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4.10. Ribbon monoidal categories

Let C be a braided monoidal category.

Definition

I A twist (balancing transformation) on C is a

θ ∈ Aut(idC) such that θX⊗Y = (θX ⊗ θY ) ◦ cY,X ◦ cX,Y ,

for all X,Y ∈ C.

I A twist θ is a ribbon structure if (θX)∗ = θX∗ .

I C is a ribbon tensor category if it is rigid and is equipped
with a ribbon structure.
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Remark + Example

Remark:
Ribbon structure is a non-commutative generalization of a
quadratic form.

Recall (Section 8.4):
If a finite abelian group G has a bilinear form

b : G×G→ k∗,

then it defines a braiding on VecG.

The corresponding quadratic form

θδx = b(x, x)idδx , x ∈ G,

defines a ribbon structure on VecG.
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Connection to the Drinfeld morphism

Recall (Section 8.9):

Definition
The Drinfeld morphism u is the natural transformation
uX : X → X∗∗ defined as the composition

X
idX⊗coevX∗−−−−−−−−→ X ⊗X∗ ⊗X∗∗

cX,X∗⊗idX−−−−−−−→ X∗ ⊗X ⊗X∗∗ evX⊗idX∗∗−−−−−−−→ X∗∗

Theorem
If C is a braided tensor cat, then uX : X → X∗∗ is an isomorphism
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Proof
If C is a braided tensor cat, then uX : X → X∗∗ is an isomorphism

Lemma
For any nonzero simple object X the composition

f := evX ◦ cX,X∗ ◦ coevX ∈ EndC(1)

is nonzero.
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Corollaries

Let C be a braided tensor category.

For all natural transformations ψX : X ' X∗∗ there exists a

θ ∈ Aut(idC) such that ψX = uXθX .

Recall:

I Proposition 8.9.3: uX ⊗ uY = uX⊗Y ◦ cY,X ◦ cX,Y ,

I θ is a twist if θX⊗Y = (θX ⊗ θY ) ◦ cY,X ◦ cX,Y ,

I ψ is a pivotal structure if ψX⊗Y = ψX ⊗ ψY .

Therefore:

Corollary

ψ is a pivotal structure on C if and only if θ is a twist on C.
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Corollaries cont.

Let C be a braided fusion category.

Recall:

I ψ is a spherical structure if dimψ(X) = dimψ(X∗) + pivotal,

I θ is a ribbon structure if (θX)∗ = θX∗ + twist,

Proposition

Let θ be a twist on C and ψ = u ◦ θ the canonical pivotal structure.
ψ is spherical if and only if θ is a ribbon structure.
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Trace and dimension

Recall (Section 4.7): For f ∈ EndC(X) we have

TrL(f) : 1
coevX−−−−→ X ⊗X∗ f⊗idX∗−−−−−→ X∗∗ ⊗X∗ evX∗−−−→ 1,

TrR(f) : 1
coev∗X−−−−−→ ∗X ⊗X id∗X⊗f−−−−−→ ∗∗X ⊗X∗ ev∗X−−−→ 1.

Definition
The Trace of f ∈ EndC(X) (with respect to ψ) is given by

Tr(f) : 1
coevX−−−−→ X ⊗X∗ ψX◦f⊗idX∗−−−−−−−−→ X∗∗ ⊗X∗ evX∗−−−→ 1.

The dimension of X ∈ C is defined by dim(X) = Tr(idX).

I We have Tr(f) = TrL(ψXf) = TrR(fψ−1X ),

I dim(X) 6= 0 when is X is simple,

I dim(X) takes values in k while FP-dim(X) takes values in R.
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Proposition

Let C be a ribbon tensor category with twist θ, then

dim(X) = 1
coevX−−−−→ X ⊗X∗ θX⊗idX∗−−−−−−→ X ⊗X∗

cX,X∗−−−−→ X∗ ⊗X evX−−−→ 1,

for all X ∈ C.

Proof.

Corollary (Exercise)

If X is simple, then

θ−1X dim(X) = Tr(c−1X,X).
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8.11. Ribbon Hopf algebras

Definition
A Ribbon Hopf algebra is a triple (H,R, v) such that

I (H,R) is a quasitriangular Hopf algebra,

I v ∈ H is an invertible central element such that

∆(v) = (v ⊗ v)(R21R)−1 and v = S(v).

Recall:

Definition
A quasitriangular Hopf algebra is a pair (H,R) such that

I H is a Hopf algebra,

I R ∈ H ⊗H is the universal R-matrix of H, i.e.,
R is an invertible element satisfying
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Main properties

Let (H,R, v) be a ribbon Hopf algebra.
I Rep(H) has a canonical structure of a ribbon category.

I The twist θ is given by the action of v.

There is a bijective correspondence between the following:

I Isomorphism classes of ribbon structures on a quasitriangular
Hopf algebra (H,R),

I Equivalence classes of ribbon structures on the braided tensor
category Rep(H).
I The braiding is the one given by R.
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Examples

(i) Recall:
A quasitriangular Hopf algebra (H,R) is triangular if
R−1 = R21.

Any triangular Hopf algebra has a ribbon structure with v = 1.

(ii) Recall:
The Quantum double D(H) = H ⊗H∗cop of H.

The quantum double of D(kG) of the group algebra of a
finite group G has a ribbon structure with v = u.

(iii) Any semisimple cosemisimple quasitriangular Hopf algebra has
a ribbon structure with v = u.

(iv) uq(sl2), for q a root of unity of odd order, is a ribbon Hopf
algebra.
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8.12. Characterization of Morita equivalence

Definition (7.12.17)

Let C and D be two tensor cats. C and D are Morita equivalent
if there is an exact C-module category M and a tensor equivalence
Dop ∼= C∗M.

