Chapter 2: Kashiwara crystals

Alexis Langlois-Rémillard
2022-07-05, Kleine seminar

Outline

1.2.1 Root systems
2. 2.2 Kashiwara crystals
3. 2.3 Tensor products of crystals
4. 2.4 The signature rule $\ell \not \subset$
5. 2.5 Root strings
6. 2.6 The character
7. 2.7 and 2.8: skipped

2.1 Root systems

Root systems

Denote V a Euclidean space with inner product $\langle-,-\rangle$. For $\alpha \in V$

$$
\begin{aligned}
& r_{\alpha}(x)=x-\left\langle x, \alpha^{\vee}\right\rangle \alpha, \quad \alpha^{\vee}:=\frac{2 \alpha}{\langle\alpha, \alpha\rangle} \text {. } \\
& =x-2 \frac{\left\langle x_{1} \alpha\right\rangle}{\langle\alpha-\alpha\rangle} \alpha \\
& v_{*}(x)=x-\frac{2\langle x\langle\alpha\rangle}{\langle\alpha \cdot \hat{k}\rangle} x=-x \\
& \text { A root system } \Phi \subset V \text { is a finite set of } \\
& \alpha, \beta \in \Phi
\end{aligned}
$$

Definition vectors such that

1. $\alpha \neq 0$
2. $r_{\alpha}(\Phi)=\Phi, \alpha_{L} \beta \in \Phi \quad V_{a}(p) \in \Phi$
3. $\left\langle\alpha, \beta^{\vee}\right\rangle \in \mathbb{Z}$ Crystullogaphi L
4. if $\beta=c \alpha$ then $c= \pm 1$. Vedued

All crystallographic root systems in 2D

A reducible root system in 3D

Reflection groups

$$
\begin{equation*}
r_{\alpha}(x)=x-2 \frac{\langle\alpha, x\rangle}{\langle\alpha, \alpha\rangle} \alpha \tag{}
\end{equation*}
$$

Weyl group
The reflection group $W(\Phi)=\left\langle r_{\alpha} \mid \alpha \in \Phi^{+}\right\rangle \subset O(N)$ is the Coxeter group of the root system.

$$
\left.W=\left\langle r_{\alpha} \cdot\right| r_{\alpha} \sin G_{2} \text { rout }\right\rangle
$$

$$
\Phi:=A_{2}: \begin{gathered}
\alpha+\beta \\
r_{\beta} r_{\alpha} r_{\beta}, \\
\hdashline,
\end{gathered}
$$

$$
\begin{aligned}
& 1 V_{2}^{2}=1,\left(V_{\alpha r_{A}}^{m_{\alpha \beta}}=1\right. \\
& \operatorname{man}_{\alpha \beta} \in \text { 杖 }
\end{aligned}
$$

$$
\left.\left.\rightarrow\left\langle r_{a}\right| r_{2}^{4}-1, \mid v_{2} r_{1} A\right)=1\right\rangle
$$

$$
W(\Phi)=\mathbb{S}_{3} \simeq D_{6}
$$

$$
\gamma_{\alpha} r_{\beta}
$$

$$
\begin{gathered}
r_{\alpha} r_{\beta} \\
r_{\alpha} r_{B} r_{\alpha}=r_{B} a_{A} r_{B} \quad\left(r_{2} r_{B}\right)^{3}=1
\end{gathered}
$$

Weight lattice

Definition
$\Lambda \subset V$ is a lattice if $\quad \lambda \in \Lambda$ is a Weight

1. it spans V
2. $\Phi \subset \Lambda$
3. if $\lambda \in \Lambda$ and $\alpha \in \Phi$ then $\left\langle\lambda, \alpha^{\vee}\right\rangle \in \mathbb{Z}$
semisimple: if spans Λ

$$
\wedge \supset \wedge_{\Phi}
$$

Order

I: index set of the simple rout i $\subset \Phi^{+}$

Definition
A partial order \geqslant is defined on Λ by $\lambda \geqslant \mu$ if

$$
\lambda-\mu=\sum_{i \in \subseteq} c_{i} \alpha_{i}, \quad c_{i} \geq 0
$$

$$
\Lambda^{+}:\left\{\lambda \in \Lambda\left|\left\langle z, \alpha_{i}^{l}\right\rangle>0\right\rangle\right\}
$$

Dommant weigh strictly

The fundamental weights ϖ_{i}

$$
t_{c}\left\langle\omega_{i}, \alpha_{j}^{v}\right\rangle=\delta_{i j} . \quad \text { iv } \in I
$$

$A_{\Delta_{2}} \supseteq \Lambda_{2} 2 \Lambda_{\Phi}$
Lattice genercutul by forclameatid wright

