j);

φ−n(x1,x2) = φ+
n(x1,x2).

(5.164)

• (Even m = 2p). Let n = kp + ` with 0 ≤ ` < p. The harmonics
polynomials are given by

φ+
n(x1,x2) = z`fk(z

p, zp),

φ−n(x1,x2) = z`fk(z
p, zp),

(5.165)

with f expressed with Gegenbauer polynomials and polar decompo-
sition z = reiθ

fk(z,z) = rk
(n+ 2κm + (1 + (−1)n)κ1

2(κm +κ1)
G

(κm,κ1)
n (cos(θ))

+ i sin(θ)G(κm+1,κ1)
n−1 (cos(θ))

)
.

(5.166)

It is possible to rewrite fk(z,z) in a slightly more direct way for com-
putational purposes [DX14]. Recall that 2x1 = (z + z) and 2ix2 = z − z
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and rewrite fk as

fk(z,z) =


(κm +κ1 + 1)t

(κ1 + 1/2)t
g2t(z,z), k = 2t,

(κm +κ1 + 1)t
(κ1 + 1/2)t+1

g2t+1(z,z), k = 2t + 1,

(5.167)

with

g2t(z,z) = (−1)t
t∑
j=0

(−t + 1/2−κm)t−j(−t + 1/2−κ1)j
(t − j)!j!

x
2t−2j
1 (ix2)2j

− (−1)t
t−1∑
j=0

(−t + 1
2 −κm)t−1−j(−t + 1

2 −κ1)j
(t − 1− j)!j!

x
2t−1−2j
1 (ix2)(2j+1),

and

g2t+1(z,z) = (−1)t+1
t∑
j=0

(−t + 1
2 −κm)t+1−j(−t + 1

2 −κ1)j
(t − j)!j!

x
2t+1−2j
1 (ix2)2j

− (−1)t
t∑
j=0

(−t + 1
2 −κm)t−j(−t + 1

2 −κ1)j+1

(t − j)!j!
x

2t−2j
1 (ix2)(2j+1).

Knowing the Dunkl harmonics let us deduce the Dunkl monogen-
ics. Let χ+ and χ− be spinors here expressed as the first and sec-
ond coordinate vector χ+ = (1,0)T and χ− = (0,1)T . The following
proposition states a basis of Dunkl monogenics in two dimensions
Mn(R2,C2) = kerD∩(Pn(R2)⊗C2), where again we identify the spinor
representation with C

2.

Proposition 5.7.2. Let n be a natural number. The polynomials

Φ+
n (x1,x2) = φ+

n(x1,x2)χ+ and Φ−n (x1,x2) = φ−n(x1,x2)χ− (5.168)

are a basis for the Dunkl monogenicsMn(R2,C2) of degree n.

Proof. Applying D̂ on Φ+
j in the Pauli matrices realisation yields

D̂Φ+
n = D1e1φ

+
nχ

+ + D2e2φ
+
nχ

+ = (D1 + iD2)φ+
n . (5.169)
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The polynomial φ+
n is a harmonic of the Dunkl–Laplace operator. The

Dunkl–Laplace operator factors as ∆̂ = (D1 + iD2)(D1− iD2). Working
out the properties of the function fk(z,z) shows that φ+

n is annihilated
by the first factor [Dun89], thus showing that Φ+

n is a monogenic.
Conjugating shows the result for the other polynomial Φ−n .

When the constants κ0, κ1 and κm are positive, there is a decomposi-
tion of the space of spinor valued polynomials by Dunkl monogen-
ics.

Theorem 5.7.3 (Fischer decomposition [ØSS09]). Let n ∈N and κ1,κm >
0. There exists a decomposition of the space of spinor valued polynomials
given by

Pn(R2)⊗C2 =
n⊕
j=0

x̂n−jMj(R
2,C2). (5.170)

Everything is in place for the Cauchy–Kovalevskaya extension The-
orem. It establishes an isomorphism between the two-dimensional
space and the three-dimensional monogenics taking into account the
Z2 reflection group.

Theorem 5.7.4 (Cauchy–Kovalevskaya, [DGV16a]). Let κ0 > 0. There
is an isomorphism between the spaces of spinor-valued polynomials in two
dimensions Pn(R2)⊗C2 and the Dunkl monogenics in three dimensions
Mn(R3,C2) given on polynomials by

CKκ0
x3 = 0F1

 −
κ0 + 1/2

∣∣∣∣∣∣∣ − (x3D̂)2

4

− x3e3D̂

2κ0 + 10F1

 −
κ0 + 3/2

∣∣∣∣∣∣∣ − (x3D̂)2

4

 .
We are now ready to construct a basis of the monogenics.

Corollary 5.7.5. Let n ∈N. A basis for the spaceMn(R3,C2) is given
by the 2n+ 2 polynomials

ψ±n,k(x1,x2,x3) := CKκ0
x3 (xn−kΦ±k (x1,x2)), k = 0, . . . ,n. (5.171)

The polynomials ψ±n,k can also be given explicitly. The next propo-
sition works them out similarly to the W = Z2 ×Z2 ×Z2 case done
in [DGV16a].
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Proposition 5.7.6. An explicit basis of the space of Dunkl monogenics
Mn(R3,C2) is given, for k = 0, . . . ,n, by

ψ+
n,k(x1,x2,x3) = Bn,k (̂x,x3)Φ+

k (x1,x2),

ψ−n,k(x1,x2,x3) = Bn,k (̂x,x3)Φ−k (x1,x2),
(5.172)

with Bn,k defined as

Bn,k (̂x,x3) =
t!

(κ0 + 1/2)t
x2t× (5.173)

(̂
xP

(κ0−1/2, k+1+γ̂)
t (Υ (x))

−x3e3
t + k + 1 + γ̂
t +κ0 + 1/2

P
(κ0+1/2, k+γ̂)
t (Υ (x))

)
, n− k = 2t + 1;(

P
(κ0−1/2, k+γ̂)
t (Υ (x))− x3e3x̂

x2 P
(κ0+1/2, k+1+γ̂)
t−1 (Υ (x))

)
, n− k = 2t;

and Υ (x) := (x2
1 + x2

2 − x
2
3)/(x2

1 + x2
2 + x2

3).

Proof. Let Mk ∈Mk(R2,C2). The commutation relations (5.158) and
the fact that Mk is a monogenic imply that

D̂
2
(̂xMk) = 0, D̂(̂x2β+1Mk) = 2(β + k + γ̂ )̂x2βMk ,

D̂(̂x2βMk) = 2βx̂2β−1Mk .
(5.174)

From equations (5.174), a short computation generalizes to

D̂
a
(̂xbMk) =

dka,b x̂b−aMk a ≤ b;

0 a > b;
(5.175)

with the value of dka,b given by

dka,b =


22α(−β)α(−β − k − γ̂)α , a = 2α, b = 2β;

−22α+1(−β)α+1(−β − k − γ̂)α , a = 2α + 1, b = 2β;

−22α+1(−β)α(−β − k − 1− γ̂)α+1, a = 2α + 1, b = 2β + 1;

22α(−β)α(−β − k − 1− γ̂)α , a = 2α, b = 2β + 1.

We now use the anticommutation relation
{
D̂, e3

}
= 0, Corollary 5.7.5

and the identity (5.162) of Jacobi polynomials to indeed obtain

ψ±n,k(x1,x2,x3) = Bn−k (̂x,x3)Φ±k (x1,x2).
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For W = Z2 × D2m, there is an integral formulation of the inner
product introduced abstractly in (5.85). Take the adapted weight
function [DX14] with z = x1 + ix2 and z = x1 − ix2

hκ0,κ1,κm(x1,x2,x3) :=
∣∣∣∣∣zm + zm

2

∣∣∣∣∣κ1

·
∣∣∣∣∣zm − zm2i

∣∣∣∣∣κm · |x3|κ0 . (5.176)

Let X† be the transpose of X. Define an inner product by

〈
ψ1,ψ2

〉
:=

∫
S2

(ψ†1ψ2)h2
κ0,κ1,κm(x1,x2,x3)dx1dx2dx3. (5.177)

The structure of the monogenic representations is given in the next
two propositions.

Proposition 5.7.7. Let m = 2p+ 1. For each n ∈N, the space of mono-
genics Mn(R3,C2) of the Dunkl–Dirac operator of degree n forms an
irreducible representation of dimension 2n+ 2 of the symmetry algebra
Om,κ with basis

{ψ±n,k | k = 0,1 . . . ,n}. (5.178)

The action of the symmetry algebra is given by

O0ψ
±
n,k = ±(k + 1

2 +mκ1)ψ±n,k ; O123ψ
±
n,k = δi(n+ 1 +κ1m+ δκ0)ψ±n,k ,

where δ ∈ {−1,+1} comes from the realisation of the Clifford algebra
element e3. Let k = rm+ ` with 0 ≤ ` ≤m− 1 and ζ = eiπ/m. The group
W̃ action is given by

σ̃0ψ
±
n,k = ±δ(−1)n−kψ±n,k ; σ̃1ψ

±
n,k = ∓i(−1)(n−k)ζ±2`ζ±1ψ∓n,k ;

σ̃mψ
±
n,k = ±i(−1)n−kψ∓n,k ; τ̃ψ±n,k = −ζ∓(2`+1)ψ±n,k .

(5.179)

Furthermore, the representation is unitary.

Proof. Recall O123 = 1
2 (

[
D, x

]
−1)e1e2e3, see equation (5.25). On any

monogenic ψn,k of degree n we have

1/2(
[
D, x

]
− 1)ψn,k = 1/2(D x − 1)ψn,k

= 1/2(
{
D, x

}
− 1)ψn,k = 1/2(2E+ 3 + 2γ − 1)ψn,k

= (n+ 1 +κ1m+ δκ0)ψn,k
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and thus, according to the realisation of e3,

O123ψn,k = δi(n+ 1 +κ1m+ δκ0)ψ±n,k . (5.180)

Restricting to the plane x1, x2, we have that O0 = − i2e1e2(
[
D̂, x̂

]
− 1)

is the Scasimir of the osp(1|2) realisation (5.157) times the pseudo-
scalar e1e2. On 2D monogenics, we thus have

(
[
D̂, x̂

]
− 1)Φ±k = 1/2(

{
D̂, x̂

}
− 1)Φ±k = 1/2(2E+ 2 + 2mκ1 − 1)Φ±k

= (k + 1/2 +mκ1)Φ±k .

With −ie1e2χ
± = ±χ±, we get

O0ψ
±
n,k = ±(k + 1/2 +mκ1)ψ±n,k . (5.181)

By direct computations on the explicit expression of φ±k we have

σ0φ
±
k = φ±k , σmφ

±
k = φ±k = φ∓k , σ1φ

±
k = ζ±2`φ∓k . (5.182)

By example, for σ1, note that σ1(z) = e2πi/mz and σ1(z) = e−2πi/mz, so

σ1φ
+
k = σ1(z`)C(κ,κ+1)

k (zm, zm) = ζ2`z`C
(κ,κ+1)
k (ζ2mz,ζ−2mzm) = ζ2`φ−k .

Furthermore

σ̃1Φ
±
k = σ1(sin(π/m)e1 − cos(π/m)e2)φ±kχ

±

= ζ±2`φ∓k (sin(π/m)∓ i cos(π/m))χ∓ = ∓iζ±2`ζ±1Φ∓k .

Adding e1χ
± = χ∓, e2χ

± = ±iχ∓ and e3χ
± = δχ±, and the fact that

both σ̃1 and σ̃m anticommute with x̂, we get what is needed.

To prove that it is irreducible, it is sufficient to prove that each ψ±n,k
generates the whole representation. From the previous computations,
the representation is a renormalized version of the irreducible rep-
resentation constructed in the no-restriction subcases of cases I of
Theorem 5.6.1 with a switch from v±k to C(n,k)ψ∓n,n−k for certain non-
zero constants C(n,k). Therefore, acting on ψ±n,k with the operators
L± will be enough to travel between indices of ψ±n,k .

The actions of O+ and O− follow from the proofs of Theorem 5.6.1.

Unitarity comes from the definition of the weight function (5.176),
the Dunkl harmonics used to construct the monogenics and from the
case I of Theorem 5.6.1.
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A similar proposition holds when m is even. This representation is
a renormalized version of the no-restriction subcase of cases I.i in
Theorem 5.6.2 when sending v±k to C′(n,k)ψ∓n,n−k for some non-zero
constants C′(n,k).

Proposition 5.7.8. Let m = 2p. For each n ∈N, the space of monogenics
Mn(R3,C2) of the Dunkl–Dirac operator of degree n form an irreducible
and unitary representation of dimension 2n+ 2 of the symmetry algebra
Om,κ with basis

{ψ±n,k | k = 0,1 . . . ,n}. (5.183)

The action of the symmetry algebra is given by

O0ψ
±
n,k = ±(k + 1/2 + p(κ1 +κm))ψ±n,k ; (5.184)

O123ψ
±
n,k = δi(n+ 1 + p(κ1 +κm) + δκ0)ψ±n,k , (5.185)

where δ ∈ {−1,+1} comes from the realisation of the Clifford algebra
element e3. Let k = rm+ ` with 0 ≤ ` ≤m− 1 and ζ = eiπ/m. The group
W̃ action is given by

σ̃0ψ
±
n,k = ±δ(−1)n−kψ±n,k ; σ̃1ψ

±
n,k = ∓i(−1)(n−k)ζ±2`ζ±1ψ∓n,k ;

σ̃mψ
±
n,k = ±i(−1)n−kψ∓n,k ; τ̃ψ±n,k = −ζ∓(2`+1)ψ±n,k .

(5.186)

5.8 Concluding remarks

We here recall the main results and present the scope of the meth-
ods used. On the general 3D symmetry algebra of the Dunkl–Dirac
operator, we added Proposition 5.5.5 giving the square of the sym-
metry O123 for any root system. Specifically for all reducible root
systems of rank 3, we listed all the finite-dimensional irreducible
representations provided κ real and positive, as well as sufficient
conditions for their unitarity. A polynomial family of irreducible and
unitary representations was realised through the important example
of monogenics.

The idea employed here will be difficult to apply to other higher-
rank root systems as the ladder operators trick will be likely to fail.
However, as it covers all the rank 2 cases, it can serve as a base case
on which to support the jump for higher dimensions. Another point
of this chapter was to work out completely the details given from
adding a Z2 direct product to the reflection group.
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We note that removing the condition κ real and positive require
further work. To remove this assumption, even just to study the
monogenic representation (type I in our notation) for the simplest
case W = Z2 ×Z2 ×Z2, required long and tedious case-by-case com-
putations [Hua22]. Extending the approach of Huang to the general
dihedral case seems possible, but would require extensive work.
Another path to the problem should probably instead be investi-
gated.

We gave one important realisation of the irreducible representation
in Section 5.7. However, there are many more possible families
of irreducible representations available, as readily seen from Theo-
rems 5.6.1 and 5.6.2, but we do not know of concrete useful examples
of them. As the values where irreducibility and unitarity fail resem-
ble conditions appearing in related work, for example in [Chm06;
DL21], it seems interesting to link them. It would also serve as a
motivation to study the structure of the representations when they
are reducible.



6
Finite-dimensional representations

of the double dihedral total
angular momentum algebra

The content of this chapter is extracted from the work:

Marcelo De Martino, Alexis Langlois-Rémillard, and Roy Oste. Dou-
ble dihedral total angular momentum algebra. Work in progress
(2022+) [DLO23]

6.1 Introduction

In this chapter, we study the finite-dimensional representations of the
total angular momentum algebra for the group W = D2m×D2n ⊂ O(4).
We have seen already in Chapter 5 the case D2m×Z2 ⊂ O(3), where we
did the complete classification of the finite-dimensional irreducible
representations, along with the suitable restrictions on κ for the
existence of a unitarity structure.

The structural properties of the total angular momentum algebra
Oκ(W,V ) change not only with the groupW and the parameter func-
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tion κ, but also crucially with the dimension of V . As such, the
analysis of the total angular momentum algebra associated with a
dihedral group W = D2m differs whether it is considered inside a
three-dimensional space, as in Chapter 5, or in a two-dimensional
one [Ciu+20, Sect. 4]. A recent result of [Ost22] (Theorem 2.2.19)
states that the total angular momentum algebra is generated by two-
and three-index symmetries. Dimension four is the first time that the
full picture happens: in dimension three, the sole three-index sym-
metry super-anticommutes with all the elements of the algebra, but
in higher dimensions the many three-index symmetries have more
involved commutation relations. This is one of the motivations to
study the total angular momentum algebra in four dimensions.

The case studied in this chapter is then a stepping stone to a study
of the general representation theory of a group W = D2m1

× · · · ×
D2mn

⊂ O(2n). Adding more dihedral groups will make the study
more complex, but the full structure of the dihedral total angular
momentum algebra is first caught by the product of two dihedral
groups.

