Braided categories

8.10 Ribbon monoidal categories
8.11 Ribbon Hopf Algebras
8.12 Characterization of Morita equivalence
8.13 S-matrix of a pre-modular category
8.14 Modular categories

4.10. Ribbon monoidal categories

Let \mathcal{C} be a braided monoidal category.

4.10. Ribbon monoidal categories

Let \mathcal{C} be a braided monoidal category.
Definition

- A twist (balancing transformation) on \mathcal{C} is a

$$
\theta \in \operatorname{Aut}\left(\mathbf{i d}_{\mathcal{C}}\right) \quad \text { such that } \quad \theta_{X \otimes Y}=\left(\theta_{X} \otimes \theta_{Y}\right) \circ c_{Y, X} \circ c_{X, Y},
$$

for all $X, Y \in \mathcal{C}$.

4.10. Ribbon monoidal categories

Let \mathcal{C} be a braided monoidal category.
Definition

- A twist (balancing transformation) on \mathcal{C} is a
$\theta \in \operatorname{Aut}\left(\mathbf{i d}_{\mathcal{C}}\right) \quad$ such that $\quad \theta_{X \otimes Y}=\left(\theta_{X} \otimes \theta_{Y}\right) \circ c_{Y, X} \circ c_{X, Y}$,
for all $X, Y \in \mathcal{C}$.
- A twist θ is a ribbon structure if $\left(\theta_{X}\right)^{*}=\theta_{X^{*}}$.

4.10. Ribbon monoidal categories

Let \mathcal{C} be a braided monoidal category.
Definition

- A twist (balancing transformation) on \mathcal{C} is a

$$
\begin{aligned}
& \theta \in \operatorname{Aut}\left(\mathbf{i d}_{\mathcal{C}}\right) \quad \text { such that } \quad \theta_{X \otimes Y}=\left(\theta_{X} \otimes \theta_{Y}\right) \circ c_{Y, X} \circ c_{X, Y}, \\
& \text { for all } X, Y \in \mathcal{C} \text {. }
\end{aligned}
$$

- A twist θ is a ribbon structure if $\left(\theta_{X}\right)^{*}=\theta_{X^{*}}$.
- \mathcal{C} is a ribbon tensor category if it is rigid and is equipped with a ribbon structure.

Remark + Example

Remark + Example

Remark:
Ribbon structure is a non-commutative generalization of a quadratic form.

Remark + Example

Remark:

Ribbon structure is a non-commutative generalization of a quadratic form.

Recall (Section 8.4):
If a finite abelian group G has a bilinear form

$$
b: G \times G \rightarrow \mathbb{k}^{*},
$$

then it defines a braiding on Vec_{G}.

Remark + Example

Remark:
Ribbon structure is a non-commutative generalization of a quadratic form.

Recall (Section 8.4):
If a finite abelian group G has a bilinear form

$$
b: G \times G \rightarrow \mathbb{k}^{*},
$$

then it defines a braiding on Vec_{G}.
The corresponding quadratic form

$$
\theta_{\delta_{x}}=b(x, x) \mathbf{i d}_{\delta_{x}}, \quad x \in G
$$

defines a ribbon structure on Vec_{G}.

Connection to the Drinfeld morphism

Connection to the Drinfeld morphism

Recall (Section 8.9):

Definition

The Drinfeld morphism u is the natural transformation $u_{X}: X \rightarrow X^{* *}$ defined as the composition
$X \xrightarrow{\mathbf{i d}_{X} \otimes \mathbf{c o e v}_{X^{*}}} X \otimes X^{*} \otimes X^{* *} \xrightarrow{c_{X, X} \otimes \otimes \mathbf{i d}_{X}{ }^{4}} X^{*} \otimes X \otimes X^{* *} \xrightarrow{\mathbf{e v}_{X} \otimes \mathbf{i d}_{X^{* *}}} X^{* *}$

Connection to the Drinfeld morphism

Recall (Section 8.9):
Definition
The Drinfeld morphism u is the natural transformation $u_{X}: X \rightarrow X^{* *}$ defined as the composition
$X \xrightarrow{\mathbf{i d}_{X} \otimes \mathbf{c o e v}_{X^{*}}} X \otimes X^{*} \otimes X^{* *} \xrightarrow{c_{X, X} \otimes \otimes \mathbf{i d}_{X}} X^{*} \otimes X \otimes X^{* *} \xrightarrow{\mathbf{e v}_{X} \otimes \mathbf{i d}_{X * *}} X^{* *}$

Theorem
If \mathcal{C} is a braided tensor cat, then $u_{X}: X \rightarrow X^{* *}$ is an isomorphism Ebea

Proof WLOG: X is simple
If \mathcal{C} is a braided tensor cat, then $u_{X}: X \rightarrow X^{* *}$ is an isomorphism

$$
\in \operatorname{End}(1) \text { are nonzero }
$$

$$
\begin{aligned}
& V_{x} \text { Un }=\cdots . \\
& =\left(\ln x^{*} \partial C_{x^{*}, x^{*} * 0}^{-1} \operatorname{con}_{X^{*}}\right) \otimes \omega_{x}
\end{aligned}
$$

Proof
If \mathcal{C} is a braided tensor cat, then $u_{X}: X \rightarrow X^{* *}$ is an isomorphism
Lemma
For any nonzero simple object X the composition

$$
f:=\mathbf{e v}_{X} \circ c_{X, X^{*}} \circ \operatorname{coev}_{X} \in \operatorname{End}_{\mathcal{C}}(\mathbf{1})=k
$$

is nonzero.

Corollaries

Let \mathcal{C} be a braided tensor category.

Corollaries

Let \mathcal{C} be a braided tensor category.
For all natural transformations $\psi_{X}: X \simeq X^{* *}$ there exists a
$\theta \in \operatorname{Aut}\left(\mathbf{i d}_{C}\right)$ such that $\psi_{X}=u_{X} \theta_{X}$.