Example: GL(r+1)

$$
\Phi:\left\{a_{i}-c_{j} \mid i \neq j\right\}
$$

e-: unit velto
$\Phi^{+}:\left\{e_{i}-e^{j} \mid i<j\right\}$,

$$
1=\pi^{r+1}
$$

$\lambda=\left(2, \ldots \lambda_{r+1}\right)$ is dominat if $z_{i} \geqslant \lambda_{2} \lambda_{r} \ldots \geqslant \lambda_{r+1}$
süpl roots $e_{1}-e_{2} \cdots e_{r}-e_{r+1}$
fordanentil wrights ous

$$
\sigma_{i}=(\underbrace{1 \cdots-1}_{i}, 0-0)
$$

2.2 Kashiwara crystals

Crystals

Crystals
$\Phi+\Lambda$
Definition
A Kashiwara crystal of type Φ is a set
A elements degree \mathcal{B} with maps $\quad i \in I$
$e_{i}, f_{i}: \mathcal{B} \rightarrow \mathcal{B} \cup\{0\} \longrightarrow$ Crystal ospentu之 $\bigcirc \notin Q$
$\varepsilon_{i}, \varphi_{i}: \mathcal{B} \rightarrow \mathbb{Z} \cup\{-\infty\}$
$\mathrm{wt}: \mathcal{B} \rightarrow \Lambda$
string lenght
weight
respecting

$$
\mathrm{wt}(y)=\mathrm{wt}(x)+\alpha_{i}, \varepsilon_{i}(y)=\varepsilon_{i}(x)-1, \varphi_{i}(y)=\varphi_{i}(x)+1
$$

AR $\varphi_{i}(x)=\left\langle w t(x), \alpha_{i}^{\vee}\right\rangle+\varepsilon_{i}(x)$
$\rightarrow \varphi_{i}(x)=-\infty$ then

$$
\begin{gathered}
\varepsilon_{i}(x)=-\infty \text { and the } \\
e_{i}(x)=f_{i}(x)=0
\end{gathered}
$$

Seminormal

Definition

If $-\infty$ is not in the image of $\varepsilon_{i}, \varphi_{i}$, then \mathcal{B} is of finite type.

It is seminormal if

$$
\begin{aligned}
\varphi_{i}(x) & =\max \left\{k \in \mathbb{Z}_{\geq 0} \mid f_{i}^{k}(x) \neq 0\right\} \\
\varepsilon_{i}(x) & =\max \left\{k \in \mathbb{Z}_{\geq 0} \mid e_{i}^{k}(x) \neq 0\right\}
\end{aligned}
$$

One proposition

Proposition

Φ semisimple and C crystal of finite type.

$$
\mathrm{wt}(x)=\sum_{i \in I}\left(\varphi_{i}(x)-\varepsilon_{i}(x)\right) \omega_{i} .
$$

Crystal graph

Definition

Construct a quiver from \mathcal{B} by

$$
\begin{aligned}
& f_{1}(x)=y \\
& x \xrightarrow{i} y \xrightarrow{2} Z
\end{aligned}
$$ drawing an edge $x \xrightarrow{i} y$ if $f_{i}(x)=y$.

Can have an equivalence relation on \mathcal{B} if two elements are linked. The equivalence classes are connected components of the graph.

Some propositions on highest weight

Highest weight

An element $u \in \mathcal{B}$ such that $e_{i}(u)=0, \forall i \in l$ is called highest weight element and $w t(u)$ a highest weight.

Lemma

If $w t(u)$ is maximal with respect to \geqslant then u is a highest weight element.

Proposition

\mathcal{B} seminormal. If u highest weight element, then $w t(u)$ is dominant.

Examples: A_{r} and dual crystal

$$
\begin{aligned}
\Sigma_{1} \square & =0 \\
\square & =1 \\
B & =0 \\
D_{B} B & =1 \\
B & =0 \\
B & =0
\end{aligned}
$$

Example: crystal of rows
rown. $\Phi=A_{2} A=\mathbb{Z} \mathbb{Z}^{2}$
rows in young tubleun
if $\psi_{i}>0$ fi $R=$ Vow vightaril if φ_{i} so the $f=0$
Man/ S_{3}
$C_{(3)}=$ set of roms of eeght 3
if $\varepsilon_{i}>0$ ei(R) = ver with
befrant ith $\mapsto i$
iflizer $\quad e_{i} R=\infty$
$\varphi_{i}=\# i \operatorname{in}\left\{j_{i} j_{2} j_{3}\right\}$
$\varepsilon_{-}^{-}=i+1$ in $\left\{d_{1}\left\{\perp J_{3}\right\}\right.$