The main result of this chapter is a coarse classification of the finite-
dimensional irreducible representations of Oκ (Theorem 6.5.9). It
gives a label of weights with relations between them that any irre-
ducible finite-dimensional representation must respect. We then
proceed to construct representations for certain classes of weights,
in particular the ones that work for any positive parameter function
κ (Proposition 6.5.14) and the ones reached for κ sufficiently small
(Proposition 6.5.16).

To achieve these results, we focus on a subalgebra T of Oκ with
a weight theory and a Poincaré–Birkhoff–Witt-type factorisation
(Proposition 6.4.17). The particularity of the dihedral total angular
momentum algebra lies in the possibility to employ this method. As
such, it cannot directly be applied to other groups of higher rank,
but it will work for any product of groups of rank one or two.

This chapter is written in a slightly more abstract style than the rest
of the thesis specifically to ease the generalisation of the results to
higher dimensions. An example is included in Section 6.5.6, with the
explicit weight spaces constructed in Figures 6.4–6.6, and the readers
are encouraged to have a look at it while following the arguments to
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develop their intuition.

We now go through the structure of the chapter. First, Section 6.2
introduces the needed conventions and notions, revisiting some of
them from Chapter 2. It ends with the classification of the representa-
tions of W̃ (Theorem 6.2.3). The total angular momentum algebra for
the group W = D2m ×D2n is then presented in Section 6.3. Section 6.4
defines ladder operators and the triangular subalgebra T. Finally,
Section 6.5 contains the coarse classification of the finite-dimensional
irreducible representations of Oκ (Theorem 6.5.9), the constructions
of specific branches (Propositions 6.5.14, 6.5.16 and 6.5.21) and con-
cludes with a worked-out example.

Note that this chapter follows the convention ε = 1 for the Clifford
signature.

6.2 Initial definitions and notational conventions

Throughout this work, we let V
R
� R

4 denote a four-dimensional
Euclidean space with the standard inner product 〈·, ·〉. The orthogonal
group O(4) consists of all endomorphisms of R4 that preserve the
Euclidean norm. We consider a subgroup W = D2m × D2n ⊂ O(4),
where D2m denotes the dihedral group of order 2m with Coxeter
presentation given by

D2m =
〈
σ1, σm

∣∣∣ σ2
1 = σ2

m = (σ1σm)m = 1
〉

(6.1)

(the group D2n has a similar presentation). Another presentation of
the dihedral group D2m is in terms of the rotation r = σ1σm and the
reflection f = σm

D2m =
〈
r, f

∣∣∣ rm = f 2 = (rf )2 = 1
〉
. (6.2)

The even elements of D2m form a cyclic group of m elements, gener-
ated by r. The odd elements of D2m are reflections, given by σp = rpf
for p = 1, . . . ,m.

We let V � C
4 denote the complexification of V

R
and note that this

complex vector space V is the (complexified) reflection representa-
tion of W . We still denote by 〈·, ·〉 the non-degenerate complexified
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symmetric bilinear form on V and denote by B : V → V ∗ the isom-
etry induced by 〈·, ·〉, which is defined by B(x)(y) =

〈
x,y

〉
, for all

x,y ∈ V .

We choose the standard root system Φ ⊂ V
R

of type I2(m) ⊕ I2(n).
Recall the explicit realisation (2.8)

αp = (sin(pπm ),−cos(pπm ),0,0), βq = (0,0,sin(qπn ),−cos(qπn )), (6.3)

for p = 1, . . . ,2m and q = 1, . . . ,2n. We fix the set of positive roots to
be Φ+ = {α1, . . . ,αm,β1, . . . ,βn}. Here, we follow the same convention
for the dihedral groups as Dunkl [Dun89] and Humphreys [Hum90].
The associated reflections σp, p = 1, . . . ,m and τq, q = 1, . . . ,n, were
given in matrix form previously (2.1.1).

As is well known, the structure of a dihedral group D2m depends
on whether m is even or odd. When it is even, the reflections are in
two different conjugacy classes; when m is odd, they are in the same.
Furthermore, when m is even, there is a non-trivial central element,
which acts as minus the identity on the reflection representation; see
Theorem 6.3.9.

6.2.1 Superalgebras and Clifford algebras

We recall the definition and some properties of the Clifford algebra
associated to V

R
. Let Cl

R
denote the real Clifford algebra of the pair

(V
R
,2〈·, ·〉)), where 2〈·, ·〉 is twice the bilinear form. Specifically, this

algebra is the quotient of the tensor algebra T (V
R

) = ⊕j≥0T
j(V

R
) by

the nonhomogeneous quadratic ideal I generated by the set

{x⊗ y + y ⊗ x − 2
〈
x,y

〉
)1 | x,y ∈ V

R
}.

We let γ : V
R
→ Cl

R
be the canonical embedding (2.30). The pair

(Cl
R
,γ) satisfies the following universal property: for any unital

R-algebra A and any linear map L : V
R
→ A satisfying L(x)L(y) +

L(y)L(x) = 2
〈
x,y

〉
, there is a unique algebra homomorphism L̃ : Cl

R
→

A such that L̃γ = L:

V
R

A

C
R

L

γ
L̃

. (6.4)
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If we denote the standard 〈·, ·〉-orthonormal basis of V
R

by {x1, . . . alr,x4},
we let ej = γ(xj) so that the Clifford algebra has the usual presenta-
tion as the unital associative algebra generated by e1, . . . , e4 subject to
the relations

ejek + ekej = 2δjk , (6.5)

for all j,k = 1, . . . ,4. Note that here we are taking the positive Clifford
signature ε = 1 from (2.31) and considering the positive double
covering.

More generally, let

∧
(V

R
) := ⊕p≥0

p∧
(V

R
)

denote the exterior algebra on V
R

. We extend γ : V
R
→ Cl

R
to a linear

isomorphism γ :
∧

(V
R

)→ Cl
R

by declaring γ(1) := 1 and for each
p > 0

γ(v1 ∧ · · · ∧ vp) :=
1
p!

∑
g∈Sp

sgn(g)γ(vg(1)) · · ·γ(vg(p)), (6.6)

for any p-tuple (v1, . . . , vp) of elements of V
R

. In particular, for each
(ordered) subset A = {a1, . . . , ap} ⊆ {1, . . . ,4}, we let xA := xa1

∧ · · · ∧
xap ∈

∧p(V
R

), with x∅ = 1 and put eA := γ(xA) =
−→∏ p
j=1eaj . The set

{eA | A ⊆ {1, . . .4}} forms a linear basis of Cl
R

.

We shall also denote by γ the complexified isomorphism γ :
∧

(V )→
Cl defined in (6.6), and we note that {eA | A ⊆ {1, . . . ,4}} is also a linear
basis for Cl.

6.2.2 Double coverings and realisations

In this section, we consider the double coverings of a product of
dihedral groups. We will focus on the positive double covering,
recalling that ε = 1, and study its representation theory.

6.2.2.1 Dihedral groups

We now return to the setting where V
R
� R

4 and W = G ×H is the
product of two dihedral groups with G = D2m and H = D2n. The
(positive) double covering of a dihedral group G = D2m of order
2m has the structure of a dihedral group of order 4m: G̃ � D4m.
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By [Mor80, Thm. 3.4], the group algebra of the double covering of
the product of two Coxeter groups is a quotient of the graded tensor
product of the individual group algebras of the double coverings of
the groups, identifying the central extension elements.

As an abstract group, W = D2m ×D2n has the following Coxeter pre-
sentation, for z a central element

W =
〈
σ1,σm, τ1, τn

∣∣∣∣∣∣∣∣σ
2
1 = σ2

m = (σ1σm)m = 1,

τ2
1 = τ2

n = (τ1τn)n = 1,

(σpτq)2 = 1,

(p = 1,m; q = 1,n)

〉
. (6.7)

It follows from Theorem 2.2.7 that W̃ + has a presentation by gener-
ator and relations. To ease notation, we will often write W̃ instead
of W̃ + since we only work with the positive double covering in this
chapter. The presentation, taking z as central element, is

W̃ =
〈
z, σ̃1, σ̃m,

τ̃1, τ̃n

∣∣∣∣∣∣∣∣z
2 = σ̃2

1 = σ̃2
m = 1, (σ̃1σ̃m)m = zm+1, (σ̃pτ̃q)2 = z,

τ̃2
1 = τ̃2

n = 1, (τ̃1τ̃n)n = zn+1, (p = 1,m;q = 1,n)

〉
, (6.8)

or (similar to (6.2)), using r̃1 := zσ̃1σ̃m, r̃2 := zτ̃1τ̃n, f̃1 := σ̃m, f̃2 := τ̃n,
and writing m1 :=m, m2 := n

W̃ =
〈
z, r̃1, f̃1,

r̃2, f̃2

∣∣∣∣∣∣∣∣ r̃
mj

j = z, f̃ 2
j = 1 = (r̃j f̃j )2,

r̃j r̃k = r̃k r̃j , r̃j f̃k = f̃k r̃j ,

(f̃1f̃2)2 = z, z2 = 1,

(j,k ∈ {1,2}, j , k)

〉
. (6.9)

In light of (2.42), we can decompose both groups G̃ and H̃ into even
and odd parts and note that

G̃0̄ = 〈r̃1〉, G̃1̄ = G̃0̄f̃1 = {(r̃1)j f̃1 | 0 ≤ j ≤ 2m− 1} = f̃1G̃0̄, (6.10)

and similarly for H̃ . We note that G̃0̄ is a subgroup of G̃, and similarly
for H̃0̄. These splittings yield a decomposition of W̃ into four disjoint
parts

W̃ =
⋃

(ı̄,̄)∈Z2
2

W̃(ı̄,̄).

Here W̃(ı̄,̄) is defined as the image of the multiplication map G̃ı̄×H̃̄→
W̃

(za1ũ, z
b
2w̃) = za+bũw̃,
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for za1ũ ∈ G̃ı̄ and zb2w̃ ∈ H̃̄, where we denote z1 and z2 to be the central
extension elements in the double coverings of G and H , respectively.
It is straightforward to check that the maps G̃ı̄ × H̃̄ → W̃(ı̄,̄) are all
two-to-one and hence |W̃(ı̄,̄)| = 2mn by (6.10).

As it will play a role in what follows, let us specify more what the
subgroup W̃(0̄,0̄) is. It is the quotient of the abelian group C2m ×C2n

inside W̃ by the identification r̃m1 = z = r̃n2 .

6.2.2.2 Representation theory

We conclude this section with a hands-on review of the representation
theory of the group W̃ . For this purpose, the set of generators (6.9)
of W̃ will be useful.

We focus here on the spin representations as these will be relevant
for the representation theory of the total angular momentum algebra
in the last section. The classification of the representations depends
on the parity of the dihedral parameters m and n. Abstractly, we
will characterise representations by considering the action of r̃1 and
r̃2.

The commuting elements r̃1 and r̃2 satisfy r̃2m
1 = 1 = r̃2n

2 , and thus gen-
erate W̃(0̄,0̄). The W(0̄,0̄)-modules are given by the C2m ×C2n-modules
where rm1 and rn2 have the same action. A finite-dimensional W̃ -
module thus decomposes into a direct sum of one-dimensional irre-
ducible modules for C2m ×C2n.

Denote by u(`,k), with ` ∈ {0, . . . ,2m−1} and k ∈ {0, . . . ,2n−1}, the irre-
ducibleC2m×C2n-module with the following action on u ∈ u(`,k):

r̃1 ·u = ζ`u, r̃2 ·u = ηku; ζ := eiπ/m, η := eiπ/n. (6.11)

Next, we consider the induced W̃ -representation

U := IndW̃
W̃(0̄,0̄)

(u(`,k)).

For this to be a spin representation, z = r̃m1 = r̃n2 has to act by −1,
which restricts the values of ` and k to odd integers.

We define

u1 := u, u2 := f̃1u1, u3 := f̃2u1, u4 := f̃1f̃2u1. (6.12)
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Using the relations f̃j r̃j = r̃−1
j f̃j and (6.11), we have

r̃1u2 = ζ−`u2, r̃1u3 = ζ`u3, r̃1u4 = ζ−`u4,

r̃2u2 = ηku2, r̃2u3 = η−ku3, r̃2u4 = η−ku4.
(6.13)

Define Û as the free vector space on the four elements {ûj}4j=1, so

Û :=
⊕4

j=1C[ûj]. We give to Û the structure of a W̃ -representation
in such a way that the following linear map

φ : Û →U, ûj 7→ uj , j ∈ {1,2,3,4} (6.14)

is a morphism of W̃ -modules.

Lemma 6.2.1. The irreducible representations of W̃ are of dimension at
most 4.

Proof. The map φ (6.14) is a morphism of W̃ -representations. It
is an epimorphism by Schur’s lemma, since U is irreducible, so
dimU ≤ dimÛ = 4.

Lemma 6.2.2. Let U be a spin irreducible representation. Then it is
either of dimension 2 or 4.

Proof. Suppose U = 〈u〉 is a one-dimensional spin representation.
Then s̃mu = αu and t̃nu = βu with α,β ∈ {−1,+1} since s̃2m = t̃2n = 1.
But then, from zu = −u, we reach the two equalities s̃mt̃nu = αβu
and s̃mt̃nu = zt̃ns̃mu = −βαu, a contradiction. Note that if U is a
spin representation, then so is Û . Hence, dimU , 3, since kerφ ⊂ Û
would then be a one-dimensional spin representations. Irreducible
spin representations are thus either of dimension 2 or 4.

We can now state the classification of irreducible spin representations
of W̃ .

Theorem 6.2.3. Let W̃ be the positive double covering ofW = D2m×D2n.
A list of all irreducible spin representations is given as follows.
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• For positive odd integers ` and k, with ` < m and k < n, U (`,k) is a
four-dimensional irreducible representation with the actions of the
elements given in matrix form by

f̃1 =
(

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

)
, f̃2 =

(
0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

)
,

r̃1 =

ζ
` 0 0 0

0 ζ−` 0 0
0 0 ζ` 0
0 0 0 ζ−`

 , r̃2 =


ηk 0 0 0
0 ηk 0 0
0 0 η−k 0
0 0 0 η−k

 .
Note that U (2m− `,k) or U (`,2n− k) would result in a represen-
tation equivalent to U (`,k). This gives bm/2c × bn/2c different
irreducible spin representations of dimension 4.

• If at least one of the dihedral parameters m and n is odd, there are
also irreducible spin representations of dimension 2.

1. If m is odd, there are n representations U (m,k) for a positive
odd integer k with k < 2n. The actions of the elements are
given in matrix form by

f̃1 =
(

1 0
0 −1

)
, f̃2 =

(
0 1
1 0

)
, r̃1 =

(
−1 0
0 −1

)
, r̃2 =

(
ηk 0
0 η−k

)
.

2. If n is odd, there are m representations U (`,n) for a positive
odd integer ` with ` < 2m. The actions of the elements are
given in matrix form by

f̃1 =
(

0 1
1 0

)
, f̃2 =

(
1 0
0 −1

)
, r̃1 =

(
ζ` 0
0 ζ−`

)
, r̃2 =

(
−1 0
0 −1

)
.

3. If both m and n are odd, it does good to emphasise that there
is a representation U (m,n) inside cases 1. and 2. with the
actions of the elements given in matrix form by

f̃1 =
(

1 0
0 −1

)
, f̃2 =

(
0 1
1 0

)
r̃1 =

(
−1 0
0 −1

)
, r̃2 =

(
−1 0
0 −1

)
.

Proof. Consider the representation U defined with action (6.13).

From the eigenvalues (6.13), it follows that U is four-dimensional
except when either ζ−` = ζ` or η−k = ηk . This can only happen when
` ≡ 0 modm or k ≡ 0 mod n.
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We know from Lemma 6.2.2 that the spin irreducible representations
are either of dimension 2 or 4.

We now specify to the three different possibilities of parities ofm and
n and we give for each of them the restrictions of k and `. Recall that
from the arguments before the results, we know ` and k to be odd
integers.

The odd-odd cases. In this case, the only possibility for ζ` = ζ−`

is ` = m. Assume ` = m and k , n, then we consider the following
subsets of Û

Û1 := 〈û1 + û2, û3 − û4〉 Û2 := 〈û1 − û2, û3 + û4〉. (6.15)

Then the actions of f̃1, f̃2, r̃1 and r̃2 fix Û1 and Û2. Details for Û1 are:

f̃1(û1 + û2) = û2 + û1, f̃1(û3 − û4) = û4 − û3,

f̃2(û1 + û2) = û3 − û4, f̃2(û3 − û4) = û2 + û1.

We knowU is irreducible, so we have either φ(Û1) =U and φ(Û2) = 0
or φ(Û2) = U and φ(Û1) = 0. We have thus found a representation
U (m,k) of dimension 2. Every k gives a different representation and
so there are n− 1 of them.

A similar process holds when ηk = η−k, but with the subsets given
this time by

Û ′1 := 〈û1 + û3, û2 + û4〉 Û ′2 := 〈û1 − û3, û2 − û4〉. (6.16)

We find m− 1 non-equivalent irreducible representations U (`,n).

Finally, if both ` =m and k = n, there is one 2-dimensional represen-
tation U (n,m) as then the two possible kernels Û1 and Û2, or Û ′1 and
Û ′2 yield equivalent irreducible spin representations.

