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Introduction

Welcome to the Kleine Seminar! Introduced in the summer 2019 by a small gathering of (post)-
doctoral students at Universiteit Gent, the Kleine Seminar is thought to be held during the course
session and has the objective to study some subjects the members are interested in. Subjects are chosen on a

unanimous vote from the
presenting member

For each
subject, every member will get to present a piece of the material.

This small book groups the minutes of the meetings based upon a member live-TEXing and the
presenter own notes. Some comments in the margin are placed through the text to represent the
discussion, formal and informal, the members had. It’s not really mandatory,

but it does add somewhat a
more discussing tone!

It is based loosely in the graffiti the interesting
Concrete Mathematics book by Graham and Knuth [3]. Some of them are signed if the writer
remembers (and deem the correct worthy of authorship).

The Fall 2019 session aims to uncover the secrets of Double Affine Hecke Algebras (DAHA)
[]. For this objective, At the time of writing this

graffiti, I am still unsure
about distinction between
Iwahori-Hecke and Hecke
and I think the parentheses
reflect this general
sentiment

the members deemed interesting to recover the classical (Iwahori)-Hecke
algebras representation theory fromAndrewMathas’s book [5] before attacking the Double Affine
Hecke case. The DAHA is an unifying theme of the research of many amongst us and having in
common this language would, hopefully, help collaboration between us.

An interesting point of Mathas approach is its use of cellular algebras. With strong links in
diagrammatic algebras, this approach also should be interesting and even useful to some of your
research. Finally, its emphasis on symmetric group offer an example to apply the theory in the
𝐴𝑛−1 root system, something that appears in the research of many of the members.

All comments are welcomed, corrections can be directly made by one of the member, so
contacting any of them should work, as long as they are still at Universiteit Gent.

Sincerely, the committee

Sigiswald Barbier;
Asmus Bisbo;

Sam Claerebout;
Hadewijch De Clercq;

Alexis Langlois-Rémillard;
Roy Oste;

Wouter van de Vijver.
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Chapter 1

Introducing the (Iwahori)-Hecke
algebras

Presented by Asmus Bisbo on 19-09-2019.
Notes recorded by Alexis Langlois-Rémillard and Wouter van de Vijver.

1.1 Symmetric group
In this section, the symmetric group is defined in a Coxeter group fashion and some technical
lemmas are proved to prepare for the proof of the definition of the Iwahori-Hecke algebra. Most
of the proof are quite technical and are all done in the chapter 1 of Mathas and shall thus be absent
from these notes.

Notation Let 𝑛 ∈ ℕ and 𝑆𝑛 the symmetric group with a right action on the set {1 … , 𝑛}. Let 𝑖
run from 1 to 𝑛 − 1 and 𝑠𝑖 ∶= (𝑖, 𝑖 + 1). Put 𝑆 = {𝑠1, … , 𝑠𝑛−1 to be the set of simple transposition
of the symmetric group.

As a Coxeter group the group 𝑆𝑛 is generated by the 𝑠𝑖 with relations: Note that the last relation is
equivalent to (𝑠𝑖𝑠𝑖+1)3 = 1.
Al.𝑠2

𝑖 = 1;

braid relations
{

𝑠𝑖𝑠𝑗 = 𝑠𝑗𝑠𝑖 1 ≤ 𝑖 < 𝑗 − 1 ≤ 𝑛 − 2;
𝑠𝑖𝑠𝑖+1𝑠𝑖 = 𝑠𝑖+1𝑠𝑖𝑠𝑖+1 1 ≤ 𝑖 ≤ 𝑛 − 2.

Let 𝜔 ∈ 𝑆𝑛 and write 𝜔 = 𝑠𝑖1 … 𝑠𝑖𝑘 . If 𝑘 is minimal then 𝜔 has length 𝑘, noted by ℓ(𝜔) = 𝑘, and
the presentation is said to be reduced.

Dyer reflection cocycle is defined by: This Dyer cocyle has nice
interpretation in my
research on polynomial
representations of
𝔬𝔰𝔭(1, 2𝑛), especially for
ordering Young tableaux
and diagrams. As.

