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2.1 Root systems



Root systems

Denote V a Euclidean space with inner product ⟨−, − ⟩. For 𝛼 ∈ V

r𝛼 (x) = x −
⟨
x, 𝛼∨ ⟩ 𝛼, 𝛼∨ :=

2𝛼
⟨𝛼, 𝛼 ⟩ .

Definition
A root system Φ ∈ V is a finite set of
vectors such that

1. 𝛼 ≠ 0

2. r𝛼 (Φ) = Φ

3. ⟨𝛼, 𝛽∨ ⟩ ∈ Z
4. if 𝛽 = c𝛼 then c = ±1.
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All crystallographic root systems in 2D

A1 ⊕ A1 :
𝛼

𝛽

A2 : 𝛼

𝛽

B2 : 𝛼

𝛽

G2 : 𝛼

𝛽
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A reducible root system in 3D

G2 ⊕ A1

𝛼

𝛽
𝛾x

y

z
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Reflection groups

r𝛼 (x) = x − 2
⟨𝛼, x ⟩
⟨𝛼, 𝛼 ⟩𝛼

𝛼

r𝛼

x

r𝛼 (x)

Weyl group
The reflection groupW(Φ) = ⟨r𝛼 | 𝛼 ∈ Φ+⟩ ⊂ O(N) is the Coxeter group
of the root system.

Φ := A2 :
𝛼

𝛼 + 𝛽
𝛽

r𝛼

r𝛽 r𝛼 r𝛽

r𝛼 r𝛽 r𝛼r𝛽

W(Φ) = S3 ≃ D6 .
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Weight lattice

Definition
Λ ⊂ V is a lattice if

1. it spans V

2. Φ ⊂ Λ

3. if 𝜆 ∈ Λ and 𝛼 ∈ Φ then
⟨𝜆, 𝛼∨ ⟩ ∈ Z

semisimple:

𝛼

𝛽
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Order

Definition
A partial order < is defined on Λ by
𝜆 < 𝜇 if

𝜆 − 𝜇 =
∑
i∈I

ci𝛼i, ci ≥ 0

The fundamental weights 𝜛i⟨
𝜛i, 𝛼

∨
j

⟩
= 𝛿ij .
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Example: GL(r + 1)
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2.2 Kashiwara crystals



Crystals
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Crystals

Definition
A Kashiwara crystal of type Φ is a set
B with maps

ei, fi : B → B ∪ {0}
𝜀i, 𝜑i : B → Z ∪ {−∞}
wt : B → Λ

respecting

A1 ei (x) = y iff fi (y) = x and then

wt(y) = wt(x) + 𝛼i, 𝜀i (y) = 𝜀i (x) − 1, 𝜑i (y) = 𝜑i (x) + 1

A2 𝜑 (x) =
⟨
wt(x), 𝛼∨

i

⟩
+ 𝜀i (x)
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Seminormal

Definition
If −∞ is not in the image of 𝜀i, 𝜑i, then
B is of finite type.

It is seminormal if

𝜑i (x) = max{k ∈ Z≥0 | f ki (x) ≠ 0}
𝜀i (x) = max{k ∈ Z≥0 | eki (x) ≠ 0}
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One proposition

Proposition
Φ semisimple and C crystal of finite type.

wt(x) =
∑
i∈I

(𝜑i (x) − 𝜀i (x))𝜛i.
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Crystal graph

Definition
Construct a quiver from B by

drawing an edge x
i−→ y if fi (x) = y.

Can have an equivalence relation on B
if two elements are linked. The
equivalence classes are connected
components of the graph.
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Some propositions on highest weight

Highest weight
An element u ∈ B such that ei (u) = 0,∀i ∈ I is called highest weight
element and wt(u) a highest weight.

Lemma
If wt(u) is maximal with respect to < then u is a highest weight element.

Proposition
B seminormal. If u highest weight element, then wt(u) is dominant.
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Examples: Ar and dual crystal
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Example: crystal of rows
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2.3 Tensor products of crystals



Tensor product

B and C crystal associated to Φ. B ⊗ C
with maps

fi (x ⊗ y) =
{
fi (x) ⊗ y 𝜑i (y) ≤ 𝜀i (x)
x ⊗ fi (y) 𝜑i (x) > 𝜀i (x)

ei (x ⊗ y) =
{
ei (x) ⊗ y 𝜑i (y) < 𝜀i (x)
x ⊗ ei (y) 𝜑i (x) ≥ 𝜀i (x)

𝜑i (x⊗y) = max(𝜑i (x), 𝜑i (y)+
⟨
wt(x), 𝛼∨

i

⟩
)

𝜀i (x⊗y) = max(𝜀i (y), 𝜀i (x)−
⟨
wt(y), 𝛼∨

i

⟩
)

Proposition
It is a crystal.
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Tensor product

B and C crystal associated to Φ. B ⊗ C
with maps

fi (x ⊗ y) =
{
fi (x) ⊗ y 𝜑i (y) ≤ 𝜀i (x)
x ⊗ fi (y) 𝜑i (x) > 𝜀i (x)

ei (x ⊗ y) =
{
ei (x) ⊗ y 𝜑i (y) < 𝜀i (x)
x ⊗ ei (y) 𝜑i (x) ≥ 𝜀i (x)

𝜑i (x⊗y) = max(𝜑i (x), 𝜑i (y)+
⟨
wt(x), 𝛼∨

i

⟩
)

𝜀i (x⊗y) = max(𝜀i (y), 𝜀i (x)−
⟨
wt(y), 𝛼∨

i

⟩
)
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Example: Two GL(3) crystals
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Morphisms and monoidal

Definition
A morphism between two crystals is a map𝜓 : B → C ∪ {0} such that

1. b ∈ B,𝜓 (b) ∈ C then:

1.1 wt(𝜓 (b)) = wt(b)
1.2 𝜀i (𝜓 (b)) = 𝜀i (b)
1.3 𝜑i (𝜓 (b)) = 𝜑i (b).

2. b, eib ∈ B with𝜓 (b),𝜓 (eib) ∈ C then𝜓 (eib) = ei𝜓 (b)
3. b, fib ∈ B with𝜓 (b),𝜓 (fib) ∈ C then𝜓 (fib) = fi𝜓 (b)

Tensor product associativity
The set bijection (B ⊗ C) ⊗ D → B ⊗ (C ⊗ D) is a crystal isomorphism.
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2.4 The signature rule



An example
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2.5 Root strings



One defintion

A map

Let k =
⟨
wt(x), 𝛼∨

i

⟩
.

𝜎i (x) =


f ki (x) k > 0

x k = 0

e−ki (x) k < 0

𝜎iB = B and wt(𝜎i (x)) = si (wt(x)).
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2.6 The character



The character

Let E be the free abelian group on Λ

with basis element t𝜇, 𝜇 ∈ Λ. The
character is

𝜒B (t) =
∑
v∈B

twt(v) .

The character is invariant under W.
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2.7 and 2.8: skipped



Questions?
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