If ` ,m and k , n, then U (k,`) is four-dimensional. Remark further-
more that there is an isomorphism between representations if we
change η and ζ to their inverse, so we can restrict the values of the
parameters ` and k to not count twice by demanding that both ζ` and
ηk have positive imaginary part. This is reflected in the restriction to
odd ` ∈ {1, . . . ,m−1} and odd k ∈ {1, . . . ,n−1}. This gives (m−1)(n−1)/4
irreducible representations of dimension 4.
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Comparing with equation (2.40), we see that we found the proper
number of spin irreducible representations since 22 + (n − 1) × 22 +
(m− 1)× 22 + (m− 1)(n− 1)/4× 42 = 4mn.

The odd-even cases. Assume m is odd and n is even. Then ηk , η−k ,
since k must be odd.

When ` = m, we will have n different irreducible representations
U (m,k) from all odd values of k ∈ {1, . . . ,2n}. This follows from look-
ing at the two subsets Û1, Û2 of the previous case and showing that
they indeed generate two possible subrepresentations.

For odd ` ∈ {1, . . . ,m− 1} and for odd k ∈ {1, . . . ,n} we have one four-
dimensional irreducible representation for each pair `,k. Indeed,
there it is possible to ask for ηk to have positive imaginary part since
the switch ηk to ηn−k offers two equivalent representations. Hence
there are indeed (m− 1)n/4 representations of dimension 4.

Adding all possibilities get (m−1)n/4×42 +n×22 = 4nm = |W̃ |/2, the
number of spin representations.

The case m even and n odd if, of course, similar.

The even-even cases. In this instance, there are no two-dimensional
representation since ` and k are odd. Hence ζ` , ζ−` and ηk , η−k .

We ask of ζ` and ηk to have positive imaginary part to get nonequiv-
alent representations, and we thus find mn/4 irreducible representa-
tions U (`,k) for odd ` ∈ {1, . . . ,m} and odd k ∈ {1, . . . ,n}. And indeed
summing the irreducible representation gets mn/4× 42 = |W̃ |/2.

6.3 Total angular momentum algebra

Recall from Section 2.2.1 the definition of the rational Cherednik
algebra Hκ. We will work in the tensor product Hκ ⊗Cl.

Notation 6.3.1. For a root α ∈ Φ , we will denote σ̃α := ρ(γ(α)) = σα ⊗
γ(α) ∈ ρ(CW̃ ). More specifically, in the notations of (6.3) we shall write

σ̃p := σ̃αp = −σ̃αp+m
and τ̃q := τ̃βq ,

for 1 ≤ p ≤m and 1 ≤ q ≤ n.
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Remark 6.3.2. When evident from the context, we will sometimes omit
ρ, implicitly identifying elements of W̃ with ρ(CW̃ ) ⊂Oκ.

Recall the osp(1|2) realisations given by g0̄ = span{∆κ, |x|2,H}, where
∆κ, |x|2 and H are defined in (2.15) and g1̄ = span{D,x}, with D and x
defined in (2.55).

We know from (2.58) that g0̄ and g1̄ generate a realisation of the
orthosymplectic Lie superalgebra g ' osp(1|2). The total angular
momentum algebra Oκ (Definition 2.2.17) is the graded centraliser
of this copy.

We shall now recall some structural properties of the algebra Oκ ⊆
Hκ ⊗Cl (see [Ost22]), specialised to our context of (V ,W ). To that
end, let P ∈ End(Hκ ⊗Cl) be the element defined by

P = Id−1
2 ad(D)ad(x) = Id+1

2 ad(x)ad(D). (6.17)

Here, the adjoint action ad: Hκ⊗Cl→ End(Hκ⊗Cl) of (2.45) is given
by ad(x)(y) = Jx,yK. The relevance of the operator P ∈ End(Hκ ⊗Cl)
is manifest by the following result.

Theorem 6.3.3 ([Ost22]). When restricted to A = CentHκ⊗Cl(g0̄), we
have (P |A)2 = P |A and Oκ = P (A).

Note that the Clifford algebra Cl � C⊗Cl ⊂ Hκ ⊗Cl trivially com-
mutes with g0̄ ⊂ Hκ ⊗C ⊂ Hκ ⊗Cl, so Cl ⊂ A. Recalling the linear
isomorphism γ :

∧
(V )→ Cl of (6.6), there is a W -equivariant linear

map O :
∧

(V )→Oκ, defined for v ∈
∧

(V ) as

O(v) = −1
2P (γ(v)). (6.18)

Because of the W -equivariance, we have the following interaction
with ρ(CW̃ ):

ρ(w̃)O(v) = (−1)|w̃|kO(π(w̃)(v))ρ(w̃), (6.19)

for v ∈
∧k(V ) and w̃ ∈ W̃ , where (2.42) gives the Z2-grading of W̃ ,

and where π is the map Pin+(d)→ O(d) giving the action of W̃ on
V .

We revisit the results of Section 2.2.5 in the specific context of W =
D2m ⊗D2n, using the formulation of the current chapter.

Theorem 2.2.23 becomes the following.
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Theorem 6.3.4 ([Ost22, Prop. 4.9]). As an associative subalgebra of
Hκ ⊗Cl, the centralizer Oκ is generated by

{O(v) | v ∈
∧2(V ) or v ∈

∧3(V )} ∪ {ρ(w̃) | w̃ ∈ W̃ }.

For completeness, we give the explicit expressions of the elements of
the form (6.18). For x ∈ V , we have

O(x) =

 m∑
p=1

καp
〈
x,αp

〉
σ̃p +

n∑
q=1

κβq
〈
x,βq

〉
τ̃q

 ∈ ρ(CW̃ ). (6.20)

In particular, if x ∈ span{x1,x2}, then O(x) can be identified with
an element of ρ(D̃2m), and if x ∈ span{x3,x4}, with an element of
ρ(D̃2n).

Given vectors x,y,z ∈ V , we have

O(x∧ y) = (xDy − yDx) + (O(x)γ(y)−O(y)γ(x)) + 1
2γ(x∧ y), (6.21)

which reduces to a total angular momentum operator when κ = 0.
For three-index symmetries it is instead

O(x∧ y ∧ z) =O(x∧ y)γ(z)−O(x∧ z)γ(y) +O(y ∧ z)γ(x)

−O(x)γ(y ∧ z) +O(y)γ(x∧ z)−O(z)γ(x∧ y)

− 1
2γ(x∧ y ∧ z).

(6.22)

The spaceO(
∧4(V )) is one-dimensional, we will get to it in (6.30).

Notation 6.3.5. For elements of the linear basis {xA | A ⊆ {1, . . . ,4}}
of

∧
(V ), we shall use the notations OA = O(xA), or even Oa1a2···ap , if

A = {a1, a2, . . . , ap} ⊆ {1, . . . ,4}.

We will often call, as in the previous chapters, symmetries Oj , Oij ,
Oijk and Oijkl , one-, two-, three- and four-index symmetry, respec-
tively. The one- and three-index symmetries are odd elements, and
the two- and four-index symmetries are even elements.

The commutation relations of Theorem 2.2.23 are now rewritten
and simplified for the four dimensional context. Recall that J−, −K
is the supercommutator for Z2-graded algebras introduced in Sec-
tion 2.2.2.
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Theorem 6.3.6 ([Ost22]). Let a,b,c,p,q ∈ {1,2,3,4}.

The generators satisfy the following commutation relations:

JOab, OpqK = δbpAaq − δbqAap − δapAbq + δaqAbp
+ {Oa,Obpq} − {Ob,Oapq},

(6.23)

where Aab =Oab +OaOb −ObOa is an anti-symmetric expression on the
indices. Moreover,

JOab,OapqK = −(Obpq + {Ob,Opq}+ [Oa,Oabpq]), (6.24)

JOab,OabqK = −({Oa,Oaq}+ {Ob,Obq}), (6.25)

and also

JOabp,OabqK = {Op,Oq}+ {Oap,Oaq}+ {Obp,Obq}, (6.26)

JOabc,OabcK = 2(O2
a +O2

b +O2
c +O2

ab +O2
ac +O2

bc −
1
4 ). (6.27)

It will be useful to consider also an isotropic basic for the com-
plexified space V with respect to 〈·, ·〉 besides the orthonormal basis
{x1,x2,x3,x4} of V

R
. We decompose V = V1 ⊕V2, with Va the span of

{x2a−1,x2a} for a ∈ {1,2}. The space V1 is fixed under the action of the
dihedral group D2n, and the space V2 is fixed under the action of D2m.
For each two-dimensional space Va, we let

z+
a := za = x2a−1 + ix2a, z−a := z̄a = x2a−1 − ix2a. (6.28)

Notation 6.3.7. It will also be convenient to express the symmetry op-
erators with respect to the isotropic basis {z+

1 , z
−
1 , z

+
2 , z
−
2 }. We shall write,

accordingly, with δ,ε,ν ∈ {−1,+1} and a,b,c ∈ {1,2},

Oδ
a :=O(zδa ), O δε

ab :=O(zδa∧zεb) and O δεν
abc :=O(zδa∧zεb∧z

ν
c ), (6.29)

with δ,ε,ν ∈ {−1,+1} and a,b,c ∈ {1,2}. In proofs, we will also often
abbreviate T ε

a :=O ε+−
abb.

Denote by Ω the Casimir and by S the Scasimir of the osp(1|2) reali-
sation (2.55). The Casimir is an element of Oκ, but the Scasimir is
not. However, it is closely related to the symmetry corresponding to
the volume form x1 ∧ x2 ∧ x3 ∧ x4 ∈

∧4(V ). Let us denote

Z :=O1234 = −O(z1 ∧ z̄1 ∧ z2 ∧ z̄2)/4, (6.30)

which has the following properties.
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Proposition 6.3.8 ([Ost22]). One has Z = Se1234 = e1234S . For v ∈∧k(V ), we have
ZO(v) = (−1)kO(v)Z . (6.31)

The element Z can be expressed in terms of the other symmetries as

Z = {O12,O34} − {O13,O24}+ {O14,O23}
− 2(O123O4 +O124O3 +O134O2 +O234O1).

(6.32)

or
−4Z = {O+−

11,O
+−
22}+ {O+−

12,O
−+
12}+ {O++

12,O
−−
12}

− 2(O +−+
112O

−
2 +O +−+

112O
−
2 +O +−+

112O
−
2 +O +−+

112O
−
2).

(6.33)

Furthermore, we have

Z2 =Ω+ 1
4 = 3

4 − 2
4∑
j=1

O2
j −

∑
1≤j<k≤4

O2
jk . (6.34)

We note that O(z1 ∧ z̄1 ∧ z2 ∧ z̄2) = −4Z, and that we can rewrite (6.34)
as

Z2 =
3
4
− {O+

1 ,O
−
1 } − {O

+
2 ,O

−
2 }+ 1

4 (O+−
11)2 + 1

4 (O+−
22)2

− 1
4 {O

+−
12,O

−+
12} − 1

4 {O
++
12,O

−−
12}.

(6.35)

The (graded) centre of Oκ was computed in [CDO22] for a general
reflection group W . It is always a univariate polynomial ring, but its
generator is different depending on whether the longest element w0
of W is a scalar multiple of the identity (−1)V in GL(V ). Note that
for W = D2m ×D2n, this is the case if and only if both parameters of
the dihedral groups are even.

Denote by Ω the Casimir and by S the Scasimir of the osp(1|2,C)
realisation of Theorem 2.2.16.

Theorem 6.3.9 ([CDO22]). The graded centre of Oκ is the polynomial
ring C[S] with generator

S :=

 Sw0, if w0 = (−1)V ,

Ω, if w0 , (−1)V .
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6.4 Ladder operators and the triangular subalge-
bra

This section introduces the main tools of the study of the representa-
tion theory of Oκ. It is specific to the double dihedral case.

6.4.1 Definitions and notations

We start by describing an abelian sub-Lie superalgebra of Oκ.

Definition 6.4.1. For a ∈ {1,2}, define

Ha := 1
2O(za ∧ z̄a)/2 = −iO(x2a−1 ∧ x2a) (6.36)

and let h := span{H1,H2}. Furthermore, define a := span{H1,H2,Z} and
define t0 := a⊕ span{r̃1, r̃2}.

Remark 6.4.2. We will construct below a subalgebra of Oκ containing
t0 that will play an important role in the representation theory of Oκ.
The weights with respect to the abelian subalgebra t0 will be vital to
our arguments. The role of the algebra a will be analogous to that of
the maximal toral subalgebra of a reductive Lie algebra, and h will be
analogous to the toral subalgebra of the semisimple part.

Proposition 6.4.3. We have JH1,H2K = 0. Furthermore, the element Z
commutes with h.

Proof. Using (6.23) we get

JH1,H2K = −JO12,O34K = −{O1,O234}+ {O2,O134} = 0,

since ρ(σ̃ )O(x∧ x3 ∧ x4) = −O(x∧ x3 ∧ x4)ρ(σ̃ ), whenever x ∈ V1 and
π(σ̃ ) ∈ D2n, in view of relations (6.19) and (6.20). The last claim
follows from (6.31).

Let $1,$2 ∈ h∗ denote the dual functionals defined by $a(Hb) = δab,
for a,b ∈ {1,2}. Consider the subset Υ = Υ0̄tΥ1̄ of h∗ defined by

Υ0̄ := {±($1 −$2),±($1 +$2)}, Υ1̄ := {±$1,±$2}. (6.37)

Whenever α ∈ Υ0̄, we shall write α = δ$1 + ε$2, with δ,ε ∈ {−1,+1}.
Similarly, we write β = ε$a ∈ Υ1̄.
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Definition 6.4.4. Define the ladder elements {Lα | α ∈ Υ } via the follow-
ing: if α = δ$1 + ε$2 ∈ Υ0̄, with δ,ε ∈ {±1} then

Lα :=
{
H1,

{
H2, O(zδ1 ∧ z

ε
2)
}}
, (6.38)

and if β = ε$b ∈ Υ1̄ with ε ∈ {±1}, then

Lβ :=
{
Hb, O(zεb ∧ za ∧ z̄a)

}
, (6.39)

where a ∈ {1,2} \ {b}. For computations, it will be convenient to also
denote the ladder elements as

L δε
12 := Lδ$1+ε$2

, Lεb := Lε$b . (6.40)

Recall that the diagonal homomorphism ρ : CW̃ →Oκ is not injec-
tive. In fact, its kernel is CW̃ + � CW and ρ(CW̃ ) � CW̃ −. However,
restricting ρ to W̃ induces an injective group homomorphism into the
units of Oκ. We denote the conjugation action of W̃ on Oκ by

Ad(w̃)(X) := ρ(w̃)Xρ(w̃)−1, (6.41)

for any w̃ ∈ W̃ and X ∈Oκ. Clearly, Ad(z) acts trivially on Oκ. Also,
note that since the volume element x1∧x2∧x3∧x4 ∈

∧
(V ) is invariant

for any orthogonal transformation and has even parity, the element
Z ∈Oκ is invariant for the conjugation action of W̃ .

The ladder elements {Lα ,α ∈ Υ } and the abelian algebra a determine
an 11-dimensional subspace

l := a⊕ span{Lα | α ∈ Υ } ⊂Oκ. (6.42)

This subspace is a W̃ -module for the conjugation action (6.41). Let
ζ := eiπ/m, η := eiπ/n. We have the following description of the W̃ -
action.

Lemma 6.4.5. The W̃ -conjugation action on l is given as follows. First
Ad(z)L = L for any L ∈ l and Ad(w̃)Z = Z for all w̃ ∈ W̃ . For 1 ≤ p ≤m
and 1 ≤ q ≤ n, we have:

Ad(σ̃p)H1 = −H1, Ad(τ̃q)H1 =H1,

Ad(σ̃p)H2 =H2, Ad(τ̃q)H2 = −H2.
(6.43)
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Furthermore, we have

Ad(σ̃p)L±1 = ζ±2pL∓1, Ad(τ̃q)L
±
1 = L±1,

Ad(σ̃p)L±2 = L±2, Ad(τ̃q)L
±
2 = η±2qL∓2,

(6.44)

and

Ad(σ̃p)L ±ε12 = −ζ±2pL∓ε12, Ad(τ̃q)L
δ±
12 = −η±2qLδ∓

12. (6.45)

for all δ,ε ∈ {−1,+1}.

In particular, for r̃1 = zσ̃1σ̃m and r̃2 = zτ̃1τ̃n we have

Ad(r̃1)L±1 = ζ∓2L±1 , Ad(r̃2)L±1 = L±1 ,

Ad(r̃1)L±2 = L±2 , Ad(r̃2)L±2 = η∓2L±2 ,

Ad(r̃1)L ±ε12 = ζ∓2L ±ε12, Ad(r̃2)L δ±
12 = η∓2L δ±

12.

(6.46)

Proof. Straightforward computations using (6.19).