𝑁(𝜔) = {(𝑗, 𝑛) ∈ 𝑆𝑛 |1 ≤ 𝑗 < 𝑘 ≤ 𝑛, 𝑗𝜔 > 𝑘𝜔} .
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Define 𝐴+̇𝐵 ∶= 𝐴 ∪ 𝐵\(𝐴 ∩ 𝐵) to be the symmetric sum for two sets 𝐴 and 𝐵.Watchout for the dot on the
plus!

Lemma 1.1.1 (Dyer). If 𝑣, 𝑤 ∈ 𝑆𝑛 then 𝑁(𝑣𝑤) = 𝑁(𝑣)+̇𝑣𝑁(𝑤)𝑣−1

Proof. The proof is based on induction on the length of the permutation 𝑣.

Here Wouter’s live-TEX
ended and we must rely on
Alexis’s manuscript notes,

let’s hope!

We introduce new notation. Let

𝑇 = {(𝑗𝑘) ∣ 1 ≤ 𝑗 < 𝑘 ≤ 𝑛} = ⋃
𝜔∈𝑆𝑛

𝜔𝑆𝜔−1.

Proposition 1.1.2. If 𝜔 ∈ 𝑆𝑛, thenThe proof is to pick a
reduced expression, then 𝑡𝑎

is to be the element of
order 2 in the first 𝑎 simple

transpositions and use
preceding lemma

repeatedly to arrive at a
decomposition in the 𝑡𝑎.
Now prove 𝑎 ≠ 𝑏 implies
𝑡𝑎 ≠ 𝑡𝑏 by contradiction
because it’s reduced and

the result is given. Al.

1. ℓ(𝜔) = |𝑁(𝜔)|;

2. 𝑁(𝜔) = {𝑡 ∈ 𝑇 ∣ ℓ(𝑡𝜔) < ℓ(𝜔)}.

This proposition has a direct corollary.

Corollary 1.1.3. Let 𝜔 ∈ 𝑆𝑛 and 𝑠𝑖 ∈ 𝑆.

ℓ(𝑠𝑖𝜔) =
{

ℓ(𝜔) + 1 𝑖𝜔 < (𝑖 + 1)𝜔;
ℓ(𝜔) − 1 𝑖𝜔 > (𝑖 + 1)𝜔.

Now is a good moment to
recall that 𝑆𝑛 acts on

{1, … 𝑛} on the right if you
had forgotten, like I did!

Al.

The following theorem is useful to prove the main theorem of this section.

Theorem 1.1.4 (Strong exchange condition). Let

𝑠𝑖1 , … 𝑠𝑖𝑘 ∈ 𝑆, 𝑡 ∈ 𝑇 with ℓ(𝑡𝑠𝑖1 … 𝑠𝑖𝑘 ) < ℓ(𝑠𝑖1 … 𝑠𝑖𝑘 ).

Then,The hat denote that the
elements is missing. As. 𝑡𝑠𝑖1 … 𝑠𝑖𝑘 = 𝑠𝑖1 … ̂𝑠𝑖𝑎 … 𝑠𝑖𝑘

and furthermore,
𝑡 = 𝑠𝑖1 … 𝑠𝑖𝑎−1𝑠𝑖𝑎𝑠𝑖𝑎−1 … 𝑠𝑖𝑘 .

The proof reproduce the argument of the previous proposition and uses Dyer’s lemma.
An equivalence relation ∼𝑏 is given between reduced expressions 𝑠𝑖1 , … , 𝑠𝑖𝑘 and 𝑠𝑗1 , … , 𝑠𝑗𝑘

if it is possible to go from one to another using only braid relations. The next theorem is given to
give a well defined basis for the Iwahori-Hecke algebras.

Theorem 1.1.5 (Matsumoto). Let 𝑠𝑖1 , … , 𝑠𝑖𝑘 and 𝑠𝑗1 , … , 𝑠𝑗𝑘 be two reduced expression. They
are equivalent if and only if 𝑠𝑖1 … 𝑠𝑖𝑘 = 𝑠𝑗1 … 𝑠𝑗𝑘 .

This theorem gives the
“other way” of the

definition.

The proof uses the strong exchange condition and induction in the length to proceed.
Remark that this theorem is really about Artin braid group, that is the group generated by a

corresponding set of generators as 𝑆𝑛 and satisfying the braid condition, but not that they square
to the identity.
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1.2 Iwahori-Hecke algebras
Wouter came back to
TEXing now!