Corollaries

Let \mathcal{C} be a braided tensor category.
For all natural transformations $\psi_{X}: X \simeq X^{* *}$ there exists a

$$
\theta \in \operatorname{Aut}\left(\mathbf{i d}_{C}\right) \quad \text { such that } \quad \psi_{X}=u_{X} \theta_{X}
$$

Recall:

- Proposition 8.9.3: $u_{X} \otimes u_{Y}=u_{X \otimes Y} \circ c_{Y, X} \circ c_{X, Y}$,

Corollaries

Let \mathcal{C} be a braided tensor category.
For all natural transformations $\psi_{X}: X \simeq X^{* *}$ there exists a

$$
\theta \in \operatorname{Aut}\left(\mathbf{i d}_{C}\right) \quad \text { such that } \quad \psi_{X}=u_{X} \theta_{X}
$$

Recall:

- Proposition 8.9.3: $u_{X} \otimes u_{Y}=u_{X \otimes Y} \circ c_{Y, X} \circ c_{X, Y}$,
- θ is a twist if $\theta_{X \otimes Y}=\left(\theta_{X} \otimes \theta_{Y}\right) \circ c_{Y, X} \circ c_{X, Y}$,

Corollaries

Let \mathcal{C} be a braided tensor category.
For all natural transformations $\psi_{X}: X \simeq X^{* *}$ there exists a

$$
\theta \in \operatorname{Aut}\left(\mathbf{i d}_{C}\right) \quad \text { such that } \quad \psi_{X}=u_{X} \theta_{X}
$$

Recall:

- Proposition 8.9.3: $u_{X} \otimes u_{Y}=u_{X \otimes Y} \circ c_{Y, X} \circ c_{X, Y}$,
- θ is a twist if $\theta_{X \otimes Y}=\left(\theta_{X} \otimes \theta_{Y}\right) \circ c_{Y, X} \circ c_{X, Y}$,
- ψ is a pivotal structure if $\psi_{X \otimes Y}=\psi_{X} \otimes \psi_{Y}$.

Corollaries

Let \mathcal{C} be a braided tensor category.
For all natural transformations $\psi_{X}: X \simeq X^{* *}$ there exists a

$$
\theta \in \operatorname{Aut}\left(\mathbf{i d}_{C}\right) \quad \text { such that } \quad \psi_{X}=u_{X} \theta_{X}
$$

Recall:

- Proposition 8.9.3: $u_{X} \otimes u_{Y}=u_{X \otimes Y} \circ c_{Y, X} \circ c_{X, Y}$,
- θ is a twist if $\theta_{X \otimes Y}=\left(\theta_{X} \otimes \theta_{Y}\right) \circ c_{Y, X} \circ c_{X, Y}$,
- ψ is a pivotal structure if $\psi_{X \otimes Y}=\psi_{X} \otimes \psi_{Y}$.

Therefore:
Corollary
ψ is a pivotal structure on \mathcal{C} if and only if θ is a twist on \mathcal{C}.

Corollaries cont.

Let \mathcal{C} be a braided fusion category.

Corollaries cont.

Let \mathcal{C} be a braided fusion category.
Recall:

- ψ is a spherical structure if $\operatorname{dim}_{\psi}(X)=\operatorname{dim}_{\psi}\left(X^{*}\right)+$ pivotal,

Corollaries cont.

Let \mathcal{C} be a braided fusion category.
Recall:

- ψ is a spherical structure if $\operatorname{dim}_{\psi}(X)=\operatorname{dim}_{\psi}\left(X^{*}\right)+$ pivotal,
- θ is a ribbon structure if $\left(\theta_{X}\right)^{*}=\theta_{X^{*}}+$ twist,

Corollaries cont.
Let \mathcal{C} be a braided fusion category.
Recall:
ψ is a spherical structure if $\operatorname{dim}_{\psi}(X)=\operatorname{dim}_{\psi}\left(X^{*}\right)+$ pivotal,

- θ is a ribbon structure if $\left(\theta_{X}\right)^{*}=\theta_{X^{*}}+$ twist,

Proposition
Let θ be a twist on \mathcal{C} and $\psi=u \circ \theta$ the canonical pivotal structure. ψ is spherical if and only if θ is a ribbon structure.

Trace and dimension

Recall (Section 4.7): For $f \in \operatorname{End}_{\mathcal{C}}(X)$ we have

$$
\begin{gathered}
\operatorname{Tr}^{L}(f): \mathbf{1} \xrightarrow{\operatorname{coev}_{X}} X \otimes X^{*} \xrightarrow{f \otimes \mathbf{i d}_{X}{ }^{*}} X^{* *} \otimes X^{*} \xrightarrow{\mathbf{e v}_{X}^{*}} \mathbf{1}, \\
\operatorname{Tr}^{R}(f): \mathbf{1} \xrightarrow{\operatorname{coev}_{*_{X}}}{ }^{*} X \otimes X \xrightarrow{\mathbf{i d d _ { X } \otimes f}}{ }^{* *} X \otimes X^{*} \xrightarrow{\mathbf{e v} *_{X}} \mathbf{1} .
\end{gathered}
$$

Trace and dimension

Recall (Section 4.7): For $f \in \operatorname{End}_{\mathcal{C}}(X)$ we have

$$
\begin{gathered}
\operatorname{Tr}^{L}(f): \mathbf{1} \xrightarrow{\operatorname{coev}_{X}} X \otimes X^{*} \xrightarrow{f \otimes \mathbf{i d}_{X}} X^{* *} \otimes X^{*} \xrightarrow{\mathbf{e v}_{X}} \mathbf{1}, \\
\operatorname{Tr}^{R}(f): \mathbf{1} \xrightarrow{\operatorname{coev}_{*_{X}}} * X \otimes X \xrightarrow{\mathbf{i d}_{*_{X}} \otimes f}{ }^{* *} X \otimes X^{*} \xrightarrow{\mathbf{e v}_{*} X} \mathbf{1} .
\end{gathered}
$$

Definition
The Trace of $f \in \operatorname{End}_{\mathcal{C}}(X)$ (with respect to ψ) is given by

$$
\operatorname{Tr}(f): 1 \xrightarrow{\operatorname{coev}_{X}} X \otimes X^{*} \xrightarrow{\psi_{X} \circ f \otimes \mathbf{i d}_{X^{*}}} X^{* *} \otimes X^{*} \xrightarrow{\mathbf{e v}_{X^{*}}} 1 .
$$

The dimension of $X \in \mathcal{C}$ is defined by $\operatorname{dim}(X)=\operatorname{Tr}\left(\mathbf{i d}_{X}\right)$.