Remark 6.4.6. Since Ad(z) acts trivially, the decomposition of l is with
respect to representations in Irr(W ). Specifically, in terms of D2m ×D2n-
modules, we have

l = (trv⊗trv)⊕(sgn⊗trv)⊕(trv⊗sgn)⊕(ref⊗trv)⊕(trv⊗ref)⊕(ref′⊗ref′),

where trv, sgn and ref are, respectively, the trivial, the sign and the
reflection representation of the corresponding dihedral group, and ref′

is the twist of the reflection by the sign representation. In particular,
ref′ ⊗ ref′ ' ref⊗ ref.

Proposition 6.4.7. Let W̃ h := {w̃ ∈ W̃ | Ad(w̃)H =H for all H ∈ h}. We
have

W̃ h = 〈r̃1, r̃2〉 =W(0̄,0̄)

Proof. It is straightforward to check that Ad(σ̃p)H1 = −H1 and that
Ad(σ̃p)H2 =H2, for p = 1, . . . ,m, while Ad(τ̃q)H1 =H1 and Ad(τ̃q)H2 =
−H2, for q = 1, . . . ,n. Hence, from the descriptions of G̃ı̄, H̃̄ in (6.10),
it follows that W̃ h = W̃(0̄,0̄), which finishes the proof.
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6.4.2 Properties of the ladder operators

Lemma 6.4.8. In the associative algebra Hκ ⊗Cl, for δ,ε ∈ {−1,+1}, the
following holds:

[H1, O
δε
12] = δ(O δε

12 + [Oδ
1, O

ε
2])− 1

2 {O
δ
1, O

+−ε
112} ,

[H2, O
δε
12] = ε(O δε

12 + [Oδ
1, O

ε
2]) + 1

2 {O
ε
2, O

δ+−
122} .

Proof. Using (6.23) and the linearity of O :
∧

(V )→Oκ, it is straight-
forward to compute

[H1,O
δε
12] = 1

2 (
〈
z−1 , z

δ
1

〉
(O+ε

12 +O+
1O

ε
2 −Oε

2O
+
1)

−
〈
z+

1 , z
δ
1

〉
(O −ε

12 +O−1O
ε
2 −Oε

2O
−
1) + {O+

1,O
−δε
112} − {O−1,O +δε

112}),

where we recall that H1 = 1
2O

+−
11. When δ = +1, we get

〈
z−1 , z

δ
1

〉
= 2,〈

z+
1 , z

δ
1

〉
= 0 and O +δε

112 = 0. Hence

[H1,O
+ε
12] = (O+ε

12 +O+
1O

ε
2 −Oε

2O
+
1) + 1

2 {O
+
1,O

−+ε
112}.

When δ = −1, we get
〈
z−1 , z

δ
1

〉
= 0,

〈
z+

1 , z
δ
1

〉
= 2 and O −δε

112 = 0. Thus

[H1,O
−ε
12] = −(O −ε

12 +O−1O
ε
2 −Oε

2O
−
1)− 1

2 {O
−
1,O

+−ε
112}.

In any case, the identity

[H1,O
δε
12] = δ(O δε

12 +Oδ
1O

ε
2 −Oε

2O
δ
1)− 1

2 {O
δ
1,O

+−ε
112}

holds. The computation for [H2, O
δε
12] is similar.

Lemma 6.4.9. For a , b ∈ {1,2} and ε ∈ {−1,+1}, we have

[Ha,O
ε+−
abb] = ε(O ε+−

abb + 2{Oε
a,Hb}) + 2[Oε

a,Z];

[Hb,O
ε+−
abb] = 0.

Proof. For the first equation, we compute directly using the linearity
of O :

∧
(V )→Oκ.

JHa, O
ε+−
abbK = JO2a−1,2a, (−2)O2a−1,2b−1,2b − 2iεO2a,2b−1,2bK. (6.47)

We can then use (6.24), and the first identity easily follows using
linearity. For the second equation, one could similarly compute
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(6.47) for Hb instead of Ha and apply (6.25). We shall, however,
proceed in a different way. First, note that if S,T ∈ Hκ ⊗ Cl, then
P (P (S)T ) = P (S)P (T ). It follows from this that if JHb,γ(x)K = 0 then
JHb,O(x)K = 0, for any x ∈

∧
(V ). We apply this to γ(zεa ∧ zb ∧ z̄b) =

γ(zεa)γ(zb ∧ z̄b). We have

JHb,γ(zεa ∧ zb ∧ z̄b)K = JHb,γ(zεa)Kγ(zb ∧ z̄b) +γ(zεa)JHb,γ(zb ∧ z̄b)K = 0,

since, using (6.21), it is easy to see that JO(zb ∧ z̄b),γ(zεa)K = 0 =
JO(zb ∧ z̄b),γ(zb ∧ z̄b)K. This finishes the proof.

The next proposition give the ladder operators in this context. If we
compare with Proposition 5.5.10, we see that in four dimensions we
have two distinct families of operators: the even ones who were in-
troduced in the three-dimensional case, and the new odd ones.

Proposition 6.4.10. For any H ∈ h and α ∈ Υ , we have

JH,LαK = α(H)Lα . (6.48)

Proof. Let H = cH1 + dH2 with c,d ∈ C. Suppose first that α =
δ$1 + ε$2 ∈ Υ0̄ with δ,ε ∈ {−1,+1}. Note that α(H) = δc + εd. Us-
ing Lemma 6.4.8 and the definition of Lα (6.38), we compute

JH,LαK = [H, {H1, {H2,O
δε
12}}]

= {H1, {H2, [H,O
δε
12]}}

= c{H1, {H2, e(O
δε
12 + [Oδ

1,O
ε
2])− {Oδ

1,O
+−ε
112}}}

+ d{H1, {H2, f (O δε
12 − [Oδ

1,O
ε
2]) + {Oε

2,O
δ+−
122}}}

= (δc+ εd)Lα = α(H)Lα ,

where we used the following relations: {H1, {H2,X}} = {H2, {H1,X}},
for any X ∈ Hκ ⊗ Cl; [Oδ

1,O
ε
2] = 2Oδ

1O
ε
2; {Oδ

1,O
+−ε
112} = 2Oδ

1O
+−ε
112;

{Oε
2,O

δ+−
122} = 2Oε

2O
δ+−
122; {Ha,Oδ

1O
ε
2} = 0, and Lemma 6.4.9. Then

{H2, {H1,O
δ
1O

+−ε
112}} = −{H2,O

δ
1[H1,O

+−ε
112]} = 0,

{H1, {H2,O
ε
2O

δ+−
122}} = −{H1,O

ε
2[H2,O

δ+−
122]} = 0.

Next, suppose that β = ε$a ∈ Υ1̄. Then, using Lemma 6.4.9 and the
definition of Lβ (6.39), we get

[H,Lβ] = [H, {Ha,O
ε+−
abb}]
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= {Ha, [H,O
ε+−
abb]}

= {Ha,ε$a(H)(O ε+−
abb + 2{Oε

a,Hb}) + 2[Oε
a,O1234]}

= β(H)Lβ ,

since {Oε
a,Hb} = 2Oε

aHb, [Oε
a,O1234] = 2Oε

aO1234 and, moreover, Ha
anti-commutes with Oε

a and commutes with Hb, O1234. This finishes
the proof.

Remark 6.4.11. If we consider dim(V ) = 2N in the classical case, that is,
when κ = 0 and W is the trivial group, the 2-index symmetries O(xj ∧xk)
span the Lie algebra so(2N ) of type DN . The set Υ0̄ treated here is its
corresponding root system when N = 2. Furthermore, in this situation, if
we consider the ladder elements Lα, for α ∈ Υ0̄, as a product in End(V )
using the root-space decomposition of the orthogonal Lie algebra [KV16],
then Lα is proportional to the root vector in the direction of α.

6.4.3 The triangular subalgebra

Despite Proposition 6.4.10, the ladder elements do not behave as
nicely as root vectors in a Lie (super)algebra. In general, they do
not satisfy the property JCLα ,CLβK ⊆CLα+β . However, the products
of any two ladder elements have useful factorisations, which we
describe in Propositions 6.4.13–6.4.15.

We first rewrite the ladder operators in a way similar to (5.92).

Lemma 6.4.12. The ladder elements can be written alternatively as

Lδa =O δ+−
abb(2Ha + δ) + 4Oδa(Z + δHb) (6.49)

L δε
12 =O δε

12(2H1 + δ)(2H2 + ε)−Oδ
1O

ε+−
211(2H2 + ε);

+O δ+−
122O

ε
2(2H1 + δ) + 2Oδ

1O
ε
2(εδ − 2Z). (6.50)

Proof. For (6.49), we compute directly using Lemma 6.4.9:

Lδa = {Ha,O
δ+−
abb} = 2O δ+−

abbHa+[Ha,O
δ+−
abb] =O δ+−

abb(2Ha+δ)+4Oδa(Z+δHb).

The expression (6.50) is slightly more complicated. From the defini-
tion of L δε

12 we compute

L δε
12 = {H1, {H2, O

δε
12}} = 2 {H1, O

δε
12H2}+ {H1, [H2, O

δε
12]}

= {H1, [H2,O
δε
12]}+ 2[H1,O

δε
12]H2 + 4O δε

12H2H1. (6.51)
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We use Lemma 6.4.8, {H1, O
δ
1O

ε
2} = 0 and {H1, O

ε
2O

δ+−
122} =Oε

2L
δ
1 to get

the two identities

{H1, [H2,O
δε
12]} =O δε

12(2εH1 + εδ) +Oδ
1O

ε
2(2εδ − 4Z − 4δH2)

− εOδ
1O

ε
2 +O δ+−

122O
ε
2(2H1 + δ),

2[H1,O
δε
12]H2 = 2δO δε

12H2 + 4δOδ
1O

ε
2H2 − 2Oδ

1O
δ+−
122H2.

Then replacing in (6.51) and factorising finish the proof.

The following proposition, and Proposition 6.4.15 present the factori-
sations of odd ladder operators, similar to Proposition 5.5.10.

Proposition 6.4.13. For each pair (β,−β) with β ∈ Υ1̄, the ladder ele-
ments admit the factorisations

L+
1L
−
1 = 16((H1 − 1/2)2 −O+

1O
−
1)((Z −H2)2 − (H1 − 1/2)2),

L−1L
+
1 = 16((H1 + 1/2)2 −O−1O+

1)((Z +H2)2 − (H1 + 1/2)2),

L+
2L
−
2 = 16((H2 − 1/2)2 −O+

2O
−
2)((Z −H1)2 − (H2 − 1/2)2),

L−2L
+
2 = 16((H2 + 1/2)2 −O−2O+

2)((Z +H1)2 − (H2 + 1/2)2).

Proof. We shall indicate the computation for β = $1, as the case
β = $2 is analogous. Recall that we abbreviate T ±1 := O ±+−

122. From
(6.49) we have

L±1 = (2H1 ∓ 1)T±1 + 4(Z ∓H2)O±1. (6.52)

Computing directly from (6.52) using Lemma 6.4.9 and T ±1O
∓
1 =O±1T

∓
1

we get
L±1L

∓
1 = 4(H1 ∓ 1

2 )2T ±1T
∓
1 − 16(Z ∓H2)2O±1O

∓
1. (6.53)

Now, switching from the isotropic basis {z1, z̄1, z2, z̄2} to the orthogo-
nal basis {x1,x2,x3,x4} and using the formula (6.34) for Z2, together
with (6.27), we obtain

T ±1T
∓
1 = 4(Z2 −H2

1 +H2
2 −

1
4 ) + 2{O+

1,O
−
1} ± 4i[O134,O234]. (6.54)

Applying −1
2P to the expressionO134e234−O234e134, which we rewrite

using (6.21) and (6.22), we compute

4i[O134,O234] = 4H1 − 8H2Z

+ 4i([O3,O123] + [O4,O124]− [O1,O2]).
(6.55)
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Further, we note that, by using T ±2O
∓
2 =O±2T

∓
2 ,

−8i([O3,O123] + [O4,O124]) = [O+
2 +O−2,T

+
2 + T −2]− [O+

2 −O−2,T +
2 − T −2]

= 2([O+
2,T

−
2] + [O−2,T

+
2])

= 0,

so that (6.55) reads as 4i[O134,O234] = 4H1 − 8H2Z − 4i[O1,O2]. Fi-
nally, we combine (6.53), (6.54), (6.55) together with the equation

{O+
1,O

−
1} = 2O±1O

∓
1 ± 2i[O1,O2]

to obtain the desired claim.

Proposition 6.4.14. The ladder operators products Lβ1
Lβ2

with β1,β2 ∈
Υ1̄, β1 , β2 admit the following factorisations:

L+
1L

+
2 = 4L++

12(H1 −H2 +Z − 1/2), L+
2L

+
1 = 4L++

12(H1 −H2 −Z + 1/2),

L+
1L
−
2 = −4L+−

12(H1 +H2 −Z − 1/2), L−2L
+
1 = −4L+−

12(H1 +H2 +Z + 1/2),

L−1L
+
2 = 4L−+

12(H1 +H2 +Z + 1/2), L+
2L
−
1 = 4L−+

12(H1 +H2 −Z − 1/2),

L−1L
−
2 = −4L−−12(H1 −H2 −Z + 1/2), L−2L

−
1 = −4L−−12(H1 −H2 +Z − 1/2).

Proof. We show that, for any δ,ε ∈ {±1} and a , b ∈ {1,2} the identity

LδaL
δ
b = 4L δε

ab(Z + εHa − δHb − 1
2δε) (6.56)

holds. In this proof, we shall again abbreviate T δ
a := O δ+−

abb. Using
equation (6.49), the commutation relations of Lemma 6.4.9 and the
action described in Lemma 6.4.5, we compute

LδaL
ε
b = T δ

aT
ε
b(2Ha + δ)(2Hb + ε) + 4T δ

aO
ε
b(2Ha + δ)(Z + εHb) (6.57)

− 4Oδ
aT

ε
b(Z−δε−δHb)(2Hb+ ε)−16Oδ

aO
ε
b(Z −δε−δHb)(Z+ εHa).

Further, using the expansion (6.22) of the three-index symmetry
T δ
a =O δ+−

abb, together with the fact that T δ
aT

ε
b = −1

2P (T δ
aγ(zεb ∧ za ∧ z̄a))

we obtain

T δ
aT

ε
b = 4O δε

ab(Z + εH1 − 1
2δε − δH2)− 2εOδ

aT
ε
b − 2δT δ

aO
ε
b − 4δεOδ

aO
ε
b.

Substituting this in (6.57) and using the expression (6.50) yield the
desired (6.56). Noting that L εδ

ba = −L δε
ab, we obtain all the factorisations

claimed in the statement.
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Proposition 6.4.15. The ladder operators products Lα1
Lα2

for α1,α2 ∈
Υ0̄ admit the following factorisations

L++
12L

−−
12 = 16((H1 − 1/2)2 −O+

1O
−
1)((H2 − 1/2)2 −O+

2O
−
2)

× ((H1 +H2 − 1)2 − (Z − 1/2)2),

L−−12L
++
12 = 16((H1 + 1/2)2 −O−1O+

1)((H2 + 1/2)2 −O−2O+
2)

× ((H1 +H2 + 1)2 − (Z − 1/2)2),

L+−
12L

−+
12 = 16((H1 − 1/2)2 −O+

1O
−
1)((H2 + 1/2)2 −O−2O+

2)

× ((H1 −H2 − 1)2 − (Z + 1/2)2),

L−+
12L

+−
12 = 16((H1 + 1/2)2 −O−1O+

1)((H2 − 1/2)2 −O+
2O

−
2)

× ((H1 −H2 + 1)2 − (Z + 1/2)2).

Proof. Given a,b ∈ {1,2} with a , b and δ,ε ∈ {−1,+1}, consider the
following elements of Oκ:

pδa := (Ha − 1
2δ)2 −OδaO−δa ,

qδa := (Z − δHb)2 − (Ha − 1
2δ)2,

Ξδ,ε := 4εH1Z + 2εδZ + 2δH1 + 1,

r = rδ,ε := Z + εH1 − δH2 − 1
2δε.

It is straightforward to check that the polynomial r divides both qδ1
and qε2 +Ξ−δ,ε and we have

qδ1 = (Z − εH1 − δH2 + 1
2δε)r,

qε2 +Ξ−δ,ε = (Z + εH1 + δH2 − 3
2δε)r.

Furthermore, note that, on the one hand, we have

Lδ1L
ε
2L
−ε
2 L
−δ
1 = −16Lδε12L

−δ−ε
12 r2,

as [r,L−δ−ε12 ] = 0, and on the other hand, using [qε2,L
−δ
1 ] = L−δ1 Ξ−δ,ε and

[pε2,L
−δ
1 ] = 0, we have

Lδ1L
ε
2L
−ε
2 L
−δ
1 = Lδ1(16pε2q

ε
2)L−δ1

= 16Lδ1L
−δ
1 pε2q

ε
2 + 16Lδ1[pε2q

ε
2,L
−δ
1 ]

= 16Lδ1L
−δ
1 pε2(qε2 +Ξ−δ,ε)

= 162pδ1p
ε
2q
δ
1(qε2 +Ξ−δ,ε),
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from which we obtain

Lδε12L
−δ−ε
12 = 16(pδ1p

ε
2)((δH1 + εH2 − 1)2 − (Z − 1

2δε)2),

where the identity

(Z−εH1−δH2+ 1
2δε)(Z+εH1+δH2− 3

2δε)) = (Z− 1
2δε)2−(δH1+εH2−1)2

is obtained by completing squares. This finishes the proof.