Definition 1.2.1 (Iwahori-Hecke algebra). . Let 𝑅 be a commutative domain and 𝑞 ∈ 𝑅. Then
ℋ𝑅,𝑞(𝑆𝑛) is generated by 𝑇1, … , 𝑇𝑛+1 satisfying According to common

definition, it should be a
ring with no zero divisor.
Note also that in the book,
Mathas ask for a unit.

(𝑇𝑖 − 𝑞)(𝑇𝑖 + 1) = 0 𝑖 = 1 … 𝑛 − 1
𝑇𝑖𝑇𝑗 = 𝑇𝑗𝑇𝑖 1 ≤ 𝑖 < 𝑗 − 1 ≤ 𝑛 − 2
𝑇𝑖𝑇𝑖+1𝑇𝑖 = 𝑇𝑖+1𝑇𝑖𝑇𝑖+1 𝑖 = 1 … 𝑛 − 2.

This should really be
viewed as a 𝑞-deformation
of the symmetric group. Al.Lemma 1.2.2. Let 𝑠 ∈ 𝑆 and 𝜔 ∈ 𝑆𝑛. Then

𝑇𝜔𝑇𝑠 =
{

𝑇𝜔𝑠 if ℓ(𝜔𝑠) > ℓ(𝜔)
𝑞𝑇𝜔𝑠 + (𝑞 − 1)𝑇𝜔 if ℓ(𝜔𝑠) < ℓ(𝜔)

(1.1)

Furthermore we have an equivalent statement for

𝑇𝑠𝑇𝜔 =
{

𝑇𝑠𝜔 if ℓ(𝑠𝜔) > ℓ(𝜔)
𝑞𝑇𝑠𝜔 + (𝑞 − 1)𝑇𝜔 if ℓ(𝑠𝜔) < ℓ(𝜔)

(1.2)

Skip these proofs if they are
all in the book! R.

Theorem 1.2.3. ℋ𝑅,𝑞 is a free 𝑅-algebra with basis {𝑇𝜔 | 𝜔 ∈ 𝑆𝑛}

Remark 1.2.4. If 𝑅 is a field then ℋ𝑅,𝑞 is isomorphic to a matrix algebra in 𝑀𝑛(𝑅).

This process is called the
specialisation. As.

Corollary 1.2.5. 𝜙 ∶ 𝑅̃ → 𝑅 is a ring homomorphism with 𝜙( ̃𝑞) = 𝑞 for some ̃𝑞 ∈ 𝑅 then

ℋ𝑅,𝑞 ≅ ℋ𝑅̃,𝑞 ⊗𝑅̃ 𝑅

Definition 1.2.6. You know what else got a
nice bilinear form?
Cellular algebras! Is is a
coincidence that the next
chapter is on them? I think
not! Al.

There is a bilinear form (⋅, ⋅) ∶ ℋ × ℋ → 𝑅 given on ℎ1, ℎ2 by the coefficient
in 𝑅 of the unit 1 in ℎ1 ⋅ ℎ2.

Proposition 1.2.7. Let 𝜈, 𝜔 ∈ 𝑆𝑛.

(𝑡𝜈 , 𝑡𝜔) =
{

𝑞ℓ(𝜈) 𝜈 = 𝜔−1;
0.

(1.3)

So, the bilinear form is symmetric and associative. If 𝑞 is invertible, then it is also non-degenerate.
As 𝑅 is a domain, should it
matter that 𝑞 is invertible
or not for non-degeneraty?
Si., R.
Reading the book, I think
he got a bit confused
because in the introduction
he does not ask for 𝑅 to be
a domain. Al.

Definition 1.2.8. 𝐴 is an algebra over field 𝑅. 𝑒 ∈ 𝐴. is idempotent 𝑒2 = 𝑒. Then 𝐻(𝐴, 𝑒) ∶=
𝑒𝐴𝑒. is the Hecke algebra corresponding to (A,e).

Prove the following statement

1. 𝐻(𝐴, 𝑒) ≅ End𝐴(𝐴𝑒)
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2. 𝐴 semisimple ⇒ 𝐻(𝐴, 𝑒) semisimple one-to-one correspondence.