Trace and dimension

Recall (Section 4.7): For $f \in \operatorname{End}_{\mathcal{C}}(X)$ we have

$$
\begin{gathered}
\mathbf{T r}^{L}(f): \mathbf{1} \xrightarrow{\mathbf{c o e v}_{X}} X \otimes X^{*} \xrightarrow{f \otimes \mathbf{i d}_{X}{ }^{*}} X^{* *} \otimes X^{*} \xrightarrow{\mathbf{e v}_{X}^{*}} \mathbf{1} \\
\operatorname{Tr}^{R}(f): \mathbf{1} \xrightarrow{\operatorname{coev}_{*_{X}}}{ }^{*} X \otimes X \xrightarrow{\mathbf{i d d _ { * _ { X } } \otimes f}}{ }^{* *} X \otimes X^{*} \xrightarrow{\mathbf{e v} *_{X}} \mathbf{1} .
\end{gathered}
$$

Definition
The Trace of $f \in \operatorname{End}_{\mathcal{C}}(X)$ (with respect to ψ) is given by

$$
\operatorname{Tr}(f): 1 \xrightarrow{\operatorname{coev}_{X}} X \otimes X^{*} \xrightarrow{\psi_{X} \circ f \otimes \mathbf{i d}_{X^{*}}} X^{* *} \otimes X^{*} \xrightarrow{\mathbf{e v}_{X}} 1 .
$$

The dimension of $X \in \mathcal{C}$ is defined by $\operatorname{dim}(X)=\operatorname{Tr}\left(\mathbf{i d}_{X}\right)$.

- We have $\operatorname{Tr}(f)=\operatorname{Tr}^{L}\left(\psi_{X} f\right)=\operatorname{Tr}^{R}\left(f \psi_{X}^{-1}\right)$,

Trace and dimension

Recall (Section 4.7): For $f \in \operatorname{End}_{\mathcal{C}}(X)$ we have

$$
\begin{gathered}
\operatorname{Tr}^{L}(f): \mathbf{1} \xrightarrow{\operatorname{coev}_{X}} X \otimes X^{*} \xrightarrow{f \otimes \mathbf{i d}_{X}{ }^{*}} X^{* *} \otimes X^{*} \xrightarrow{\mathbf{e v}_{X}^{*}} \mathbf{1} \\
\operatorname{Tr}^{R}(f): \mathbf{1} \xrightarrow{{\operatorname{coev} *_{X}}^{*}} X \otimes X \xrightarrow{\mathbf{i d d _ { * _ { X } } \otimes f}}{ }^{* *} X \otimes X^{*} \xrightarrow{\mathbf{e v} *_{X}} \mathbf{1} .
\end{gathered}
$$

Definition
The Trace of $f \in \operatorname{End}_{\mathcal{C}}(X)$ (with respect to ψ) is given by

$$
\operatorname{Tr}(f): 1 \xrightarrow{\operatorname{coev}_{X}} X \otimes X^{*} \xrightarrow{\psi_{X} \circ f \otimes \mathbf{i d}_{X^{*}}} X^{* *} \otimes X^{*} \xrightarrow{\mathbf{e v}_{X}} 1 .
$$

The dimension of $X \in \mathcal{C}$ is defined by $\operatorname{dim}(X)=\operatorname{Tr}\left(\mathbf{i d}_{X}\right)$.

- We have $\operatorname{Tr}(f)=\operatorname{Tr}^{L}\left(\psi_{X} f\right)=\operatorname{Tr}^{R}\left(f \psi_{X}^{-1}\right)$,
- $\operatorname{dim}(X) \neq 0$ when is X is simple,

Trace and dimension

Recall (Section 4.7): For $f \in \operatorname{End}_{\mathcal{C}}(X)$ we have

$$
\begin{gathered}
\operatorname{Tr}^{L}(f): \mathbf{1} \xrightarrow{\operatorname{coev}_{X}} X \otimes X^{*} \xrightarrow{f \otimes \mathbf{i d}_{X}{ }^{*}} X^{* *} \otimes X^{*} \xrightarrow{\mathbf{e v}_{X}^{*}} \mathbf{1} \\
\operatorname{Tr}^{R}(f): \mathbf{1} \xrightarrow{{\operatorname{coev} *_{X}}^{*}} X \otimes X \xrightarrow{\mathbf{i d d _ { * _ { X } } \otimes f}}{ }^{* *} X \otimes X^{*} \xrightarrow{\mathbf{e v} *_{X}} \mathbf{1} .
\end{gathered}
$$

Definition
The Trace of $f \in \operatorname{End}_{\mathcal{C}}(X)$ (with respect to ψ) is given by

$$
\operatorname{Tr}(f): 1 \xrightarrow{\operatorname{coev}_{X}} X \otimes X^{*} \xrightarrow{\psi_{X} \circ f \otimes \mathbf{i d}_{X^{*}}} X^{* *} \otimes X^{*} \xrightarrow{\mathbf{e v}_{X}} 1 .
$$

The dimension of $X \in \mathcal{C}$ is defined by $\operatorname{dim}(X)=\operatorname{Tr}\left(\mathbf{i d}_{X}\right)$.