Now, fix a partition Υ = Υ+ ∪Υ− with

Υ+ = {($1 −$2), ($1 +$2),$1,$2}

and Υ− = −Υ+. Let t± = span{Lα | α ∈ Υ±} and recall the vector space
t0 of Definition 6.4.1. Finally, given any vector subspace U ⊂Oκ, let
A(U ) denote the associative subalgebra of Oκ generated by U .

Definition 6.4.16. Let t = t0 ⊕ t+ ⊕ t−. We define T± := A(t±), T0 :=
A(t0), and T :=A(t). This last subalgebra will be called the triangular
subalgebra of Oκ.

This nomenclature is justified by Proposition 6.4.17, proved below.
The computations in Propositions 6.4.13, 6.4.14 and 6.4.15 indicate
that the product of ladder elements is again a ladder element, modulo
right-multiplication by a polynomial expression in t0.

Proposition 6.4.17. The triangular subagalgebra T admits a decompo-
sition

T = T−T+T0. (6.58)

To prove this factorisation, we shall need a preliminary result. We
note that the case (α,β) ∈ Υ1̄ ×Υ1̄ is Proposition 6.4.13

Lemma 6.4.18. Let (α,β) be a pair of roots which are non-opposite to
each other. Then, the following assertions hold:

1. if (α,β) ∈ Υ0̄ × Υ1̄ ∪ Υ1̄ × Υ0̄ and the angle between these roots is
obtuse, then LαLβ = (Lα+β)p, for some p ∈ T0;

2. if (α,β) ∈ Υ0̄ × Υ1̄ ∪ Υ1̄ × Υ0̄ and the angle between these roots is
acute, then [Lα ,Lβ] = 0;
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3. if (α,β) ∈ Υ0̄ ×Υ0̄, then LαLβ = (L(α+β)/2)2p, for some p ∈ T0.

Proof. In 1., note that we have α + β ∈ Υ1̄. We can thus assume
α = δ$a+ε$b and β = −ε$b. Then, by Propositions 6.4.13 and 6.4.14,
there exist polynomials q1,q2 ∈ T0 such that q2 commutes with L−εb
and

Lδa(L
ε
bL
−ε
b ) = Lδaq1 = L δε

abL
−ε
b q2 = (LδaL

ε
b)L

−ε
b .

Moreover, from the precise expressions for q1 and q2, one can com-
pute that q2 divides q1.

For 2., we can assume α = δ$a + ε$b and β = ε$b so that, using
Proposition 6.4.14, we can find q1,q2 ∈ T0 such that

Lεb(L
δ
aL

ε
b) = LεbL

δε
abq1 = L δε

abq2L
ε
b = (LεbL

δ
a)L

ε
b.

Furthermore, one can compute that q2L
ε
b = Lεbq1.

Finally, for 3., we can assume α = δ$a + ε$b and β = δ$a − ε$b.
Using again Propositions 6.4.13 and 6.4.14, we find polynomials
q1,q2,q3 ∈ T0 such that

Lδa(L
ε
bL
−ε
b )Lδa = LδaL

δ
aq1 = L δε

abL
δ−ε
abq2q3 = (LδaL

ε
b)(L

−ε
b L

δ
a)

with the property that q2 and q3 are coprime of degree one and each
of them divides q1; hence, q2q3 divides q1.

Proof of Proposition 6.4.17. Due to Proposition 6.4.10, Lemma 6.4.5
and ZLα = (−1)|α|LαZ, it is clear that any expression in T is written as
sums of elements in T±T0. Now letM = T1T2 · · ·TnA be any monomial
expression in T, with Ti ∈ T± and A ∈ T0. We show that we can
rearrange M and write it as an element in T−T+T0, that is, a finite
sum M =

∑
jNjPjAj , with Nj ∈ T−, Pj ∈ T+ and Aj ∈ T0. Define the

inversion set of a monomial M to be

I (M) = {(i, j) | 1 ≤ i, j ≤ n, i < j and Ti ∈ T+,Tj ∈ T−}.

If |I (M)| = 0, we are done. Else, there exist ladder elements Ti ,Ti+1
with Ti = Lα ∈ T+ and Ti+1 = Lβ ∈ T−. Moreover, we can assume
that the index i is maximal for this property, which implies that the
remaining factors Ti+2 · · ·Tn are correctly ordered. There are four
cases we need to analyse: (i) (α,β) ∈ Υ1̄ ×Υ1̄, (ii) (α,β) ∈ Υ0̄ ×Υ1̄, (iii)
(α,β) ∈ Υ1̄ ×Υ0̄ and (iv) (α,β) ∈ Υ0̄ ×Υ0̄. We claim that, in each case,
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when we evaluate TiTi+1, we get M =
∑
jMj with each Mj ∈ T±T0

monomials with |I (Mj)| < |I (M)|. So after finitely many steps, we
shall write M ∈ T−T+T0.

Note that we can assume that (α,β) are not opposite roots, since
otherwise LαL−α ∈ T0 would trivially decrease the cardinality of the
inversion set. In case (i), we then use Proposition 6.4.14, and in (ii)
and (iii), we use items 1. and 2. of Lemma 6.4.18 . In all these
cases, we can either commute TiTi+1 = Ti+1Ti or TiTi+1 = TA for some
T ∈ T and A ∈ T0. After sending A to the right, we have a linear
combination of monomials with smaller inversion sets.

Case (iv) is a bit more complicated, since, by Lemma 6.4.18-3., the
product TiTi+1 = T 2A, for some odd ladder element T . If T ∈ T−,
after sending A to the right, this would produce correctly ordered
monomials M ′ so that in each T1 · · ·Ti−1M

′, the maximal index where
an inversion occurs becomes i1 < i, and we can repeat the process for
that i1. So assume T ∈ T+. Note that this could increase the inversion
sets of the produced monomials M ′ after we send A to the right.
However, from the maximality assumption on i, we necessarily need
to deal with the configuration T 2L1 · · ·Lm where each Lj ∈ T−. Since T
is an odd ladder element, when we deal with this configuration, case
(iv) will not occur in the first step, and hence we can, after finitely
many steps, reorder T (L1 · · ·Lm) =

∑
jMjPjAj in T−T+T0. We then

obtain T 2L1 · · ·Lm =
∑
j TMjPjAj . But note that |I (T L1 · · ·Lm)| = m

and also |I (TMj)| ≤m for each j, since the expressions Mj ∈ T− are
a product of negative ladder elements with at most m factors. After
reordering each TMj (using the same principle that allowed us to
reorder T L1 · · ·Lm), the original monomial is replaced by a linear
combination

M = T1T2 · · ·TnA = T1T2 · · ·Ti−1

∑
k

MkPkAk

 .
with |I (T1T2 · · ·Ti−1Mk)| < |I (M)|, for each k. This finishes the proof
by induction.

6.5 Finite representation theory

In this section, we present a coarse classification of the finite-dimen-
sional irreducible representations of Oκ. We then focus in detail
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on one branch of representations that can be realised by the Dunkl
polynomial monogenics and explore certain other possibilities from
the coarse classification. The main tool is the triangular subalgebra
T of the previous section.

6.5.1 Restriction to the triangular subalgebra

In this section, we show that the restriction to the triangular subal-
gebra T is enough to completely determine the finite-dimensional
representation theory of Oκ.

Let M be an Oκ-module. If µ ∈ a∗, we let Mµ = {v ∈ M | Av =
µ(A)v, for all A ∈ a} and we denote by Wta(M) = {µ ∈ a∗ | Mµ , 0}
the set of a-weights of M. We similarly define the set Wth(M) of
h-weights. Recall that a = span{H1,H2,Z}. We shall write µ = µ1$1 +
µ2$2 +µZ$Z , or simply µ = (µ1,µ2,µZ ) where µ(Ha) = µa, for a ∈ {1,2}
and µZ = µ(Z).

Lemma 6.5.1. Let M be a finite-dimensional Oκ-module and assume
0 , u ∈Mµ. If µa = −1

2δ for some δ ∈ {±1}, then the following hold:

1. O δ+−
abb(u) ∈Mν , with ν = 1

2δ$a +µb$b −µZ$Z ;

2. Lδa(u) = 0.

Proof. Assume a = 1, as the case a = 2 is similar. We have µ =
(−δ/2,µ2,µZ ). We write

O δ+−
122(u) =

∑
ν∈Wta(M)

uν ,

for some uν ∈ Mν . We claim that uν = 0, unless ν = (δ/2,µ2,−µZ).
Indeed, since [H2,O

δ+−
122] = 0 by Lemma 6.4.9 and {Z,O δ+−

122} = 0, then
by linear independence, it follows that uν = 0, unless ν = (ν1,µ2,−µZ ),
for some ν1. Using Lemma 6.4.9, we get

H1O
δ+−
122(u) = −1

2δO
δ+−
122(u) + [H1,O

δ+−
122](u)

= 1
2δO

δ+−
122(u) + 4Oδ

1(δH2 +Z)(u).

Thus

(H1 − 1
2δ)O δ+−

122(u) =
∑
ν

(ν1 − 1
2 )uν = 4(µZ + δµ2)Oδ

1(u) ∈M(δ/2,µ2,−µZ ).
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It follows that uν = 0 unless ν = (δ/2,µ2,−µZ ). This finishes 1.

But, since 1. holds, it then follows that

Lδ1(u) =H1O
δ+−
122(u) +O δ+−

122H1(u) = 0.

The lemma is proved.

In analogy with the theory of semisimple Lie algebras, given µ,λ ∈ h∗,
we say µ � λ if and only if λ− µ is a linear combination of positive
roots with positive integer coefficients. We say that µ ∈Wth(M) is
a maximal weight of M if there is no λ ∈Wth(M) such that µ ≺ λ.
Furthermore, any nonzero element v ∈Mµ, with µ a maximal weight,
will be called a highest weight vector.

Proposition 6.5.2. If M is a finite-dimensional Oκ-module, then there
exists µ ∈Wth(M) maximal.

Proof. We write<(µ) for the real part of µ. Since |Wth(M)| <∞, let
a = max{<(µ1) | µ = µ1$1 + µ2$2 ∈Wth(M)}. Amongst all elements
µ = µ1$1 + µ2$2 ∈ Wth(M) such that a = <(µ1), choose one for
which<(µ2) is maximal. Since, for every α ∈ Υ+, we have that µ+α
increases<(µ1) or<(µ2), the element µ ∈Wth(M) thus described is
a maximal weight.

Given a finite-dimensional Oκ-module M, let λ ∈ Wth(M) be the
maximal weight and choose any highest-weight vector v ∈Mλ. De-
fine U (v) = ρ(CW̃ )Tv as the vector subspace of M spanned by all
translates of the actions of CW̃ and T. That is

U (v) := span{ρ(w̃)T v | w̃ ∈ W̃ ,T ∈ T}.

In view of the classical case and of the monogenic representation, we
consider the case where the highest-weight space is one-dimensional.
Then all weight spaces are one-dimensional and we can construct the
representations of Oκ from that of T.

Proposition 6.5.3. Suppose v is a highest-weight vector of the irreducible
Oκ-module M and that Wt(v) is one-dimensional. Then:

1. all weight spaces of M are one-dimensional;
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2. U (v) is a submodule of M.

Furthermore, if µ(2H1 + δ) , 0 , µ(2H2 + ε) for δ,ε ∈ {−1,+1}, we have
explicit formulas for the actions.

Proof. We begin by the first statement. If the highest-weight vector
is one-dimensional, then applying the triangular subalgebra T on
v will divide into one-dimensional weight spaces since the actions
are invertible. Then acting with W̃ gives U (v). Now, we claim that
the action of the full algebra Oκ will always be a sum of multiples
of the vectors of the T weight spaces. Suppose it is not the case,
then we have two linearly independent vectors of weight (µ1,µ2).
Using reflections and ladder operators, we can navigate back to the
highest weight space. Indeed, if it is impossible to navigate back
to the highest-weight space, then there would be a Oκ-submodule
of M that does not contain v, contradicting the irreducibility. So,
we can navigate back to the highest-weight space. Then we would
find now two linearly independent highest weight vectors, since all
operation are invertible and preserve thus linear independence, but
the highest-weight space is one-dimensional, a contradiction.

For the second point, we now know that all weight spaces are one-
dimensional. SinceOκ is generated by the 2- and 3-index symmetries
and ρ(W̃ ), it suffices to show that O δε

12(U (v)) ⊆U (v) and O δ+−
abb(U (v)) ⊆

U (v), for all δ,ε ∈ {±1} and a,b ∈ {1,2}. Note that

U (v) =
⊕

µ∈Wth(M)

U (v)µ,

with U (v)µ ⊆ Mµ, since the actions of W̃ and T preserves the h-
decomposition. Given 0 , u ∈U (v)µ.

Suppose now µ(2H1 + δ) , 0 , µ(2H2 + ε) for δ,ε ∈ {−1,+1} for all
weight spaces. From (6.49), it follows that, up to a constant, O δ+−

abb acts
on u via Lδa − 4Oδa(Z + δHb). Then

O δ+−
abb(u) =

(Lδa − 4Oδa(Z + δHb))
µ(2Ha + δ)

u ∈U (v).

Likewise, using (6.50), we have

O δε
12(u) =

1
(2λu1 + δ)(2λu2 + ε)

(
L δε

12 +Oδ
1O

ε+−
211(2λu2 + ε)−O δ+−

122O
ε
2(2λu2 + δ
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− 2Oδ
1O

ε
2(εδ − 2Λu)

)
u ∈U (v).

Thus we have fully described the representation, proving that U (v)
is a submodule of M, and thus that it is M by irreducibility.

However, even in the cases where there would be a division by 0
in the formula, we still know in which weight spaces three-index
symmetries go by Lemma 6.5.1, and we can follow a similar process
for two-index symmetries by Lemma 6.4.8, in both cases we see
that the weight spaces visited are the same as U (v) and so U (v) is a
submodule of M since all the weight spaces are one-dimensional.

Remark 6.5.4. We will assume for the remaining of the chapter that the
representations we are considering have a one-dimensional highest-weight
space. This is always the case by the proof of the previous proposition
outside the problematic case of highest-weight space of (H1,H2)-weight
being (1/2,1/2). We leave the care of this particular problematic case for
later inquiries.

6.5.2 Actions of group algebra elements

A certain class of group elements will be relevant in the study of the
representations. We can express their action with a simple case-by-
case formula. For a ∈ {1,2}, let ma denote the dihedral parameter
ma :=m and m2 := n.

Lemma 6.5.5. For odd integers `a ∈ {1, . . . ,2ma − 1} (a ∈ {1,2}), let
u(`1, `2) be an irreducible module for the quotient group W̃0̄,0̄ = 〈r̃1, r̃2〉(�
C2m×C2n/C2) with the action (6.11) on u ∈ u(`1, `2). Then, for a ∈ {1,2}

O±aO
∓
au =Qa(`a ± 1)2u , (6.59)

where

Qa(j) :=


maκ2a−1, ma odd, j ≡ 0 modma;
ma
2 (κ2a−1+κ2a), ma even, j ≡ 0 modma;
ma
2 |κ2a−1 −κ2a|, ma even, j ≡ma/2 modma;

0, otherwise.

(6.60)

Proof. We will prove this for the first dihedral group D2m, the second
D2n follows in the same fashion. Note that r̃p1 f̃1 = zpσ̃p, for p = 1, . . . ,m.
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From (6.20), using (6.3), (6.28) and ρ(z) = −1, we have, with ζ = eiπ/m,

O(z±1) = ±i
m∑
p=1

καpζ
±pρ(σ̃p) = ±i

m∑
p=1

καp(−ζ
±1ρ(r̃1))pρ(f̃1). (6.61)

Denotingω± := ζ±1ρ(r̃1), which satisfiesωm± = (ζ±1ρ(r̃1))m = −ρ(z) = 1,
we thus find

O(z±1)O(z∓1) =
m∑

p,q=1

καpκαqω
p−q
± =

m−1∑
p=0

m∑
q=1

καqκαp+q
ω
p
±

=

mκ2
1
∑m−1
p=0 ω

p
± if m is odd;∑m/2−1

p=0 (m2 (κ2
1 +κ2

2)ω2p
± +mκ1κ2ω

2p+1
± ) if m is even,

where we used

m∑
q=1

καqκαp+q
=


m
2 (κ2

1 +κ2
2) if m is even and p is even;

mκ1κ2 if m is even and p is odd;

mκ2
1 if m is odd.

(6.62)

Acting on an eigenvector for r̃1 gives the desired result.

Note that Qa(j) is always non-negative.

It will be useful in what follows to have an expression for the action
of products of the one-index symmetries on ladder operators.