{irr comp of 𝐴𝑒} ↔ {irr rep of 𝐻(𝐴, 𝑒)}

3. Dimension of 𝐻(𝐴, 𝑒) irreducible representation is the multiplicity of corresponding irre-
ducible components of 𝐴𝑒.

This is exercice 12 of
chapter 1



Chapter 2

Going all cellular

Presented by Alexis Langlois-Rémillard on 04-10-2019, 08-10-2019 and 22-10-2019.
Notes recorded by Wouter van de Vijverand Alexis Langlois-Rémillard.

2.1 First presentation
Given 04-10-2019

Mathas use this ordering
that is the inverse of the
original one by Graham
and Lehrer. It has become
more and more standard to
do so [2]. Al.

In this section we present the definition of Graham and Lehrer. After this definition is recalled
we introduced some basic consequences and reach the statement of the first useful theorem.

Definition 2.1.1 (Graham and Lehrer [4]). Let 𝑅 be a commutative associative unitary ring. An
𝑅-algebra 𝐴 is called cellular if it admits a cellular datum (Λ, 𝑇 , 𝐶, ∗) consisting of the following:

1. a finite partially-ordered set Λ and, for each 𝜆 ∈ Λ, a finite set 𝑇 (𝜆);

2. an 𝐴-basis {𝑐𝜆
𝑠,𝑡 ∣ 𝜆 ∈ Λ, 𝑠, 𝑡 ∈ 𝑇 (𝜆)} In Graham and Lehrer, it

reads “an injective map
𝐶 ∶ ⨆𝜆∈Λ 𝑇 (𝜆)×𝑇 (𝜆) → 𝐴
whose image is an 𝑅-basis
of 𝐴, with the notation
𝐶𝜆(𝑠, 𝑡) for the image under
𝐶 of the pair
(𝑠, 𝑡) ∈ 𝑇 (𝜆) × 𝑇 (𝜆);”

3. an anti-involution ∗ ∶ 𝐴 → 𝐴 such that

(𝑐𝜆
𝑠,𝑡)∗ = 𝑐𝜆

𝑡,𝑠 for all 𝑠, 𝑡 ∈ 𝑇 (𝜆); (2.1)

4. if 𝜆 ∈
𝐿𝑎𝑚𝑏𝑑𝑎 and 𝑠, 𝑡 ∈ 𝑇 (𝜆), then for any 𝑎 ∈ 𝐴,

𝑐𝜆
𝑠,𝑡𝑎 ≡ ∑

𝑠′∈𝑇 (𝜆)
𝑟𝑎(𝑡′, 𝑡)𝑐𝜆

𝑠,𝑡′ 𝑚𝑜𝑑 𝐴>𝜆, (2.2)

where 𝐴>𝜆 = ⟨𝑐𝜇
𝑝,𝑞 ∣ 𝜇 > 𝜆; 𝑝, 𝑞 ∈ 𝑇 (𝜇)⟩𝑅 and 𝑟𝑎(𝑠′, 𝑠) ∈ 𝑅 is independent of 𝑡.

9
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The involution ∗, together with (2.2), yields the equation:

𝑎∗𝑐𝜆(𝑡, 𝑠) ≡ ∑
𝑡′∈𝑇 (𝜆)

𝑟𝑎(𝑡′, 𝑡)𝑐𝜆
𝑡′,𝑠 𝑚𝑜𝑑 𝐴>𝜆, (2.3)

for all 𝑠, 𝑡 ∈ 𝑇 (𝜆) and 𝑎 ∈ 𝐴.

Examples Now time for examples! First is the algebra of polynomial over a field k[𝑥] with
anti-involution 𝑥 ↦ −𝑥, poset ℕ, sets 𝑇 (𝑛) = {𝑛} and cellular basis {𝑥𝑛 ∣ 𝑛 ∈ ℕ.

Second are the Temperley-Lieb algebras.This comes from the f
Alexis and Yvan

Saint-Aubin section 3.1
with a slight change for the

poset as they took the
definition of Graham and

Lehrer.