- We have $\operatorname{Tr}(f)=\operatorname{Tr}^{L}\left(\psi_{X} f\right)=\operatorname{Tr}^{R}\left(f \psi_{X}^{-1}\right)$,
- $\operatorname{dim}(X) \neq 0$ when is X is simple,
- $\operatorname{dim}(X)$ takes values in \mathbb{k} while $\mathrm{FP}-\operatorname{dim}(X)$ takes values in \mathbb{R}.

Proposition

Let \mathcal{C} be a ribbon tensor category with twist θ, then
$\operatorname{dim}(X)=1 \xrightarrow{\boldsymbol{c o e v}_{X}} X \otimes X^{*} \xrightarrow{\theta_{X} \otimes \mathbf{i d}_{X^{*}}} X \otimes X^{*} \xrightarrow{c_{X, X}} X^{*} \otimes X \xrightarrow{\mathbf{e v}_{X}} \mathbf{1}$,
for all $X \in \mathcal{C}$.

Proposition

Let \mathcal{C} be a ribbon tensor category with twist θ, then
$\left.\operatorname{dim}(X)=1 \xrightarrow{\boldsymbol{c o e v}_{X}} X \otimes X^{*} \xrightarrow{\theta_{X} \otimes \mathbf{i d}_{X}}{ }^{2}\right) \otimes X^{*} \xrightarrow{c_{X, X^{*}}} X^{*} \otimes X \xrightarrow{\mathbf{e v}_{X}} \mathbf{1}$, for all $X \in \mathcal{C}$.

Proof,
$\bar{X} \otimes X^{*} \xrightarrow{\operatorname{cov}_{X}} X \otimes X^{*} \otimes X_{-}^{* *} \otimes X^{*} \xrightarrow{c_{X, X}} X^{*} \otimes X \otimes X^{* *} \otimes X^{*} \xrightarrow{\operatorname{ev}_{X}} X^{* *} \otimes X^{*}$

$G=\hbar^{h}\left(u_{x}\right)=\sigma_{x}^{-1} T_{2}\left(\theta_{x} u_{x}\right)=\sigma_{x}^{-1} \operatorname{dim}(x)$
$\otimes=\theta_{x}^{-1}(x)$

Proposition

Let \mathcal{C} be a ribbon tensor category with twist θ, then
$\operatorname{dim}(X)=1 \xrightarrow{\boldsymbol{c o e v}_{X}} X \otimes X^{*} \xrightarrow{\theta_{X} \otimes \mathbf{i d}_{X^{*}}} X \otimes X^{*} \xrightarrow{c_{X, X}} X^{*} \otimes X \xrightarrow{\mathbf{e v}_{X}} \mathbf{1}$,
for all $X \in \mathcal{C}$.
Proof.
$X \otimes X^{*} \xrightarrow{\operatorname{cov}_{X}} X^{*} \otimes X^{*} \otimes X^{* *} \otimes X^{*} \xrightarrow{c_{X, X}} X^{*} \otimes X \otimes X^{* *} \otimes X^{*} \xrightarrow{\operatorname{ev}_{X}} X^{* *} \otimes X^{*}$

Corollary (Exercise)
If X is simple, then

$$
\theta_{X}^{-1} \operatorname{dim}(X)=\operatorname{Tr}\left(c_{X, X}^{-1}\right)
$$

8.11. Ribbon Hopf algebras

8.11. Ribbon Hopf algebras

Definition

A Ribbon Hopf algebra is a triple (H, R, v) such that

- (H, R) is a quasitriangular Hopf algebra,
- $v \in H$ is an invertible central element such that

$$
\Delta(v)=(v \otimes v)\left(R_{21} R\right)^{-1} \quad \text { and } \quad v=S(v) .
$$

8.11. Ribbon Hopf algebras

Definition

A Ribbon Hopf algebra is a triple (H, R, v) such that

- (H, R) is a quasitriangular Hopf algebra,
- $v \in H$ is an invertible central element such that

$$
\Delta(v)=(v \otimes v)\left(R_{21} R\right)^{-1} \quad \text { and } \quad v=S(v) .
$$

Recall:
Definition
A quasitriangular Hopf algebra is a pair (H, R) such that

- H is a Hopf algebra,
- $R \in H \otimes H$ is the universal R-matrix of H, i.e.,
R is an invertible element satisfying
$(\Delta \otimes \mathrm{id})(R)=R^{13} R^{23},(\mathrm{id} \otimes \Delta)(R)=R^{13} R^{12}, \Delta^{\mathrm{op}}(h)=R \Delta(h) R^{-1}, h \in H ;$

Main properties

Let (H, R, v) be a ribbon Hopf algebra.

- $\operatorname{Rep}(H)$ has a canonical structure of a ribbon category.
- The twist θ is given by the action of v.

Main properties

Let (H, R, v) be a ribbon Hopf algebra.

- $\operatorname{Rep}(H)$ has a canonical structure of a ribbon category.
- The twist θ is given by the action of v.

There is a bijective correspondence between the following:

- Isomorphism classes of ribbon structures on a quasitriangular Hopf algebra (H, R),
- Equivalence classes of ribbon structures on the braided tensor category $\operatorname{Rep}(H)$.
- The braiding is the one given by R.

Examples

(i) Recall:

A quasitriangular Hopf algebra (H, R) is triangular if $R^{-1}=R^{21}$.

Examples

(i) Recall:

A quasitriangular Hopf algebra (H, R) is triangular if $R^{-1}=R^{21}$.

Any triangular Hopf algebra has a ribbon structure with $v=1$.

Examples

(i) Recall:

A quasitriangular Hopf algebra (H, R) is triangular if $R^{-1}=R^{21}$.

Any triangular Hopf algebra has a ribbon structure with $v=1$.
(ii) Recall:

The Quantum double $D(H)=H \otimes H^{* c o p}$ of H.

Examples

(i) Recall:

A quasitriangular Hopf algebra (H, R) is triangular if $R^{-1}=R^{21}$.