Lemma 6.5.6. Let u(`,k) be an irreducible module for the group W̃(0̄,0̄) ⊂
W̃ . Let δ,ε ∈ {−,+}. We have, for u ∈ u(`1, `2) and a,b ∈ {1,2},

O±1O
∓
1(L δε

12)Ku =Q1(`1 ± 1 + 2δK)2(L δε
12)Ku, (6.63)

O±2O
∓
2(L δε

12)Ku =Q2(`2 ± 1 + 2εK)2(L δε
12)Ku, (6.64)

O±aO
∓
a(L

ε
b)
Ku =Qa(`a ± 1 + δab2εK)2(Lεb)

Ku, a,b ∈ {1,2}, (6.65)

where Qa(j) is defined in (6.60), and δab := 1 if a = b and δab := 0 if
a , b.

Proof. From Lemma 6.4.5, we have

ρ(r̃1)(L δε
12)K = ζ−2δK (L δε

12)Kρ(r̃1), ρ(r̃2)(L δε
12)K = η−2εK (L δε

12)Kρ(r̃2),
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ρ(r̃1)(Lε1)K = ζ−2εK (Lε1)Kρ(r̃1), ρ(r̃1)(Lε2)K = (Lε2)Kρ(r̃1),

ρ(r̃2)(Lε1)K = (Lε1)Kρ(r̃2), ρ(r̃2)(Lε2)K = η−2εK (Lε2)Kρ(r̃2),

and then, one application of Lemma 6.5.5 concludes the proof.

The previous lemma will often be applied to products of the form
(L−a)Kv, (L−+

12)Kv and (L−−12)Kv; it will thus be useful to reserve a notation
for the coefficients appearing.

Notation 6.5.7. Let a ∈ {1,2}. We will denote

E±a (K) :=Qa(`a ± 1− 2K)2;

F±a (K) :=Qa(`a ± 1 + (−1)a2K)2;

G±a (K) :=Qa(`a ± 1− 2K)2.

(6.66)

Then we have, if r̃1v = ζ`1v and r̃2v = η`2v, for v ∈ V , K ∈ N, odd
`1 ∈ {1, . . . ,2m− 1} and odd `2 ∈ {1, . . . ,2n− 1},

O±aO
∓
a(L

−
a)
Kv = E±a (K)(L−a)

Kv,

O±aO
∓
a(L

−+
12)Kv = F±a (K)(L−+

12)Kv,

O±aO
∓
a (L−−12)Kv = G±a (K)(L−−12)Kv.

Remark 6.5.8. In view of Theorem 6.3.6 and equation (2.41), the re-
striction of any Oκ-module V to the subalgebra ρ(CW̃ ) ⊂Oκ decomposes
as a direct sum of spin representations in sIrr(W̃ ), by Maschke’s Theorem.

6.5.3 Coarse classification

In this section, we will use the triangular subalgebra T to characterise
the finite-dimensional irreducible representations of Oκ. We will use
the weight theory coming from T. This will label the representation
by a set of weights, and we will give a set of equations they must
satisfy in Theorem 6.5.9. The next sections will extend this skeleton
to a full Oκ-representation in certain cases.

We begin by defining a set of values that will play an important
role in what follows. They come from the factorisations of Proposi-
tions 6.4.13 and 6.4.15.

A1 := ((λ1 + 1/2)2 −F−1 (0))((Λ+λ2)2 − (λ1 + 1/2)2); (6.67)
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A2 := ((λ2 + 1/2)2 −F−2 (0))((Λ+λ1)2 − (λ2 + 1/2)2); (6.68)

B1 := ((λ1 + 1/2)2 −F−1 (0))((λ2 − 1/2)2 −F+
2 (0))

× ((λ1 −λ2 + 1)2 − (Λ+ 1/2)2); (6.69)

B2 := ((λ1 + 1/2)2 −F−1 (0))((λ2 + 1/2)2 −F−2 (0))

× ((λ1 +λ2 + 1)2 − (Λ− 1/2)2); (6.70)

C−+
12(j) := ((λ1 − j − 1/2)2 −F+

1 (j))((λ2 + j + 1/2)2 −F−2 (j))

× ((λ1 −λ2 − 2j − 1)2 − (Λ+ 1/2)2); (6.71)

C−−12(j) := ((λ1 − j − 1/2)2 −G+
1 (j))((λ2 − j − 1/2)2 −G+

2 (j))

× ((λ1 +λ2 − 2j − 1)2 − (Λ− 1/2)2) (6.72)

C1(j) := ((λ1 − j − 1/2)2 −E+
1 (j))

× (((−1)jΛ−λ2)2 − (λ1 − j − 1/2)2); (6.73)

C2(j) := ((λ2 − j − 1/2)2 −E+
2 (j))

× (((−1)jΛ−λ1)2 − (λ2 − j − 1/2)2); (6.74)

where E±a (j) and F±a (j) are defined as in (6.66).

We can now state the main theorem of the section.

Theorem 6.5.9. A finite-dimensional irreducible V admits a highest-
weight vector v with weight (µ1,µ2,µZ) = (λ1,λ2,Λ) inside a W̃ -repre-
sentation U (`,k) for certain integer ` and k. We call then the element of
(Λ,λ1,λ2,ζ

`,ηk) ∈ t∗0, the label of V . The elements of the label satisfy the
following system of equations:

A1 = 0, A2 = 0;

B1 = 0, B2 = 0;

C−+
12(N ) = 0, C−+

12(j) , 0, 0 ≤ j < N ;

C−−12(N ′) = 0, C−−12(j) , 0, 0 ≤ j < N ′;
C1(M1) = 0, C1(j) , 0, 0 ≤ j < M1;

C2(M2) = 0, C2(j) , 0, 0 ≤ j < M2;

(6.75)

for certain integers N,N ′ ,M1,M2 ∈N.

Proof. Let V be a finite-dimensional irreducible representation ofOκ.
We can restrict it to a T-representation. By Proposition 6.4.17, we
then know V admits a basis of common eigenvectors of Z, H1 and
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H2. We take the highest-weight vector with respect to the order on
the Cartan part T0 and denote it by v. This highest-weight vector has
thus three eigenvalues linked to Z, H1 and H2 and we denote them
by:

Zv =Λv, H1v = λ1v, H2v = λ2v. (6.76)

Furthermore, if we act on v by W̃ , we will find an irreducible spin W̃ -
representation U such that W̃ 	 v ∈U ⊂ V , and from Theorem 6.2.3
then there are odd positive integers `,k such that U 'U (`,k).

Finally, since V is finite-dimensional, it means that there exists mini-
mal integers N , N ′ M1 and M2 such that the following chains stop:

(L−+
12)N+1v = 0, and (L−+

12)Nv , 0,

(L−−12)N
′+1v = 0, and (L−−12)N

′
v , 0,

(L−1)M1+1v = 0, and (L−1)M1v , 0,

(L−2)M2+1v = 0, and (L−2)M2v , 0.

It remains to show that the relations (6.75) are respected. Since v is a
highest-weight vector then:

L+
1v = 0 and L+

2v = 0 and L−+
12v = 0.

This translates, using the factorisations of Propositions 6.4.14 and
6.4.15, to the following three relations coming respectively from
L−1L

+
1v = 0, L−2L

+
2v = 0 and L−+

12L
+−
12v = 0:

((λ1 + 1/2)2 −F−1 (0))((Λ+λ2)2 − (λ1 + 1/2)2) = 0,

((λ2 + 1/2)2 −F−2 (0))((Λ+λ1)2 − (λ2 + 1/2)2) = 0,

((λ1 + 1/2)2 −F−1 (0))((λ2 − 1/2)2 −F+
2 (0))

×((λ1 −λ2 + 1)2 − (Λ+ 1/2)2) = 0.

Thus, we found A1 = A2 = B1 = 0.

Since L−+
12, L−−12, L−1 and L−2 are ladder operators with respect to H1 and

H2, the eigenvalues of (L−+
12)jv, (L−−12)jv, (L−1)jv and (L−2)jv are:

H1(L−+
12)jv = (λ1 − j)(L−+

12)jv, H2(L−+
12)jv = (λ2 + j)(L−+

12)jv,

H1(L−−12)jv = (λ1 − j)(L−−12)jv, H2(L−−12)jv = (λ2 − j)(L−−12)jv,
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H1(L−1)jv = (λ1 − j)(L−1)jv, H2(L−1)jv = (λ2)(L−1)jv,

H1(L−2)jv = (λ1)(L−2)jv, H2(L−2)jv = (λ2 − j)(L−2)jv.

Also, L−+
12 commutes with Z, and L−1, L−2 anticommute, so

Z(L−+
12)jv =Λ(L−+

12)jv, Z(L−1)jv = (−1)jΛ(L−1)jv, Z(L−2)jv = (−1)jΛ(L−2)jv.

We know that the chains of elements created by applying successively
L−+

12, L−−12, L−1 and L−2 must end, and so there exist minimal N , N ′, M1
and M2 such that each chain becomes 0. This implies the following
equations:

L+
1L
−
1(L−1)M1v = 0, L+

2L
−
2(L−2)M2v = 0,

L+−
12L

−+
12(L−+

12)Nv = 0, L++
12L

−−
12(L−−12)N

′
v = 0.

We use the factorisations of Propositions 6.4.13 and 6.4.15 to get
that C−+

12(N ) = C−−12(N ′) = C1(M1) = C2(M2) = 0. The minimality of
M1, M2 N and N ′ then implies that C−+

12(j) , 0, C−−12(j ′) , 0 C1(j1) , 0,
C2(j2) , 0 for 0 ≤ j < N , 0 ≤ j ′ < N ′, 0 ≤ j1 <M1, and 0 ≤ j2 <M2.

We thus have found a label for the representation V respecting (6.75),
concluding the proof.

Remark 6.5.10. In most cases, it will be possible to extract the values of
N, N ′, M1 and M2 from the weights.

We express pictorially in Figure 6.1 what Theorem 6.5.9 entails. Each
representation of Oκ has four chains of elements in T of respec-
tive length N , N ′, M1 and M2 and a highest-weight vector v. This
sketches how the corresponding irreducible T-representation looks
like.

Theorem 6.5.9 gives necessary conditions on the set of weights. We
close this chapter by investigating what certain specific choices of
weights imply.

6.5.4 Monogenic-type representations

It is possible to refine the coarse classification of Theorem 6.5.9 by
studying all candidate tuples of parameters respecting the equa-
tions (6.75), seeing if they indeed give rise to a finite-dimensional
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N

N ′

M1 M2

v

Figure 6.1: Four chains of vectors from Theorem 6.5.9 in any
finite-dimensional Oκ-representation. Diagonal North-West
links mean moving with L−+

12; diagonal South-West links mean
moving with L−−12; horizontal to the left, with L−1, and vertical
above, with L−2.

representation. The classification for W =D2m ×Z2 proceeded in the
same way, see Section 5.6.

Here, we focus on one branch of the possibilities by fixing the H1
and H2-eigenvalue to have M1 = N and M2 = 0 = N ′, and with a
restriction on ` and k; it will contain the motivating example of the
monogenic representations and, for κ sufficiently small, will also be
the only possibility; see Proposition 6.5.16. For general κ, however,
it is by no mean the only possibility for representations and we also
include in the following sections some cases with different weights,
but a complete exploration of all possibilities would get us outside
the scope of the thesis.

We will call Qa(j) of (6.60) maximal if Qa(j) = maxiQa(i).

Definition 6.5.11. Fix ` and k such that Q1(` + 1− 2N ) and Q2(k + 1)
are maximal. Let λ1 = 1/2+N +Q1(`+1−2N ), λ2 = 1/2+Q2(k+1) and
Λ = −1/2−λ1 −λ2. We call then the representation and such weights of
monogenic type.

The rationale behind this choice is the following consequence.
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Lemma 6.5.12. Let V be of monogenic type, and take v ∈ V to be the
highest-weight vector of Theorem 6.5.9. Then L−2v = 0 = L−−12v and so
M2 = 0 =N ′. Furthermore, M1 =N .

Proof. Having λ2 = 1/2 +Q2(k + 1) has the following consequence on
the factorisations from Propositions 6.4.13 and 6.4.14: L+

2L
−
2v = 0 =

L++
12L

−−
12v, so M2 = 0 =N ′.

From the value of λ1, we know C1(N ) = 0 = C−+
12(N ). We will check

that C1(j) , 0 and C12(j) , 0 for 0 ≤ j < N . For C1(j), we only have to
check the second factor of C1(j), since by maximality ofQ1(`+1−2N )
the first is never zero, and indeed looking at

((−1)jΛ−λ2)2 − (λ1 − j − 1
2 ) =

(1
2 +λ1)2 − (λ1 − j − 1

2 )2 j odd;

(1
2 +λ1 + 2λ2)2 − (λ1 − j − 1

2 ) j even;

we see that it is not zero for 0 ≤ j < N . For C−+
12(j) the first and second

factors are never zero by maximality of Q1(` + 1− 2N ) and Q2(k + 1)
and the last one is never zero since it is only zero if

(λ1 −λ2 − 2j − 1)2 = (Λ+ 1/2)2 (6.77)

⇔ (λ1 −λ2 − 2j − 1)2 = (λ1 +λ2)2 ⇔

λ1 = j + 1/2;

λ2 = −j − 1/2;
(6.78)

which is never the cases since j < N and λ2 > 0.

We will show that the representation U generated from k and ` will
never be two-dimensional for representation of monogenic type, that
is, we show the condition forces k , n and ` ,m.

Proposition 6.5.13. Suppose V is an irreducible representation of mono-
genic type, then ` ,m and k , n.

Proof. Suppose ` = m or k = n. We will show by contradiction that
it cannot happen. We have three cases to look at: (`,k) = (m,n);
(`,k) = (m,k), and (`,k) = (`,n).

We begin with (`,k) = (m,k). Then the highest-weight vector v of
Theorem 6.5.9 enjoys the following action of elements of T:

Zv =Λv, H1v = λ1v, H2v = (1/2 +Q2(k + 1))v. (6.79)
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The action of W̃ is then given, from Theorem 6.2.3, by

f̃1v = v, f̃2v = v2, r̃1v = −v, r̃2v = ηkv, (6.80)

for a certain v2 ∈ V in the same W̃ -representation as v. Then, the
relation f̃1H1 = −H1f̃1 implies that λ1 = 0 since

λ1v =H1v =H1f̃1v = −f̃1H1v = −λ1v. (6.81)

But this contradicts λ1 = 1/2 +N +Q1(` + 1− 2N ).

Now the case (`,k) = (`,n). Then we know Q2(n+ 1) = 0 and so λ2 =
1/2. However then f̃2v = v and H2v = λ2v so, using f̃2H2 = −H2f̃2,
we have λ2 = −λ2, a contradiction. There are no representation of
monogenic type for those values.

We conclude with the last case, (`,k) = (m,n). In this, by the same
argument as the first case, we have λ1 = 0, a contradiction.

We are now ready to reconstruct representation of monogenic type
from a label.

Proposition 6.5.14. Let N ∈N. Define λ1 :=N + 1/2 +Q1(` + 1− 2N ),
λ2 := 1/2+Q2(k+1) andΛ = −1/2−λ1−λ2 with 1 ≤ ` < m and 1 ≤ k < n
making Q1(`+ 1−2N ) and Q2(k+ 1) maximal. A highest-weight element
v with action of T0 given by

Zv =Λv, H1v = λ1, v H2v = λ2v, (6.82)

r̃1v = −ζ`v, r̃2v = −ηkv (6.83)

defines an irreducible Oκ-representation of monogenic type of dimension
2(N + 1)(N + 2) with a basis given by

B := {vδεij := τ̃εn σ̃
δ
m(L+

2)j(L−1)iv | δ,ε ∈ {0,1}, j ≤ i ∈ {0, . . . ,N }}. (6.84)

Proof. The element v defined in the proposition is a highest-weight
vector since the equations of Theorem 6.5.9 are respected and so
L+

1v = L+
2v = 0 = L++

12v = L+−
12v. The value of λ1 makes it so that

C−+
12(N ) = 0. From the maximality of Q1(` + 1− 2N ) and Q2(k + 1), we

have that C−+
12(j) , 0 for 0 ≤ j < N .

Then the action of T on the set (6.84) is retrieved from Proposi-
tions 6.4.13–6.4.15. The full action of Oκ on the vδεij is retrieved from
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Lemma 6.4.12. Indeed, on a u ∈ B with Hau = λuau and Zu =Λuu, we
have:

O δ+−
abb(u) =

(Lδa − 4Oδa(Λu + δλub ))

(2λua + δ)
u, (6.85)

O δε
12(u) =

1
(2λu1 + δ)(2λu2 + ε)

(
L δε

12 +Oδ
1O

ε+−
211(2λu2 + ε)

−O δ+−
122O

ε
2(2λu2 + δ)− 2Oδ

1O
ε
2(εδ − 2Λu)

)
u, (6.86)

and the two actions are well defined since the H1- and H2-weights of
elements of B are given by:

H1v
δε
ij = (−1)δ(λ1 − i)vδεij , H2v

δε
ij = (−1)ε(λ2 + i)vδεij , (6.87)

which implies in particular that (2λu1 + δ) , 0 and (2λu2 + ε) , 0 for all
u ∈ B since |(λ1 − i)| > 1/2 and |(λ2 + i)| > 1/2 for all 0 ≤ i ≤N .