For a certain integer 𝑛 and an arbitrary invert-
ible complex number 𝑞, the algebra is the Temperley-Lieb algebra introduced by Temperley and
Lieb. We use the graphical notation of Kauffmann. In this setting, the Temperley-Lieb algebra
TL𝑛(𝑞+𝑞−1) is the ℂ-algebra generated by formal sums of (𝑛, 𝑛)-diagrams with multiplication be-
ing concatenation and resolution of closed loops by multiplication by 𝑞 +𝑞−1. A (𝑛, 𝑛)-diagram is
build by placing two sets of 𝑛 dots on two parallel lines and linking the 2𝑛 dots by non-intersecting
line in the rectangle made by the two lines.

To show that the Temperley-Lieb algebras are cellular, we will give the cellular datum and
show it for TL4.

The poset is the set of possible number of arc linking two points on the same line of a diagram.
It is {0, 1, … , ⌊𝑛/2⌋}. For each 𝜆 in the poset, the set 𝑇 (𝜆) is given by half-diagram with 𝜆 arcs.
The basis is given by the (𝑛, 𝑛) diagram. The involution is given by vertical reflection.You can have the dimension

of the Temperley-Lieb
algebras via this argument,

it is the Catalan number
𝐶𝑛 = 1

𝑛+1 (
2𝑛
𝑛 ).

The last
axiom is respected because it is impossible to destroy arcs (and thus one can only go higher on
the number of arc created).

, , , ,

, , , , , , , , ,

.

The third example is given in Mathas and is the Hecke-algebra.
Before continuing, let us define an important family of modules coming directly from both

definitions.

Definition 2.1.2. Let 𝐴 be a cellular algebra with cellular datum (Λ, 𝑇 , 𝐶, ∗). Let 𝜆 ∈ Λ and
consider C𝜆 as the free 𝑅-modules with basis {𝑣𝜆

𝑠 ∣ 𝑠 ∈ 𝑇 (𝜆)}. When endowed with the (right)
𝐴-action defined by

𝑣𝜆
𝑠 ∶= ∑

𝑠′∈𝑇 (𝜆)
𝑟𝑎(𝑠′, 𝑠)𝑣𝜆

𝑠′ for 𝑎 ∈ 𝐴, (2.4)

the (right) 𝐴-module C𝜆 is called a cell module of 𝐴.

https://arxiv.org/abs/1909.03499#article.o
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The coefficients 𝑟𝑎(𝑡′, 𝑡) defined through axiom (2.2) are used to construct cellular modules,
but they are even richer. If 𝑝, 𝑠, 𝑡 and 𝑢 ∈ 𝑇𝐴(𝜆) for some 𝜆 ∈ Λ𝐴, then equations (2.2) and (2.3)
lead to two distinct expressions for the product 𝑐𝜆

𝑝,𝑠𝑐𝜆
𝑡,𝑢:

∑
𝑡′

𝑟𝑐𝜆
𝑝,𝑠

(𝑡′, 𝑡)𝑐𝜆
𝑡′,𝑢 ≡ ∑

𝑠′
𝑟𝑐𝜆

𝑢,𝑡
(𝑠′, 𝑠)𝑐𝜆

𝑝,𝑠′ 𝑚𝑜𝑑 𝐴>𝜆. (2.5)

Since the 𝑐’s form a basis of 𝐴, only the term 𝑡′ = 𝑝 in the left hand side and the term 𝑠′ = 𝑢 in
the right hand side may contribute in each sum. Thus I hope you will forgive my

slight abuse of notation
with the 𝑟’s (putting 𝑟(𝑢, 𝑣)!
Al.

𝑟𝑐𝜆
𝑝,𝑠

(𝑝, 𝑡) = 𝑟𝑐𝜆
𝑢,𝑡

(𝑢, 𝑠).

Since the left member is independent of 𝑢 and the right one of 𝑝, it follows that both of these
coefficients depend only on 𝑠 and 𝑡. This fact is emphasized by writing

𝑐𝜆
𝑝,𝑠𝑐𝜆

𝑡,𝑢 ≡ 𝑟𝜆(𝑠, 𝑡)𝑐𝜆
𝑝,𝑢 𝑚𝑜𝑑 𝐴>𝜆,

with 𝑟𝜆(𝑠, 𝑡) ∶= 𝑟𝑐𝜆
𝑝,𝑠

(𝑝, 𝑡) = 𝑟𝑐𝜆
𝑢,𝑡

(𝑢, 𝑠).