Any triangular Hopf algebra has a ribbon structure with $v=1$.
(ii) Recall:

The Quantum double $D(H)=H \otimes H^{* c o p}$ of H.
The quantum double of $D(\mathbb{k} G)$ of the group algebra of a finite group G has a ribbon structure with $v=u$.

Examples

(i) Recall:

A quasitriangular Hopf algebra (H, R) is triangular if $R^{-1}=R^{21}$.

Any triangular Hopf algebra has a ribbon structure with $v=1$.
(ii) Recall:

The Quantum double $D(H)=H \otimes H^{* c o p}$ of H.
The quantum double of $D(\mathbb{k} G)$ of the group algebra of a finite group G has a ribbon structure with $v=u$.
(iii) Any semisimple cosemisimple quasitriangular Hopf algebra has a ribbon structure with $v=u$.

Examples

(i) Recall:

A quasitriangular Hopf algebra (H, R) is triangular if $R^{-1}=R^{21}$.

Any triangular Hopf algebra has a ribbon structure with $v=1$.
(ii) Recall:

The Quantum double $D(H)=H \otimes H^{* \operatorname{cop}}$ of H.
The quantum double of $D(\mathbb{k} G)$ of the group algebra of a finite group G has a ribbon structure with $v=u$.
(iii) Any semisimple cosemisimple quasitriangular Hopf algebra has a ribbon structure with $v=u$.
(iv) $u_{q}\left(\mathfrak{S l}_{2}\right)$, for q a root of unity of odd order, is a ribbon Hopf algebra.
8.12. Characterization of Morita equivalence

8.12. Characterization of Morita equivalence

Definition (7.12.17)
Let \mathcal{C} and \mathcal{D} be two tensor cats. \mathcal{C} and \mathcal{D} are Morita equivalent if there is an exact \mathcal{C}-module category \mathcal{M} and a tensor equivalence $\mathcal{D}^{\mathrm{op}} \cong \mathcal{C}_{\mathcal{M}}^{*}$.

8.12. Characterization of Morita equivalence

Definition (7.12.17)
Let \mathcal{C} and \mathcal{D} be two tensor cats. \mathcal{C} and \mathcal{D} are Morita equivalent if there is an exact \mathcal{C}-module category \mathcal{M} and a tensor equivalence $\mathcal{D}^{\text {op }} \cong \mathcal{C}_{\mathcal{M}}^{*}$.

Theorem
Let \mathcal{C} and \mathcal{D} be two finite tensor cats.
C and D are Morita equivalent if and only if $\mathcal{Z}(\mathcal{C})$ and $\mathcal{Z}(\mathcal{D})$ are equivalent as braided tensor cats.

8.13. The S-matrix of a pre-modular category

$\mathbb{k}=$ algebraically closed field of characteristic 0

8.13. The S-matrix of a pre-modular category

$\mathbb{k}=$ algebraically closed field of characteristic 0

Definition

A pre-modular category is:

- a ribbon fusion category, (or equivalently)
- a spherical braided fusion category.

8.13. The S-matrix of a pre-modular category

$\mathbb{l}_{\mathrm{k}}=$ algebraically closed field of characteristic 0

Definition

A pre-modular category is:

- a ribbon fusion category, (or equivalently)
- a spherical braided fusion category.

Definition (S-matrix)
The S-matrix of a pre-modular cat \mathcal{C} is defined by

$$
S:=\left(s_{X Y}\right)_{X, Y \in \mathcal{O}(\mathcal{C})}, \quad \text { where } \quad s_{X Y}=\operatorname{Tr}\left(c_{Y, X} c_{X, Y}\right)
$$

with $\mathcal{O}(\mathcal{C})$ the set of (isomorphism classes of) simple objects of \mathcal{C}.

Remarks

Remarks

- The S-matrix of \mathcal{C} is a symmetric $n \times n$ matrix, with $n=|\mathcal{O}(\mathcal{C})|=$ the number of simple objects of \mathcal{C},

Remarks

- The S-matrix of \mathcal{C} is a symmetric $n \times n$ matrix, with $n=|\mathcal{O}(\mathcal{C})|=$ the number of simple objects of \mathcal{C},
- $s_{X^{*} Y^{*}}=s_{X Y}$ for all $X, Y \in \mathcal{O}(\mathcal{C})$,

Remarks

- The S-matrix of \mathcal{C} is a symmetric $n \times n$ matrix, with $n=|\mathcal{O}(\mathcal{C})|=$ the number of simple objects of \mathcal{C},
- $s_{X^{*} Y^{*}}=s_{X Y}$ for all $X, Y \in \mathcal{O}(\mathcal{C})$,
- $s_{X 1}=s_{1 X}=\operatorname{dim}(X)$,

Remarks

- The S-matrix of \mathcal{C} is a symmetric $n \times n$ matrix, with $n=|\mathcal{O}(\mathcal{C})|=$ the number of simple objects of \mathcal{C},
- $s_{X^{*} Y^{*}}=s_{X Y}$ for all $X, Y \in \mathcal{O}(\mathcal{C})$,
- $s_{X 1}=s_{1 X}=\operatorname{dim}(X)$,
- The S-matrix of \mathcal{C} depends on the choice of $\psi: X \xrightarrow{\sim} X^{* *}$.

Remarks

- The S-matrix of \mathcal{C} is a symmetric $n \times n$ matrix, with $n=|\mathcal{O}(\mathcal{C})|=$ the number of simple objects of \mathcal{C},
- $s_{X^{*} Y^{*}}=s_{X Y}$ for all $X, Y \in \mathcal{O}(\mathcal{C})$,
- $s_{X 1}=s_{1 X}=\operatorname{dim}(X)$,
- The S-matrix of \mathcal{C} depends on the choice of $\psi: X \xrightarrow{\sim} X^{* *}$.
- A canonical alternative is obtained by using u instead of ψ.