2.3 Tensor products of crystals

Tensor product
\mathcal{B} and C crystal associated to $\Phi . \mathcal{B} \otimes C$ with maps

$$
\begin{aligned}
& f_{i}(x \otimes y)= \begin{cases}f_{i}(x) \otimes y & \varphi_{i}(y) \leq \varepsilon_{i}(x) \\
x \otimes f_{i}(y) & \varphi_{i}(x)>\varepsilon_{i}(x)\end{cases} \\
& e_{i}(x \otimes y)= \begin{cases}e_{i}(x) \otimes y & \varphi_{i}(y)<\varepsilon_{i}(x) \\
x \otimes e_{i}(y) & \varphi_{i}(x) \geq \varepsilon_{i}(x)\end{cases} \\
& \varphi_{i}(x \otimes y)=\max \left(\varphi_{i}(x), \varphi_{i}(y)+\left\langle w t(x), \alpha_{i}^{\vee}\right\rangle\right) \quad \text { care } 1 \quad \varphi_{i}(y) \leqslant \varepsilon_{i}(x) \\
& \varepsilon_{i}(x \otimes y)=\max \left(\varepsilon_{i}(y), \varepsilon_{i}(x)-\left\langle w t(y), \alpha_{i}^{\vee}\right\rangle\right) \quad f_{i}(x \otimes y)=f_{i}(x) \otimes y=z \omega_{0} \\
& e_{i}(z \operatorname{cow})=\theta_{\|}(8) a w \\
& \text { B }^{A_{1} \quad " x y}
\end{aligned}
$$

Tensor product

\mathcal{B} and \mathcal{C} crystal associated to $\Phi . \mathcal{B} \otimes \mathcal{C}$ with maps

$$
\begin{aligned}
& f_{i}(x \otimes y)= \begin{cases}f_{i}(x) \otimes y & \varphi_{i}(y) \leq \varepsilon_{i}(x) \\
x \otimes f_{i}(y) & \varphi_{i}(x)>\varepsilon_{i}(x)\end{cases} \\
& e_{i}(x \otimes y)= \begin{cases}e_{i}(x) \otimes y & \varphi_{i}(y)<\varepsilon_{i}(x) \\
x \otimes e_{i}(y) & \varphi_{i}(x) \geq \varepsilon_{i}(x)\end{cases}
\end{aligned}
$$

$$
\varphi_{i}(x \otimes y)=\max \left(\varphi_{i}(x), \varphi_{i}(y)+\left\langle w t(x), \alpha_{i}^{\vee}\right\rangle\right)
$$

$$
\varepsilon_{i}(x \otimes y)=\max \left(\varepsilon_{i}(y), \varepsilon_{i}(x)-\left\langle\mathrm{wt}(y), \alpha_{i}^{\vee}\right\rangle\right)
$$

Example: Two GL(3) crystals

Morphisms and monoidal

Definition

A morphism between two crystals is a map $\psi: \mathcal{B} \rightarrow C \cup\{0\}$ such that

1. $b \in \mathcal{B}, \psi(b) \in C$ then:

$$
\begin{aligned}
& 1.1 \mathrm{wt}(\psi(b))=\mathrm{wt}(b) \\
& 1.2 \quad \varepsilon_{i}(\psi(b))=\varepsilon_{i}(b) \\
& 1.3 \quad \varphi_{i}(\psi(b))=\varphi_{i}(b)
\end{aligned}
$$

$$
\begin{aligned}
& \text { it is an ino of } \\
& \text { Busur定 Cu\{0\} }
\end{aligned}
$$

2. $b, e_{i} b \in \mathcal{B}$ with $\psi(b), \psi\left(e_{i} b\right) \in C$ then $\psi\left(e_{i} b\right)=e_{i} \psi(b)$
3. $b, f_{i} b \in \mathcal{B}$ with $\psi(b), \psi\left(f_{i} b\right) \in C$ then $\psi\left(f_{i} b\right)=f_{i} \psi(b)$

Tensor product associativity

The set bijection $(\mathcal{B} \otimes \mathcal{C}) \otimes \mathcal{D} \rightarrow \mathcal{B} \otimes(C \otimes \mathcal{D})$ is a crystal isomorphism.

2.4 The signature rule

2回
回
B $\rightarrow+$

Cemmu2.33 + sect 2.4

2.5 Root strings

One defintion

A map

Let $k=\left\langle w t(x), \alpha_{i}^{\vee}\right\rangle$.

$$
\sigma_{i}(x)= \begin{cases}f_{i}^{k}(x) & k>0 \\ x & k=0 \\ e_{i}^{-k}(x) & k<0\end{cases}
$$

$\sigma_{i} \mathcal{B}=\mathcal{B}$ and $w t\left(\sigma_{i}(x)\right)=s_{i}(w t(x))$.

2.6 The character

The character

Let \mathcal{E} be the free abelian group on Λ with basis element $t^{\mu}, \mu \in \Lambda$. The character is

$$
\chi_{\mathcal{B}}(t)=\sum_{v \in \mathcal{B}} t^{\operatorname{wt}(v)}
$$

The character is invariant under W.

N symmetric

$$
1=\mathbb{Z}_{\varepsilon \sim 1}^{\nu+1} \text { Laventroly }
$$

ex in Ar for the control of rom s

$$
t^{P}=\prod_{i=1}^{k+1} K_{N i}
$$ polynomial

2.7 and 2.8: skipped

Questions?

References i