Theorem
Let C and D be two finite tensor cats.
C and D are Morita equivalent if and only if Z(C) and Z(D) are
equivalent as braided tensor cats.
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8.13. The S-matrix of a pre-modular category
k = algebraically closed field of characteristic 0

Definition
A pre-modular category is:

• a ribbon fusion category,
(or equivalently)

• a spherical braided fusion category.

Definition (S-matrix)

The S-matrix of a pre-modular cat C is defined by

S := (sXY )X,Y ∈O(C), where sXY = Tr(cY,XcX,Y ),

with O(C) the set of (isomorphism classes of) simple objects of C.
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Remarks

I The S-matrix of C is a symmetric n× n matrix,
with n = |O(C)| = the number of simple objects of C,

I sX∗Y ∗ = sXY for all X,Y ∈ O(C),

I sX1 = s1X = dim(X),

I The S-matrix of C depends on the choice of ψ : X
∼−→ X∗∗.

I A canonical alternative is obtained by using u instead of ψ.
I This results in replacing sXY by θ−1

X θ−1
Y sXY .

Definition
A Modular category is a pre-modular
category with a non-degenerate S-matrix.
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Example 1

Suppose:

I G is a afinite abelian group,

I q : G→ k× is a quadratic form on G,

I b : G×G→ k× is the associated symmetric bilinear form.

Recall (Things Alexis skipped):

Corollary

For all pre-metric groups (G, q) there exists a unique up to a
braided equivalence pointed braided fusion category C(G, q) such
that the group of isomorphism classes of simple objects is G and
the associated quadratic form is q.
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Example 1 Continued

Suppose:

I G is a finite abelian group,

I q : G→ k× is a quadratic form on G,

I b : G×G→ k× is the associated symmetric bilinear form.

I C(G, q) is corresponding pointed braided fusion category.

Then:

I C(G, q) is a pre-modular cat with S-matrix {b(g, h)}g,h∈G.

I C(G, q) is a modular cat if and only if q is non-degenerate.
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Example 2

Let G be a finite group and VecG the category of G-graded VS.

Recall (Example 8.5.4):
Simple objects of Z(VecG) are parametrized by pairs (C, V ), with

I C a conjugacy class in G,

I V an irreducible rep of the centralizer CG(a) of a ∈ G.

Z(VecG) is a (pre-)modular fusion cat with twist

θ(C,V ) =
TrV (a)

dimk(V )
,

and S-matrix given by

s(C,V ),(C′,V ′) =
|G|

|CG(a)||CG(a′)|
∑

g∈G(a,a′)

TrV (ga′g−1)TrV ′(g
−1ag),

where a ∈ C, a′ ∈ C ′, G(a, a′) = {g ∈ G|aga′g−1 = ga′g−1a}.
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Properties

Let C be a pre-modular cat and X,Y, Z ∈ O(C).
Denote by NZ

XY := [X ⊗ Y : Z] the multiplicity of Z in X ⊗ Y .

Proposition

sXY = θ−1X θ−1Y

∑
Z∈O(C)

NZ
XY θZ dim(Z)

sXY sXZ = dim(X)
∑

W∈O(C)

NW
Y ZsXW

The proof uses that for all f : X ⊗ Y → X ⊗ Y we have
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Proof
sXY sXZ = dim(X)

∑
W∈O(C) N

W
Y ZsXW
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Propositions

(i) O(C) gives rise to characters of the Grothendieck ring K0(C),
i.e.,
for a fixed X ∈ O(C) the following map defines a morphism,

hX : K0(C)→ k : Y 7→ sXY
dim(X)

.

(ii) The numbers
sXY

dim(X)
are algebraic integers.
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8.14. Modular categories

Definition
The dimension of a pre-modular cat is given by

dim(C) :=
∑

X∈O(C)

dim(X)2.

Let E = {EXY }X,Y ∈O(C) be the matrix such that

EXY = δX,Y ∗ =

{
1 if X = Y ∗

0 otherwise
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Proposition

Let C be a modular cat and S its S-matrix. Then

S2 = dim(C)E and S−1 = {dim(C)−1sXY ∗}.

23



Proposition
S2 = dim(C)E and S−1 = {dim(C)−1sXY ∗}

Lemma
Let A be a fusion ring with Z+-basis B, and let χ1, χ2 be distinct
characters A→ k. Then∑

X∈B
χ1(X)χ2(X

∗) = 0

24



Proposition
S2 = dim(C)E and S−1 = {dim(C)−1sXY ∗}

Lemma
Let A be a fusion ring with Z+-basis B, and let χ1, χ2 be distinct
characters A→ k. Then∑

X∈B
χ1(X)χ2(X

∗) = 0

24



Corollaries

Corollary (Verlinde formula)

For all Y, Z,W ∈ O(C) we have∑
X∈O(C)

sXY sXZsXW ∗

dim(X)
= dim(C)NW

Y Z ,

i.e, the S-matrix determines the fusion rules of C from Section 4.5.
i.e, S determines multiplication on the Grothendieck ring K0(C).

For all Z ∈ O(C) we define the square matrices

DZ :=

(
δX,Y

sXZ
dim(X)

)
X,Y ∈O(C)

, and NZ := (NZ
XY )X,Y ∈O(C).

Corollary

Conjugation by the S-matrix diagonalizes the fusion rules of C, i.e.,

DZ = S−1NZS, for all Z ∈ O(C).
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Proposition

Let C be a modular category and X ∈ O(C). Then

dim(C)
dim(X)2

is an algebraic integer.
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Theorem (entries of S lie in a cyclotomic field)
k = C

There exists a root of unity ξ ∈ k such that sXY ∈ Q(ξ).
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