Remarks

- The S-matrix of \mathcal{C} is a symmetric $n \times n$ matrix, with $n=|\mathcal{O}(\mathcal{C})|=$ the number of simple objects of \mathcal{C},
- $s_{X^{*} Y^{*}}=s_{X Y}$ for all $X, Y \in \mathcal{O}(\mathcal{C})$,
- $s_{X 1}=s_{1 X}=\operatorname{dim}(X)$,
- The S-matrix of \mathcal{C} depends on the choice of $\psi: X \xrightarrow{\sim} X^{* *}$.
- A canonical alternative is obtained by using u instead of ψ.
- This results in replacing $s_{X Y}$ by $\theta_{X}^{-1} \theta_{Y}^{-1} s_{X Y}$.

Remarks

- The S-matrix of \mathcal{C} is a symmetric $n \times n$ matrix, with $n=|\mathcal{O}(\mathcal{C})|=$ the number of simple objects of \mathcal{C},
- $s_{X^{*} Y^{*}}=s_{X Y}$ for all $X, Y \in \mathcal{O}(\mathcal{C})$,
- $s_{X 1}=s_{1 X}=\operatorname{dim}(X)$,
- The S-matrix of \mathcal{C} depends on the choice of $\psi: X \xrightarrow{\sim} X^{* *}$.
- A canonical alternative is obtained by using u instead of ψ.
- This results in replacing $s_{X Y}$ by $\theta_{X}^{-1} \theta_{Y}^{-1} s_{X Y}$.

Definition

A Modular category is a pre-modular category with a non-degenerate S-matrix.

Example 1

Suppose:

- G is a afinite abelian group,
- $q: G \rightarrow \mathbb{k}^{\times}$is a quadratic form on G,
- $b: G \times G \rightarrow \mathbb{k}^{\times}$is the associated symmetric bilinear form.

Example 1

Suppose:

- G is a afinite abelian group,
- $q: G \rightarrow \mathbb{k}^{\times}$is a quadratic form on G,
- $b: G \times G \rightarrow \mathbb{k}^{\times}$is the associated symmetric bilinear form.

Recall (Things Alexis skipped):
THEOREM 8.4.9. The above homomorphism $H_{a b}^{3}\left(G, \mathbb{k}^{\times}\right) \rightarrow \operatorname{Quad}(G)$ is an isomorphism.

Example 1

Suppose:

- G is a afinite abelian group,
- $q: G \rightarrow \mathbb{k}^{\times}$is a quadratic form on G,
- $b: G \times G \rightarrow \mathbb{k}^{\times}$is the associated symmetric bilinear form.

Recall (Things Alexis skipped):
THEOREM 8.4.9. The above homomorphism $H_{a b}^{3}\left(G, \mathbb{k}^{\times}\right) \rightarrow \operatorname{Quad}(G)$ is an isomorphism.

EXERCISE 8.4.10. Prove that for an abelian group of odd order any quadratic form is of the form $B(g, g)$ for some bicharacter B.

Example 1

Suppose:

- G is a afinite abelian group,
- $q: G \rightarrow \mathbb{k}^{\times}$is a quadratic form on G,
- $b: G \times G \rightarrow \mathbb{k}^{\times}$is the associated symmetric bilinear form.

Recall (Things Alexis skipped):
THEOREM 8.4.9. The above homomorphism $H_{a b}^{3}\left(G, \mathbb{k}^{\times}\right) \rightarrow \operatorname{Quad}(G)$ is an isomorphism.

EXERCISE 8.4.10. Prove that for an abelian group of odd order any quadratic form is of the form $B(g, g)$ for some bicharacter B.

Corollary

For all pre-metric groups (G, q) there exists a unique up to a braided equivalence pointed braided fusion category $\mathcal{C}(G, q)$ such that the group of isomorphism classes of simple objects is G and the associated quadratic form is q.

Example 1 Continued

Suppose:

- G is a finite abelian group,
- $q: G \rightarrow \mathbb{k}^{\times}$is a quadratic form on G,
- $b: G \times G \rightarrow \mathbb{k}^{\times}$is the associated symmetric bilinear form.
- $\mathcal{C}(G, q)$ is corresponding pointed braided fusion category.

Example 1 Continued

Suppose:

- G is a finite abelian group,
- $q: G \rightarrow \mathbb{k}^{\times}$is a quadratic form on G,
- $b: G \times G \rightarrow \mathbb{k}^{\times}$is the associated symmetric bilinear form.
- $\mathcal{C}(G, q)$ is corresponding pointed braided fusion category.

Then:

- $\mathcal{C}(G, q)$ is a pre-modular cat with S-matrix $\{b(g, h)\}_{g, h \in G}$.

Example 1 Continued

Suppose:

- G is a finite abelian group,
- $q: G \rightarrow \mathbb{k}^{\times}$is a quadratic form on G,
- $b: G \times G \rightarrow \mathbb{k}^{\times}$is the associated symmetric bilinear form.
- $\mathcal{C}(G, q)$ is corresponding pointed braided fusion category.

Then:

- $\mathcal{C}(G, q)$ is a pre-modular cat with S-matrix $\{b(g, h)\}_{g, h \in G}$.
- $\mathcal{C}(G, q)$ is a modular cat if and only if q is non-degenerate.

Example 2

Let G be a finite group and Vec_{G} the category of G-graded VS.

Example 2

Let G be a finite group and Vec_{G} the category of G-graded VS.
Recall (Example 8.5.4):
Simple objects of $\mathcal{Z}\left(\operatorname{Vec}_{G}\right)$ are parametrized by pairs (C, V), with

- C a conjugacy class in G,
- V an irreducible rep of the centralizer $C_{G}(a)$ of $a \in G$.