Finally, all the vectors of B have distinct pairs of H1- and H2-eigenva-
lues, so they are all linearly independent. It is thus a basis.

Hence, we have defined an irreducible representation of monogenic
type of dimension 2(N + 1)(N + 2).

The algebra Oκ contains a deformation of the Lie algebra so(2d) by
the parameter function κ and the reflection group. When κ is in a
neighbourhood of 0, we will see that the representation theory is
restricted. The following definition makes precise what is meant by
neighbourhood of 0.

Definition 6.5.15. We call the parameter function κ small if Qa(j) ≤
1/2 for all j ∈N and a ∈ {1,2}.

When κ is small or zero, the only possible weights are the ones of
monogenic type, or close to those of monogenic type.

Proposition 6.5.16. When κ is small, then λ1 =N +1/2±Q1(`+1−2N ),
λ2 = 1/2±Q2(k + 1) and Λ = −1/2−λ1 −λ2. Furthermore, M1 =N and
M2 = 0 =N ′

Proof. Since 0 ≤Q1(` − 1),Q2(k − 1) ≤ 1/2, the only way to satisfy the
equations A1 = 0, A2 = 0 and B2 = 0 of Proposition 6.5.9 is to have
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the following set of quadratic equations:

(Λ+λ2)2 = (λ1 + 1/2)2, (Λ+λ1)2 = (λ2 + 1/2)2,

(λ1 +λ2 + 1)2 − (Λ− 1/2)2 = 0.
(6.88)

The only solution to (6.88) is Λ = −1/2 − λ1 − λ2. Then B1 = 0 is
satisfied either by λ2 = 1/2 or λ2 = 1/2±Q2(k+ 1). For both, M2 = 0 =
N ′.

Finally, with Λ = −1/2−λ1 −λ2, the only way to have C−+
12(N ) = 0 is

by

λ1 −N − 1/2 = ±Q1(` + 1− 2N ), so λ1 = 1/2 +N ±Q1(` + 1− 2N ),

since

(λ2 +N + 1/2)2 −Q2(k − 1 + 2N )2 , 0,

(λ1 −λ2 − 2N − 1)2 − (λ1 +λ2)2 , 0.

Then we also have C1(N ) = 0, and furthermore, C1(j) , 0 for 0 ≤ j < N
since

((N − j ±Q1(` + 1− 2N ))2 −E+
1 (j)) , 0

((−1)j(N + 1/2∓Q1(` + 1− 2N )∓Q2(k + 1)) + 1/2±Q2(k + 1))2 ,

(N − j ±Q1(` + 1− 2N ))2,

which comes from the fact that Qa(j) ≤ 1/2.

Remark 6.5.17. When κ = 0, we find λ1 = N + 1/2, λ2 = 1/2, and
Λ = −1/2−λ1 −λ2, and M1 =N , M2 = 0 =N ′.

Remark 6.5.18. For small κ, Proposition 6.5.14 will also work for any
set of label of the form (Λ = −1/2 − λ1 − λ2,λ1 = N + 1/2 ±Q1(` + 1 −
2N ),λ2 = 1/2 ±Q2(k + 1),ζ`,ηk). Furthermore, all finite-dimensional
irreducible representations for small κ are of this form by the proof of
Proposition 6.5.16.

6.5.5 Representations not of monogenic type

The representations of monogenic type falls in but one of the bran-
ches that Theorem 6.5.9 leaves to investigation. In this section, we
explore some of the other possibilities.
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We will relax the assumptions on λ1,λ2 andΛ. From now on, assume
λ2 = 1/2±Q2(k + 1), understanding that if λ2 = 1/2−Q2(k + 1) then
Q2(k + 1) ≤ 1/2, and assume Λ = −1/2−λ1 −λ2. Note that we do not
assume anything about the maximality of Q2(k+ 1). Furthermore, we
still have L−2v = 0 = L−−12v and so M2 = 0 = N ′. We summarise in the
following.

Definition 6.5.19. A finite-dimensional representation and its highest
weight are in the relaxed case if

λ2 = 1/2±Q2(k + 1), Λ = −1/2−λ1 −λ2. (6.89)

We first show that λ1 is restricted to a certain form from the relaxed
data (6.89)

Proposition 6.5.20. Let V be an irreducible finite-dimensional represen-
tation with condition (6.89). The values λ1 can take are then restricted
to λ1 =M + 1/2±Q1(` + 1− 2M) for a certain M.

Proof. When λ2 = 1/2±Q2(k + 1) and Λ = −1/2−λ1 −λ2, the relation
C−+

12(N ) = 0 can be satisfied in the following ways:

1) (λ2 + N + 1/2)2 −Q2(k− 1 + 2N)2 = 0. This can happen if Q2(k −
1+2N ) = 1+N +Q2(k+1). Then from C1(M1) = 0 we get the equation

((λ1−M1−1/2)2−Q1(`+1−2M1)2)(((−1)M1Λ−λ2)2−(λ1−M1+1/2) = 0,

that can be satisfied by λ1 =M1 + 1/2±Q1(` + 1−2M1), which satisfy
the proposition, or else by solving for the second factor, which results
in λ1 = −1/2 +M1/2±Q2(k + 1) for M1 even or λ1 = 1/2 + (M1 −1)/2
for M1 odd.

2) (λ1 −λ2 − 2N− 1)2 = (λ1 +λ2)2. This only happens if λ1 = 1/2+N
or if λ2 = −(2N+1)/2, the latter being a contradiction on the positivity
of λ2. So, M =N , and λ1 =N + 1/2 with Q1(` + 1− 2N ) = 0. The last
conditions come from the fact that, by Lemma 6.5.1, (L−1)N+1v = 0
since the H1 weight of (L−1)Nv is 1/2 and so L+

1L
−
1(L−1)Nv = 0 and

((λ1 −N − 1/2)2 −Q1(` + 1− 2N )2)((Λ−λ2)2 − (λ1 −N − 1/2)2) = 0

Q1(` + 1− 2N )2(−N − 2∓ 2Q2(k + 1))2 = 0,
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which forces Q1(` + 1− 2N )2 = 0. Indeed, Q2(k + 1) ≥ 0 and if λ2 =
1/2−Q2(k + 1), then Q2(k + 1) ≤ 1/2 so −N − 2∓ 2Q2(k + 1) , 0.

3) (λ1 −N− 1/2)2 −Q1(` + 1− 2N)2 = 0. This only happens if λ1 =
(2N + 1)/2±Q1(` + 1− 2N ).

All cases have been covered, which concludes the proof.

The only shape possible for the T weight space of representations of
monogenic type was a triangle. We see from Proposition 6.5.20 that
more possibilities can happen if we relax the conditions. Two of the
possibilities are presented in Figure 6.2.

N

N

(a) The triangle.

N

M1

(b) The trapezoid.

Figure 6.2: Two possibilities of weight space geometries for rep-
resentations with λ2 = 1/2±Q2(k + 1) and Λ = −1/2−λ1 −λ2.

In this relaxed case (6.89), there are representations with U :=U (`,k)
of dimension 2. In all instances, the Oκ-representation obtained
from the data will be shown to be also 2-dimensional.

Proposition 6.5.21. Let (Λ,λ1,λ2,ζ
`,ηk) be the label of an irreducible

representation V of Oκ respecting conditions of Theorem 6.5.9. If λ2 =
1/2 ± Q2(k + 1), Λ = −1/2 − λ1 − λ2 and ` = m or k = n, then V is
2-dimensional with remaining weights

λ1 = 0, Λ = −1, λ2 = 1/2, ` =m, N =N ′ = 0 =M1 =M2,

with k and κ such that Q2(k + 1) = 0 and Q2(k − 1) = 1.
(6.90)
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Proof. We will show that V must be characterised by the label and
the action given in (6.90). We have three cases to look at: (`,k) =
(m,n); (`,k) = (m,k), and (`,k) = (`,n). The first two will be shown to
contradict (6.89) and the remaining, to lead to a two-dimensional
representation with label given in (6.90).

We begin with (`,k) = (m,n). Then the highest-weight vector v of
Theorem 6.5.9 enjoys the following action of elements of T:

Zv =Λv, H1v = λ1v, H2v = (1/2±Q2(k + 1))v. (6.91)

The action of W̃ is then given, from Theorem 6.2.3, by

f̃1v = v, f̃2v = v2, r̃1v = −v, r̃2v = −v, (6.92)

for a certain v2 ∈ V in the same W̃ -representation as v. Then, the
relation f̃1H1 = −H1f̃1 implies that λ1 = 0 since

λ1 =H1v =H1f̃1v = −f̃1H1v = −λ1v. (6.93)

Since ` =m and k = n and bothm,n ≥ 2, thenQ1(m±1) = 0 =Q2(n±1)
and so λ2 = 1/2.

We can also already know that L−1v = 0 since v is a highest-weight
vector and so it is annihilated by L+

1. Indeed, applying Lemma 6.4.5
implies:

L−1v = L−1σ̃mv = −σ̃mL+
1v = 0. (6.94)

So M1 = 0.

As L+
2v = 0 = L−1v, then factorisations of Proposition 6.4.14 implies

that L−+
12v = 0 since λ1 + λ2 +Λ + 1/2 and λ1 + λ2 −Λ − 1/2 cannot

both be 0 with λ1 = 0 and λ2 = 1/2. Hence N = 0. So relations (6.75)
becomes (note that B1 = 0 since V respects (6.89)):

(A1 = 0) (Λ+ 1/2)2 − 1/4 = 0; (6.95)

(A2 = 0) Λ2 − 1 = 0; (6.96)

(B2 = 0) (3/2)2 − (Λ− 1/2)2 = 0; (6.97)

(C−+
12(0) = 0) (3/2)2 − (Λ+ 1/2)2 = 0; (6.98)

and we can see from the two last equations that both cannot be true
at the same time, so there are no representation with λ2 and Λ given
in (6.89) when ` =m, k = n.
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Now the case (`,k) = (`,n). Then we know Q2(n+ 1) = 0 and so λ2 =
1/2. However then f̃2v = v and H2v = λ2v so, using f̃2H2 = −H2f̃2,
we have λ2 = −λ2, a contradiction. There are no representation with
relaxed data (6.89) for those values.

We conclude with the last case, (`,k) = (m,k). Recall that we still
have M2 = 0 =N ′ by (6.89). Furthermore, by the same argument as
the first case, we have λ1 = 0 and N = 0 = M1 since L−1v = 0 = L+

2v.
However, now the values of Q2(k ± 1) are unknown. Relations (6.75)
become

(A1 = 0) (Λ+λ2)2 − 1/4 = 0;

(A2 = 0) ((λ2 + 1/2)2 −F−2 (0))(Λ2 − (λ2 + 1/2)2) = 0;

(B2 = 0) ((λ2 + 1/2)2 −F−2 (0))((λ2 + 1)2 − (Λ− 1/2)2) = 0;

(C−+
12(0) = 0) ((λ2 + 1/2)2 −F−2 (0))((λ2 + 1)2 − (Λ+ 1/2)2) = 0.

From A1 = 0 and A2 = 0 we have Λ = −1/2−λ2. Then B2 = 0 is also
satisfied. For C−+

12(0) = 0 then either

(λ2 + 1)2 −λ2
2 = 0, (6.99)

but then λ2 = −1/2, a contradiction with the positivity, or

(λ2 + 1/2)2 −Q2(k − 1)2 = 0 ⇔ (1±Q2(k + 1))2 =Q2(k − 1)2,

which then means that Q2(k + 1) = 0 and Q2(k − 1) = 1 with λ2 = 1/2.

The Oκ-representation is 2-dimensional and given by v and f̃2v.

We thus retrieve the conditions described in (6.90).

Everything is set to do a construction similar to that of Proposi-
tion 6.5.14 with the values of λ1 in Proposition 6.5.20. There, the
representations depends on the values of κ: for some values, they
become reducible and split in two smaller representations. A process
similar to that of Chapter 5 would yield a complete classification of
the finite-dimensional representations. One would then have condi-
tions on the values of κ after long verifications. We leave the complete
classification for the future and conclude here with a worked-out
example of the representation of monogenic type.
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Remark 6.5.22. Of course, there are other possibilities outside the relaxed
case (6.89). The complete classification is far outside the scope of the thesis
and is left for future work.

6.5.6 An example of representations

The monogenic type Let κ = (κ1,κ2,κ3,κ4) ∈R4
≥0. In the following

example, we take m = 3, n = 4, and the label λ1 = 7/2 + 3κ1, λ2 =
1/2 + 2(κ3 + κ4), ` = 5, k = 7 (for ease of computation, we took an
equivalent index for the W̃ -representation). This gives us

Λ = −λ1 −λ2 = −9/2− 3κ1 − 2(κ3 +κ4).

We check if the first relations (6.75) are satisfied:

A1 = (4 + 3κ1)2((−4− 3κ1 − 2(κ3 +κ4) + 2(κ3 +κ4))2 − (4 + 3κ1)2) = 0;

A2 = (1 + 2(κ3 +κ4))2((−1− 2(κ3 +κ4))2 − (1 + 2(κ3 −κ4))2) = 0;

B1 = (4 + 3κ1)2((2(κ3 +κ4))2 − 4(κ3 +κ4)2)×
((4 + 3κ1 − 2(κ3 +κ4))2 − (−4− 3κ1 − 2(κ3 +κ4))2) = 0;

B2 = (4 + 3κ1)2(2(κ3 +κ4))2×
((5 + 3κ1 + 2(κ3 +κ4))2 − (−5− 3κ1 − 2(κ3 +κ4))2) = 0.

L++
12

L+−
12

L−+
12

L−−12

L+
1

L+
2

L−1

L−2

σ̃

τ̃

Negative cen-
tral parameter

Positive cen-
tral parameter

Figure 6.3: Navigation convention.

There are other relations to check, but we will already start and do
so along the way. We begin by expliciting our graphical notation in
Figure 6.3.
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Since we have a highest weight vector, we act as much as we can
with L−+

12 until we reach the point where acting further would be 0,
following the relations between our parameters, it is illustrated in
Figure 6.4. It gives us the value of the parameter N in the theorem.
Here, N = 3. Indeed, we know L−+

12L
+−
12(L+−

12)Kv = C−+
12(K)v, so we only

need to check that C−+
12(0) , 0,C−+

12(1) , 0,C−+
12(2) , 0 and C−+

12(3) =
0:

C−+
12(0) = ((3 + 3κ1)2 − 9κ2

1)(1 + 2(κ3 −κ4))2×
((2 + 3κ1 − 2(κ3 +κ4))2 − (−4− 3κ1 − 2(κ3 +κ4))2) , 0

C−+
12(1) = (2 + 3κ1)2((2 + 2(κ3 +κ4))2 − 4(κ1 +κ4)2)×

((3κ1 − 2(κ3 −κ4))2 − (−3− 3κ1 − 2(κ3 −κ4))2) , 0

C−+
12(2) = (1 + 3κ1)2(3 + 2(κ3 +κ4))2×

((−2 + 3κ1 − 2(κ3 −κ4))2 − (−3− 3κ1 − 2(κ3 −κ4))2) , 0

C−+
12(3) = ((3κ1)2 − 9κ2

1)((4 + 2(κ3 +κ4))2 − 4(κ3 +κ4)2)×
((−4 + 3κ1 − 2(κ3 +κ4))2 − (−3− 3κ1 − 2(κ3 +κ4))2) = 0

It was also possible to extract directly N from this specific value of
λ1 as the label uses maximal Qa(j).

σ̃

τ̃

-7

-7

-5

-5

-3

-3

-1

-1

1

1

3

3

5

5

7

7
2H1 − 6κ1 weights

2H
2
−

4(
κ

3
+
κ

4
)

Figure 6.4: Finding the longest chain.

We also have to check that C1(3) = 0, and C1(0) , 0, C1(1) , 0, C1(2) ,
0. We simply replace the values in the equations and find:

C1(0) = ((3 + 3κ1)2 − 9κ2
1)((−5− 3κ1 − 4(κ3 +κ4))2 − (3 + 3κ1)2) , 0;
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C1(1) = (2 + 3κ1)2((2 + 3κ1)2 − (2 + 3κ1)2) , 0;

C1(2) = (1 + 3κ1)2((−5− 3κ1 − 4(κ3 +κ4))2 − (1 + 3κ1)2) , 0;

C1(3) = ((0 + 3κ1)2 − 9κ2
1)((2 + 3κ1)2 − (3κ1)2) = 0.

Note that L−−12v = 0 = L−2v, and so M2 = 0 =N ′, since

((λ2 − 1/2)2 −F+
2 (0)) = ((1/2 + 2(κ3 +κ4)− 1/2)2 − 4(κ3 +κ4)2 = 0.