Definition 2.1.3. A bilinear form ⟨−, −⟩𝜆 ∶ C𝜆 × C𝜆 → 𝑅 on the cellular module C𝜆 is defined
by ⟨𝑣𝑠, 𝑣𝑡⟩ = 𝑟𝜆(𝑠, 𝑡).

This bilinear form plays a central role in the theory of cellular algebra because of the following
result.

Proposition 2.1.4 (Graham and Lehrer, Prop. 2.4, [4]). The bilinear form ⟨−, −⟩𝜆 on C𝜆, 𝜆 ∈ Λ,
has the following properties.

1. It is symmetric: ⟨𝑥, 𝑦⟩𝜆 = ⟨𝑦, 𝑥⟩𝜆 for all 𝑥, 𝑦 ∈ C𝜆.

2. It is invariant: ⟨𝑎∗𝑥, 𝑦⟩𝜆 = ⟨𝑥, 𝑎𝑦⟩𝜆 for all 𝑥, 𝑦 ∈ C𝜆 and 𝑎 ∈ 𝐴.

3. If 𝑥 ∈ C𝜆 and 𝑠, 𝑡 ∈ 𝑇 (𝜆), then 𝑐𝜆
𝑠,𝑡𝑥 = ⟨𝑣𝑡, 𝑥⟩𝜆 𝑣𝑠.

We define for any cellular algebra Λ0 to be the subset of Λ in which the bilinear The radical of a bilinear
form is the set of element 𝑥
such that ⟨𝑥, 𝑦⟩ = 0 for all
𝑦.

form just
defined is not identically zero. The radical of the bilinear form ⟨−, −⟩𝜆 is denoted R𝜆. As the
form is invariant, it is a submodule of C𝜆 because of the invariance of the form. However, there
is even more to it.

Proposition 2.1.5. Let 𝐴 be a cellular algebra over a field k and 𝜆 ∈ Λ0. The radical R𝜆 of the
bilinear form ⟨−, −⟩𝜆 is the Jacobson radical of C𝜆, and the quotient D𝜆 ∶= C𝜆/R𝜆 is absolutely
irreducible.

Proof. We take an Note that this proof says
that the cellular modules
are cyclic when 𝜆 ∈ Λ0
over a field.

𝑥 outside the radical and find another element 𝑦 in the module such that their
bilinear form gives 1. It is possible because the algebra is over a field and the bilinear form is not
totally zero. Then, for any element 𝑣 we want, we can create an element of the algebra 𝑦𝑣 coming
from 𝑦 such that 𝑥𝑦𝑣 = 𝑣 by using the properties of the bilinear form. This proves that the radical
of the bilinear form is the only maximal submodule and thus that it is the Jacobson radical.

We now have some technical lemmas.

Lemma 2.1.6. If 𝑎 ∈ C𝜆 and 𝑦 ∈ 𝐴≥𝜇 then 𝑎𝑦 = 0 unless 𝑎𝑦 = 0, that is, if 𝜆 ≱ 𝜇, then 𝑎𝑦 = 0.
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The following proposition gives conditions for morphism.

Proposition 2.1.7. Let 𝜆 ∈ Λ and 𝜇 ∈ Λ0. Let 𝑀 be a proper submodule of C𝜆 and suppose
that 𝜃 ∶ C𝜇 → C𝜆/𝑀 is a morphism of 𝐴-modules.

1. If 𝜃 ≠ 0 then 𝜆 ≥ 𝜇.

2. If 𝜇 = 𝜆 then there exists a 𝑟𝜃 ∈ 𝑅 such that 𝜃(𝑧) = 𝑀+𝑟𝜃𝑧 and thus𝐻𝑜𝑚(C𝜇, C𝜆/𝑀) ≃ k.

We finished here with the
statement of the theorem

2.2.4 that we moved further
for these notes.

Corollary 2.1.8. If D𝜇 ≃ D𝜆 are not zero, then 𝜆 = 𝜇.

2.2 Second presentation
On 08-10-2019.For any finite poset, you

can have a total ordering
so this is a very natural

lemma indeed. As.
Definition 2.2.1. A subset Γ of Λ is called a poset ideal of Λ if for every 𝜆 ∈ Γ, anytime a 𝜇 ∈ Λ
is such that 𝜇 > 𝜆, then 𝜇 ∈ Γ.