Example 2

Let G be a finite group and Vec_{G} the category of G-graded VS.
Recall (Example 8.5.4):
Simple objects of $\mathcal{Z}\left(\operatorname{Vec}_{G}\right)$ are parametrized by pairs (C, V), with

- C a conjugacy class in G,
- V an irreducible rep of the centralizer $C_{G}(a)$ of $a \in G$.
$\mathcal{Z}\left(\operatorname{Vec}_{G}\right)$ is a (pre-) modular fusion cat with twist

$$
\theta_{(C, V)}=\frac{\operatorname{Tr}_{V}(a)}{\operatorname{dim}_{\mathrm{k}}(V)}
$$

and S-matrix given by
$s_{(C, V),\left(C^{\prime}, V^{\prime}\right)}=\frac{|G|}{\left|C_{G}(a)\right|\left|C_{G}\left(a^{\prime}\right)\right|} \sum_{g \in G\left(a, a^{\prime}\right)} \operatorname{Tr}_{V}\left(g a^{\prime} g^{-1}\right) \operatorname{Tr}_{V^{\prime}}\left(g^{-1} a g\right)$,
where $a \in C, a^{\prime} \in C^{\prime}, G\left(a, a^{\prime}\right)=\left\{g \in G \mid a g a^{\prime} g^{-1}=g a^{\prime} g^{-1} a\right\}$.

Properties

Let \mathcal{C} be a pre-modular cat and $X, Y, Z \in \mathcal{O}(\mathcal{C})$.
Denote by $N_{X Y}^{Z}:=[X \otimes Y: Z]$ the multiplicity of Z in $X \otimes Y$.

$Z=$ fusion rules

Properties

Let \mathcal{C} be a pre-modular cat and $X, Y, Z \in \mathcal{O}(\mathcal{C})$.
Denote by $N_{X Y}^{Z}:=[X \otimes Y: Z]$ the multiplicity of Z in $X \otimes Y$.
Proposition

$$
s_{X Y}=\theta_{X}^{-1} \theta_{Y}^{-1} \sum_{Z \in \mathcal{O}(\mathcal{C})} N_{X Y}^{Z} \theta_{Z} \operatorname{dim}(Z)
$$

Properties

Let \mathcal{C} be a pre-modular cat and $X, Y, Z \in \mathcal{O}(\mathcal{C})$.
Denote by $N_{X Y}^{Z}:=[X \otimes Y: Z]$ the multiplicity of Z in $X \otimes Y$.
Proposition

$$
\begin{aligned}
& s_{X Y}=\theta_{X}^{-1} \theta_{Y}^{-1} \sum_{Z \in \mathcal{O}(\mathcal{C})} N_{X Y}^{Z} \theta_{Z} \operatorname{dim}(Z) \\
& s_{X Y} s_{X Z}=\operatorname{dim}(X) \sum_{W \in \mathcal{O}(\mathcal{C})} N_{Y Z}^{W} s_{X W}
\end{aligned}
$$

Properties

Let \mathcal{C} be a pre-modular cat and $X, Y, Z \in \mathcal{O}(\mathcal{C})$.
Denote by $N_{X Y}^{Z}:=[X \otimes Y: Z]$ the multiplicity of Z in $X \otimes Y$.
Proposition

$$
\begin{aligned}
& s_{X Y}=\theta_{X}^{-1} \theta_{Y}^{-1} \sum_{Z \in \mathcal{O}(\mathcal{C})} N_{X Y}^{Z} \theta_{Z} \operatorname{dim}(Z) \\
& s_{X Y} s_{X Z}=\operatorname{dim}(X) \sum_{W \in \mathcal{O}(\mathcal{C})} N_{Y Z}^{W} s_{X W}
\end{aligned}
$$

The proof uses that for all $f: X \otimes Y \rightarrow X \otimes Y$ we have $\mathrm{id}_{X} \otimes \operatorname{Tr}(f): X \xrightarrow{\text { coev}_{Y}} X \otimes Y \otimes Y^{*} \xrightarrow{\left(\mathrm{id}_{X} \otimes \psi_{Y}\right)\left(f \otimes \mathrm{id}_{Y} *\right)} X \otimes Y^{* *} \otimes Y^{*} \xrightarrow{\mathrm{ev}_{Y}} X$, $\operatorname{Tr} \otimes \operatorname{id}_{Y}(f): Y \xrightarrow{\mathrm{coev}_{X^{*}}} X^{*} \otimes X^{* *} \otimes Y \xrightarrow{\left(i d_{X} * \otimes f\right)\left(\psi_{X}^{-1} \otimes \mathrm{id} y\right)} X^{*} \otimes X \otimes Y \xrightarrow{\mathrm{ev}_{X}} Y$.
We thus can talk about "applying trace to factors of morphisms between tensor products". Note that $\operatorname{Tr}\left(\operatorname{Tr} \otimes \operatorname{id}_{Y}\right)(f)=\operatorname{Tr}\left(\mathrm{id}_{X} \otimes \operatorname{Tr}\right)(f)=\operatorname{Tr}(f)$.

Proof

$$
F_{1}\left(\operatorname{dim}(x)^{-1} b_{x z} c_{x} c_{x y}\right)=\operatorname{dim}(1)^{-1} s_{x y} s_{z z}
$$

Propositions

(i) $\mathcal{O}(\mathcal{C})$ gives rise to characters of the Grothendieck ring $K_{0}(\mathcal{C})$,
i.e.,
for a fixed $X \in \mathcal{O}(\mathcal{C})$ the following map defines a morphism,

$$
h_{X}: K_{0}(\mathcal{C}) \rightarrow \mathbb{k}: Y \mapsto \frac{s_{X Y}}{\operatorname{dim}(X)}
$$

Propositions

(i) $\mathcal{O}(\mathcal{C})$ gives rise to characters of the Grothendieck ring $K_{0}(\mathcal{C})$,
i.e.,
for a fixed $X \in \mathcal{O}(\mathcal{C})$ the following map defines a morphism,

$$
h_{X}: K_{0}(\mathcal{C}) \rightarrow \mathbb{k}: Y \mapsto \frac{s_{X Y}}{\operatorname{dim}(X)}
$$