Once this is done, we can visit all the other possible weights of the
grid in the quadrant by defining vij := (L+

2)j(L−1)iv for j ≤ i ∈ {0, . . . ,N }.
This is shown in Figure 6.5. That they are not zero can be verified
by checking that the action of L±aL

∓
a is non-zero in the appropriate

directions.
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Figure 6.5: Visiting the whole quadrant with T.

The last step is to look at the action of Oκ on V with W̃ . An orbit
of the W̃ -representation U is given by the four possible reflections
along the axis (including the trivial one). Then all the weight spaces
for the four distinct T-representations are visited. It is shown in
Figure 6.6.

The basis of the 40 elements is given by

B := {vδεij := σ̃δmτ̃
ε
n(L−2)j(L−1)iv | δ,ε ∈ {0,1},0 ≤ j ≤ i ≤ 3}. (6.100)
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Figure 6.6: Induction from T to Oκ by W̃ .

That it is indeed a Oκ-representation is observed by giving the ac-
tions of the other generating elements of Oκ as in Proposition 6.5.14.
Since the denominators of (6.85) and (6.86) are never zero in the
monogenic case, the formulas are explicit. For example, we have
O−+

12v
00
00 = −v00

11/(4(λ1 +λ2 −Λ− 1/2)).
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7
Conclusion and further research

We give a brief reminder of what was done in each chapter, present
the main ideas of the thesis and end by reviewing avenues for future
works.

7.1 Review of the thesis

In this thesis, we have studied the representations of the Dunkl total
angular momentum algebra, and we have focussed specifically on
two families of reflection groups. For the dihedral groups and the
product of two dihedral groups, we gave the classifications of the
finite-dimensional irreducible representations. For general groups,
we gave a construction for the polynomial null solutions of the Dunkl–
Dirac equation using generalised symmetries of the Dunkl–Dirac
operator.

In Chapter 2, we reviewed the definitions and properties of the alge-
braic objects encountered in the rest of the thesis. We also presented
some general properties of the total angular momentum algebra
collected from the literature.

In Chapter 3 we presented a construction of bases of monogenic
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polynomials by using generalised symmetries. This way, for any
reflection group, we can realise one irreducible representation of
Oκ. The construction uses a Dunkl–Kelvin inverse transform and
retrieves the formulas of [DGV16b] for the group W = Z

d
2 .

In Chapter 4, we presented the total angular momentum algebra
for the group W = D12 ⊂ O(3) linked with the root system G2. We
obtained structural results on the algebra and ladder operators.

In Chapter 5, we presented the irreducible finite-dimensional rep-
resentations of Oκ(W,V ) for V = R

3 and W = D2m ×Z2 ⊂ O(3). The
main tools for that study were ladder operators and a weight the-
ory reminiscent of that of sl(2). The full classification was given
along with restrictions on the parameter function κ needed in order
for the representation to be unitary. A family of examples of irre-
ducible representations was also given via spinor-valued monogenic
polynomials, and their explicit form was given using orthogonal
polynomials.

In Chapter 6, we studied the representations of Oκ associated with
the group W = D2m ×D2n ⊂ O(4). The main idea was to use a subal-
gebra T ⊂ Oκ with a triangular decomposition T = T−T+T0 to get
a weight theory. Then we could use the weight theory to give a
coarse classification of the possible finite-dimensional representa-
tions, and in some cases, we constructed the representation from the
weights.

7.2 Main takeaways

We now highlight the main results of the thesis by revisiting them as
takeaways. The first one comes from Theorem 3.4.4.

Takeaway A (Generalised symmetries monogenic bases). The gener-
alised symmetries of the Dunkl–Dirac operator

zj := 2εxjH − xDjx

can be used to create a basis of the polynomial monogenics Pn(Rd ,V )
of degree n. Let ν be a basis of V and denote zβ := z

β1
1 . . .z

βn
d for β =

(β1, . . . ,βd) ∈Nd the basis is given by:

Bn = {zjs | j = (j − 1, . . . , jd−1,0) ∈Nd , |j |1 = n,s ∈ ν}.
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The second one concerns Theorems 5.6.1 and 5.6.2.

Takeaway B (Finite-dimensional representations for W = D2m ×Z2).
The finite-dimensional irreducible representations of Oκ are classified for
the group W = D2m ×Z2 ⊂ O(3).

The following is an extension of the results presented in Lemma 5.6.3
and Proposition 6.4.17. We will say dihedral Oκ for the cases where
W = D2m1

× · · · ×D2md
and V = R

2d or W = D2m1
× · · · ×D2md

×Z2 and
V = R

2d+1.

Takeaway C (Triangular subalgebras for the dihedral cases). For
dihedral Oκ, there exists a triangular subalgebra T ⊂Oκ with a weight
structure that captures the representation theory of Oκ.

The last takeaway is extracted from Theorems 5.6.1 and 5.6.2, and
Proposition 6.5.16.

Takeaway D (Representation for small parameter function). When κ
is small, the representations of the dihedral Oκ share the same structure
as those appearing when κ = 0.

7.3 Ongoing and future work

We now briefly go over ongoing work and avenues for future investi-
gations.

7.3.1 Algebra of generalised symmetries

In Chapter 3, we used a family of generalised symmetries of the
Dunkl–Dirac operator to obtain bases for polynomial monogenics
for any reflection group W . It invites the question: under a suit-
able generalisation of Dunkl–Dirac operator, what is the algebraic
structure generated by the generalised symmetries of the Dirac oper-
ator? We know that it will generate an algebra containing the total
angular momentum algebra and that the polynomial monogenics
will be an infinite-dimensional irreducible representation. Since the
generalised symmetries do not necessarily commute with the dual
symbol, it means in particular that they do not preserve the degree
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of polynomials, hence the infinite-dimensionality of the representa-
tions.

The algebraic structure generated by those generalised symmetries
was studied in the super-case by Coulembier and De Bie [CD15].
Similar work should be achievable in the Dunkl deformed case, with
a fair refinement of the complexity due to the addition of the group
algebra. An encouraging sign however is the presence of the Dunkl–
Clifford–Kelvin inverse (see (3.24)) similar to the one that was used
in [CD15].

Another avenue would be to use the anti-involution given by x∗i = Di

and D∗i = xi to have the dual of the generalised symmetries of x,
and see what the interactions of the two families of generalised
symmetries reveal.

7.3.2 Dihedral total angular momentum algebra

Chapters 4–6 were concerned with various families of total angular
momentum algebras linked with dihedral groups. As we remarked
in Takeaway C, the triangular subalgebra T ⊂Oκ and its properties
hold, up to suitable generalisations, in all total angular momentum
algebras linked with a product of p dihedral groups and possibly Z2.
In this case, from preliminary computations and investigations with
De Martino and Oste, we know that the weight space will be of di-
mension p and that it will be possible to navigate in the weight space
using ladder-like operators with a triangular structure. From this, it
should be relatively straightforward to get a coarse classification of
the finite-dimensional representations. However, the precise locus of
the algebraic variety generated by the intersection of the polynomial
equations that will be obtained might be hard as we would have
to find the proper factorisations, as in Propositions 5.5.10, 6.4.13–
6.4.15.

The second direction is to consider in more detail the cases with
specific parameters to better understand what happens. When there
is only one dihedral group as in Chapter 5, the behaviour only sep-
arates the irreducible representations: they split into two smaller
irreducible cases present at lower level. Our investigations into the
double dihedral cases seems to indicate that something more inter-
esting happens: the representation splits into non-deformed cases
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translated on the weight space and a case only appearing in the
deformed case. Figure 7.1 illustrates this behaviour.

N

M1

M2

Figure 7.1: The conjectured main form of a T-weight space in
W = D2m × D2n. The green parts at the top, the right and the
bottom are parts “cut” from the main representation. The unde-
formed representation would be the full triangle, but deforma-
tions split it in possibly four parts.

The question is then if adding more dihedral groups could lead to
more exotic representation theory from the interaction between the
different problematic values of the parameter function. Example of
what could happen would be the split into indecomposable parts
when the extra mobility in the weight space could lead to paths that
go in only one direction. Naturally, this would have to happen for
values where unitarity fails.

7.3.3 Other groups and other dual pairs

The total angular momentum algebra Oκ is linked with the Howe
dual pair (Pin(d),osp(1|2)). Other dual pairs lead to different algebras.
Recently, Ciubotaru and De Martino studied the Dunkl deformation
of the dual pair (O(d),spo(2|2)) [CD20], and Ciubotaru, De Bie, De
Martino and Oste have studied the unitary dual pairs (U (n),u(1,1))
and (U (n),u(2|1)) [Ciu+20].

The algebras linked to these other dual pairs are similar to the algebra
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Oκ studied in this thesis. It would be interesting to see if we could
do a similar work at the level of the representation theory for other
dual pairs.

One theme of the thesis was to consider what happens when we add
another group, that is, to consider reducible root systems. It would be
interesting to see if we can use the theory developed here to say some-
thing about the representations of the symmetry algebra associated
with groups of the form W = G ×H , when the representation theory
of the algebra associated to G and H are known in the smaller spaces.
The double coverings could be extracted from Morris [Mor80], and
already, the results of Chapter 3 indicate that on the monogenic rep-
resentations, there seems to be a way of passing from monogenic
polynomials of smaller rank to those of higher rank, generalising in
a way the Cauchy–Kovalevskaya proven in the case W = Z

d
2 .

Finally, the last direction we are considering is, of course, to consider
the representation theory of the algebraOκ(W,V ) for a general group
W . The priority is for the general family An. The main difficulty is
the irreducibility of the root system which means that there are no
subalgebra that can play the role of T.

To study the family, the first step is to understand the spin represen-
tations of Sn+1, coming back to the seminal thesis of Schur [Sch07]
and revisited in works of Józefiak [Józ89], Nazarov [Naz90], Bessen-
rodt [Bes94], Hoffman and Humphreys [HH92] or Brundan and
Kleschev [BK03]; each with different flavours. The second step we
propose is to study a chain of subalgebras by considering the inclu-
sion A1 ⊂ A2 ⊂ · · · ⊂ An. A way to proceed in this direction could pass
by the series of papers by Okounkov, Sergeev and Vershik [OV96;
VO05; Ver06; VS08] since they make strong use of the tower of subal-
gebra and use the specificity of the Jucy–Murphy elements present..
The projective representation of S̃n were also described by Dirac
cohomology [Cal19], and it seems useful to consider the interac-
tion with the total angular momentum algebra there. It seems to us
that the stepping stone would then be to obtain a description of the
representation theory for the A3 and the A4 cases.

A full classification of the finite-dimensional representations seems
out of reach, but a restriction to generic values of the parameter
function should be attainable. By this we mean that focussing on
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values for which the representations can be unitary and taking small
enough deformation to avoid problems might yield conditions strict
enough to give a better classification of the finite-dimensional repre-
sentations. However, we note that for our current methods to extend,
we would need to pursue work in the direction of obtaining a proper
definition of the relations of the algebra.

At the moment, it seems more realistic to focus on what can be
learned from the structure of the rational Cherednik algebra. A first
indication of the structure for the representations could be obtained
by taking modules of rational Cherednik algebras, tensoring them
with spinor spaces for the Clifford algebra and then restricting to
Oκ.
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A
Nederlandstalige samenvatting

Dunkl-operatoren zijn veralgemeningen van partiële afgeleiden
waaraan elementen van de groepsalgebra van een reflectiegroep
toegevoegd zijn. Samen met de variabelen (als vermenigvuldiging-
soperatoren) en de groepsalgebra van de reflectiegroep, genereren
Dunkl-operatoren een representatie van de rationale Cherednik alge-
bra geassocieerd met die reflectiegroep.

Binnen de rationale Cherednik algebra kan men een sl(2)-tripel iden-
tificeren. In de Dunkl-representatie realiseren de Dunkl-veralge-
meningen van de Laplace-operator, de Euler-operator en de norm in
het kwadraat dit sl(2)-tripel.

In de klassieke setting kan de Dirac-operator als de vierkantswor-
tel van de Laplace-operator gedefinieerd worden aan de hand van
Clifford-algebra elementen. De algebraïsche structuur gegenereerd
door de Dirac-operator en de vectorvariabele is de Lie-superalgebra
osp(1|2). We kunnen hetzelfde proces uitvoeren voor rationale Che-
rednik algebra’s. Daar vinden we ook een realisatie van de Lie-
superalgebra osp(1|2) binnen het tensorproduct met een Clifford-
algebra. Een geschikte Dunkl-generalisatie van de Dirac-operator en
zijn duale geven de realisatie in de Dunkl-representatie.
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In hoofdstuk 3 geven we een constructie voor de veeltermoplossin-
gen van de Dirac-vergelijking, geldig voor elke reflectiegroep. Hi-
ervoor gebruiken we veralgemeende symmetrieën van de Dunkl–
Dirac-operator. Voor specifieke groepen kunnen we expliciete uit-
drukkingen met Jacobi-polynomen van de veeltermen vinden. We
presenteren dit voor het geval van een compleet reduceerbare abelse
groep. Bovendien geven we een verband met een Cauchy–Kovalev-
skaya extensiestelling.

Onze focus voor de rest van de proefschrift gaat naar een subalgebra
in het tensorproduct van een rationale Cherednik-algebra en een
Clifford-algebra: de (Dunkl) totaalimpulsmomentalgebra. Het is de
supercentraliser van de osp(1|2) realisatie.

In hoofdstuk 5 classificeren we alle eindig-dimensionale irreducie-
bele representaties van de totaalimpulsmomentalgebra geassocieerd
met een dihedrale groep in een drie-dimensionale ruimte. We bepa-
len ook de voorwaarden voor de parameterfunctie opdat de repre-
sentaties unitair zouden zijn en de representaties kunnen gesplitst
worden. We geven een (spinor-waardige) veeltermrealisatie voor
een specifieke familie van representaties aan de hand van Jacobi-
polynomen. Dit is afkomstig van een Cauchy–Kovalevskaya extensi-
estelling.

In hoofdstuk 6 bestuderen we de totaalimpulsmomentalgebra geas-
socieerd met de vermenigvuldiging van twee dihedrale groepen in
een vier-dimensionale ruimte. Hiervoor gebruiken we een specifieke
subalgebra die een triangulaire decompositie toelaat. Door gebruik
te maken van de geassocieerde gewichtstructuur en een verzameling
van ladderoperatoren, wordt het mogelijk om de representaties van
de dubbele dihedrale totaalimpulsmomentalgebra op te stellen. De
methoden van de twee laatste hoofstukken kunnen uitgebreid wor-
den naar de studie van de totaalimpulsmomentalgebra geassocieerd
met een arbitrair aantal dihedrale groepen.



English summary

Dunkl operators are generalisations of partial derivatives adding
terms coming from the group algebra of a reflection group. Given a
reflection group and a parameter function invariant under the action
of the group, the Dunkl operators with the variable multiplication
and the group algebra of the reflection group generate a representa-
tion of the rational Cherednik algebra associated with this reflection
group.

Inside the rational Cherednik algebra, there is an sl(2) triple; in the
Dunkl representation, this is realised as the Dunkl generalisation of
the Laplace operator, the Euler operator and the squared norm.

In the classical setting, the Dirac operator is defined as the square
root of the Laplace operator using Clifford algebra. The algebraic
structure generated by the Dirac operator and its vector variable is
the Lie superalgebra osp(1|2). We can mimic the same process in the
rational Cherednik algebra context and find a realisation of osp(1|2)
in the tensor product with a Clifford algebra. In the Dunkl realisation,
it is given by the suitable Dunkl generalisation of the Dirac operator
and its dual symbol.

In Chapter 3, we give a construction for the Dunkl polynomial mono-
genics, solutions of the Dunkl–Dirac equation, for any reflection
group using generalised symmetries of the Dunkl–Dirac operator.
For specific groups, it enables explicit expressions of the polynomial
monogenics using special functions. We present it for the completely
reducible abelian case and link partial generalised symmetries with
a Cauchy–Kovalevskaya extension theorem.

Our focus for the rest of the thesis lies on a subalgebra in the tensor
product of a rational Cherednik algebra and a Clifford algebra: the
(Dunkl) total angular momentum algebra. It is the supercentraliser
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of the osp(1|2) realisation present inside.

We give in Chapter 5 the complete classification of the finite-dimen-
sional irreducible representations of the total angular momentum
algebra associated with a dihedral group in a three-dimensional spa-
ce. We also give condition on the parameter function for unitarity
and as to when the representations will split. For a specific family
of representations, we give a (spinor-valued) polynomial realisation
by expressing Dunkl polynomial monogenics explicitly using Jacobi
polynomials. This came from a Cauchy–Kovalevskaya extension
theorem.

In Chapter 6, we study the total angular momentum algebra in a four-
dimensional space associated to the product of two dihedral groups.
This is done by using a subalgebra specific to this reducible context
admitting a triangular decomposition. With a weight structure on
the subalgebra and using a set of ladder operators, it is possible to
characterise the representation of the double dihedral total angular
momentum algebra. It is our hope that the method of the two last
chapters will transfer to the study of the total angular momentum al-
gebra associated with an arbitrary number of dihedral groups.
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