We write 𝐴(Γ) for the 𝑅-module of 𝐴 with basis {𝑐𝜇
𝑢,𝑣 ∣ 𝜇 ∈ Γ, 𝑢, 𝑣 ∈ 𝑇 (𝜇)}. Then 𝐴(Γ) =

∑𝜇∈Γ 𝐴≤𝜇 is a two-sided ideal of 𝐴.

With this we have a lemma giving a filtration of 𝐴. If elsewhere it was sometime possible to
remove the condition of finiteness for Λ, there it is important, or at least it is required to have a
total ordering .The proof take a total

ordering and then yields
immediatly a filtration and
maximality assures us that
the proposed definition of Γ
works and that the quotient

will be generated by
elements of the form

𝑐𝜇𝑖
𝑢,𝑣 + 𝐴>𝜇𝑖 . Al.

Lemma 2.2.2. Let ∅ = Γ0 ⊂ Γ1 ⊂ ⋯ ⊂ Γ𝑘 = Λ be a maximal chain of poset ideals in Λ. There
exist a total ordering 𝜇1, … , 𝜇𝑘 of Λ such that Γ𝑖 = {𝜇1, … , 𝜇𝑖} for all 𝑖 and

0 = 𝐴(Γ0) 𝐴(Γ1) … 𝐴(Γ𝑘) = 𝐴 (2.6)

is a filtration with composition factor 𝐴(Γ𝑖)/𝐴(Γ𝑖−1) ≃ (C𝜇𝑖 )∗ ⊗𝑅 C𝜇𝑖

Remark that this lemma means that 𝐴 has a filtration that can be extended to a composition
series made only with cellular modules and their composition factors.

We need another lemma before proving the theorem. It is a rather intuitive statement saying
that for minimal elements, the cellular modules are simple.

Lemma 2.2.3. If 𝜆 is a minimal element of Λ then C𝜆 ≃ D𝜆.

Now we enter the main theorem that will be proved here in somewhat details.The real reason this is here
is because Alexis messed
up the indices in the talk,

but I forgive him. Al.
Theorem 2.2.4. The set {D𝜆 ∣ 𝜆 ∈ Δ0} is a complete set of non-isomorphic (absolutely) irre-
ducible modules.

Proof.If the distinction between
composition series and
filtration is not clear, it
might be a good idea to
review the appendix A of

Mathas, or chapter VIII of
Curtis and Reiner [1].

is already known that all of the moduleD𝜆 are simple by the proposition giving the equiva-
lence between the radical of the bilinear form and the Jacobson radical, and no two are isomorphic
by the corollary of this proposition. Thus, it is required to prove that any simple module 𝐷 is in
fact of the form D𝜆.

The lemma 2.2.2 gives a filtration of 𝐴 by cellular modules quotient and thus it will be suf-
ficient to prove that any composition factor of a cellular module is of the form D𝜆 to prove this.
The proof proceeds by induction.
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The base case is given by a minimal 𝜆 in which case the preceding lemma assures that the
module C𝜆 is simple and thus it has only one composition factor.

We proceed by induction on this 𝜆. Assume as inductive hypothesis that all the composition
factors of the modules 𝐶𝜇 for 𝜇 < 𝜆 are of the form D𝜈 for a certain 𝜈.

Let 𝐷 be a (simple) composition factor of C𝜆. We know that C𝜆 has the radical filtration given
by ∅ ⊂ R𝜆 ⊂ C𝜆. Thus 𝐷 is either D𝜆 = C𝜆/R𝜆 or a composition factor of the radical of C𝜆.
Consider 𝐷 as a composition factor of R𝜆.