(ii) The numbers $\frac{s_{X Y}}{\operatorname{dim}(X)}$ are algebraic integers.
8.14. Modular categories

8.14. Modular categories

Definition

The dimension of a pre-modular cat is given by

$$
\operatorname{dim}(\mathcal{C}):=\sum_{X \in \mathcal{O}(\mathcal{C})} \operatorname{dim}(X)^{2} .
$$

8.14. Modular categories

Definition

The dimension of a pre-modular cat is given by

$$
\operatorname{dim}(\mathcal{C}):=\sum_{X \in \mathcal{O}(\mathcal{C})} \operatorname{dim}(X)^{2}
$$

Let $E=\left\{E_{X Y}\right\}_{X, Y \in \mathcal{O}(\mathcal{C})}$ be the matrix such that

$$
E_{X Y}=\delta_{X, Y^{*}}= \begin{cases}1 & \text { if } X=Y^{*} \\ 0 & \text { otherwise }\end{cases}
$$

Proposition

Let \mathcal{C} be a modular cat and S its S-matrix. Then

$$
S^{2}=\operatorname{dim}(\mathcal{C}) E \quad \text { and } \quad S^{-1}=\left\{\operatorname{dim}(\mathcal{C})^{-1} s_{X Y^{*}}\right\}
$$

Proposition

$$
S^{2}=\operatorname{dim}(\mathcal{C}) E \quad \text { and } \quad S^{-1}=\left\{\operatorname{dim}(\mathcal{C})^{-1} s_{X Y^{*}}\right\}
$$

Lemma

Let A be a fusion ring with \mathbb{Z}_{+}-basis B, and let χ_{1}, χ_{2} be distinct characters $A \rightarrow \mathbb{k}$. Then

$$
\sum_{X \in B} \chi_{1}(X) \chi_{2}\left(X^{*}\right)=0
$$

Proposition

$$
S^{2}=\operatorname{dim}(\mathcal{C}) E \quad \text { and } \quad S^{-1}=\left\{\operatorname{dim}(\mathcal{C})^{-1} s_{X Y^{*}}\right\}
$$

Lemma

Let A be a fusion ring with \mathbb{Z}_{+}-basis B, and let χ_{1}, χ_{2} be distinct characters $A \rightarrow \mathbb{k}$. Then

$$
\sum_{X \in B} \chi_{1}(X) \chi_{2}\left(X^{*}\right)=0
$$

Corollaries

Corollary (Verlinde formula)
For all $Y, Z, W \in \mathcal{O}(\mathcal{C})$ we have

$$
\sum_{X \in \mathcal{O}(\mathcal{C})} \frac{s_{X Y} s_{X Z} s_{X W^{*}}}{\operatorname{dim}(X)}=\operatorname{dim}(\mathcal{C}) N_{Y Z}^{W}
$$

i.e, the S-matrix determines the fusion rules of \mathcal{C} from Section 4.5. i.e, S determines multiplication on the Grothendieck ring $K_{0}(\mathcal{C})$.

Corollaries

Corollary (Verlinde formula)
For all $Y, Z, W \in \mathcal{O}(\mathcal{C})$ we have

$$
\sum_{X \in \mathcal{O}(\mathcal{C})} \frac{s_{X Y} s_{X Z} s_{X W^{*}}}{\operatorname{dim}(X)}=\operatorname{dim}(\mathcal{C}) N_{Y Z}^{W}
$$

i.e, the S-matrix determines the fusion rules of \mathcal{C} from Section 4.5.
i.e, S determines multiplication on the Grothendieck ring $K_{0}(\mathcal{C})$.

For all $Z \in \mathcal{O}(\mathcal{C})$ we define the square matrices
$D^{Z}:=\left(\delta_{X, Y} \frac{s_{X Z}}{\operatorname{dim}(X)}\right)_{X, Y \in \mathcal{O}(\mathcal{C})}, \quad$ and $\quad N^{Z}:=\left(N_{X Y}^{Z}\right)_{X, Y \in \mathcal{O}(\mathcal{C})}$.

Corollaries

Corollary (Verlinde formula)
For all $Y, Z, W \in \mathcal{O}(\mathcal{C})$ we have

$$
\sum_{X \in \mathcal{O}(\mathcal{C})} \frac{s_{X Y} s_{X Z} s_{X W^{*}}}{\operatorname{dim}(X)}=\operatorname{dim}(\mathcal{C}) N_{Y Z}^{W}
$$

i.e, the S-matrix determines the fusion rules of \mathcal{C} from Section 4.5. i.e, S determines multiplication on the Grothendieck ring $K_{0}(\mathcal{C})$.

For all $Z \in \mathcal{O}(\mathcal{C})$ we define the square matrices
$D^{Z}:=\left(\delta_{X, Y} \frac{s_{X Z}}{\operatorname{dim}(X)}\right)_{X, Y \in \mathcal{O}(\mathcal{C})}, \quad$ and $\quad N^{Z}:=\left(N_{X Y}^{Z}\right)_{X, Y \in \mathcal{O}(\mathcal{C})}$.
Corollary
Conjugation by the S-matrix diagonalizes the fusion rules of \mathcal{C}, i.e.,

$$
D^{Z}=S^{-1} N^{Z} S, \quad \text { for all } Z \in \mathcal{O}(\mathcal{C})
$$

Proposition

Let C be a modular category and $X \in \mathcal{O}(\mathcal{C})$. Then

$$
\frac{\operatorname{dim}(\mathcal{C})}{\operatorname{dim}(X)^{2}}
$$

is an algebraic integer.

Theorem (entries of S lie in a cyclotomic field)
$\mathfrak{k}=\mathbb{C}$
There exists a root of unity $\xi \in \mathbb{k}$ such that $s_{X Y} \in \mathbb{Q}(\xi)$.