Consider the complement to the set of inductive hypothesis Γ = {𝜂 ∈ Λ ∣ 𝜆 ≯ 𝜂}; it is a poset
ideal and thus 𝐴(Γ) is an ideal of 𝐴. For any element of R𝜆 is annihilated by 𝐴≥𝜆 by properties
of the bilinear form: indeed without loss of generality let 𝑥 ∈ R𝜆 and 𝑐𝑠,𝑡 ∈ 𝐴≥𝜆, then

𝑥𝑐𝑠,𝑡 = ⟨𝑥, 𝑣𝑠⟩ 𝑣𝑡 = 0. (2.7)

Samewise, we have C𝜆𝐴𝜂 when 𝜂 ∈ Γ is such that 𝛾 ≠ 𝜆 by lemma 2.1.6. Combining the two
statement we have

R𝜆𝐴(Γ) = 0

and thus every composition factor of R𝜆 is a composition factor of 𝐴/𝐴(Γ). The two filtrations
∅ ⊂ 𝐴(Γ) ⊂ 𝐴 and ∅ ⊂ R𝜆 ⊂ 𝐴 are equivalent.

Now extend the filtration ∅ ⊂ Γ ⊂ Λ to a maximal chain of poset ideals and use lemma 2.2.2
to get a filtration for 𝐴/𝐴(Γ) with all their composition factors cellular modules C𝜈 with 𝜈 ∉ Γ
and thus 𝜇 < 𝜆 and by induction hypothesis we have that all the composition factors of C𝜇 are
isomorphic to some D𝜈 .

The rest is an introduction with some of the vocabulary used in the main theorem. The decomposition
multiplicity is the number
of time there are simple
quotient isomorphic to a
certain simple module in
the composition series.

Definition 2.2.5. The decomposition matrix D of 𝐴 is the |Λ| × |Λ0| matrix defined by the com-
position multiplicities of the simple modules in the cellular modules,

D = ([C𝜆 ∶ D𝜇]) 𝜆∈Λ
𝜇∈Λ0

. (2.8)

A corollary of the proposition 2.1.7 give the peculiar form of D.

Corollary 2.2.6. The matrix D is a unitriangular superior matrix.

We will use principal
module or projective
indecomposable
indistinctively. They are
the indecomposable blocks
of the regular
representation 𝐴𝐴.

For 𝜆 ∈ Λ0 we have a unique D𝜆. By correspondance between simple and principal modules,
there is a unique indecomposable projective module P𝜆 characterized by P𝜆/ 𝑟𝑎𝑑  P𝜆 ≃ D𝜆.

There is already a link between the principal module and the entries of D.

Lemma 2.2.7. Let 𝜆 ∈ Λ and 𝜈 ∈ Λ0.

[C𝜆 ∶ D𝜈] = 𝑑𝑖𝑚𝑅 𝐻𝑜𝑚𝐴(P𝜈 , C𝜆) = 𝑑𝑖𝑚 P𝜈 ⊗𝑅 (C𝜆)∗ (2.9)

Definition 2.2.8. The Cartan matrix C of 𝐴 is the square matrix of dimension |Λ0| of entries the
composition multiplicities of the simple in the principal modules.

C = ([P𝜆 ∶ D𝜇)𝜆,𝜇∈Λ0 . (2.10)

The main theorem is that C = D𝑡D. Next presentation will prove this.
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2.3 Third presentation
On 22-10-2019.

In this presentation we present the last important lemma and the main theorem of the theory
of cellular algebras.

Lemma 2.3.1. Let 𝑃 be a projective 𝐴-module and note |Λ| = 𝑘. Then 𝑃 admits an 𝐴-modules
filtrationNote that with modules, the

tensor product might
reduce the dimension! So it

won’t blow up

∅ = 𝑃0 ⊂ 𝑃1 ⊂ ⋯ ⊂ 𝑃𝑘 = 𝑃 (2.11)
such that the non-zero factor modules 𝑃𝑖/𝑃𝑖=1 are isomorphic to the (non-zero) modules 𝑃 ⊗𝐴
((C𝜈)∗ ⊗𝑅 C𝜈) with each 𝜈 ∈ Λ occuring exactly once.

The main theorem of the theory links the decomposition factors of the indecomposable pro-
jective modules and the irreducible ones. Denote by P𝑑 the projective cover of D𝑑 and let
D = ([C𝑑 ∶ D𝑒])𝑑∈Δ,𝑒∈Δ0 be the decomposition matrix of 𝐴 and C = ([P𝑑 ∶ D𝑒])𝑑,𝑒∈Δ0 , the
Cartan matrix.

Theorem 2.3.2 (Graham and Lehrer, Thm. 3.7 [4]). The matrices C and D are related by

C = D𝑡D. (2.12)
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