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4.10. Ribbon monoidal categories
Let C be a braided monoidal category.
Definition
> A twist (balancing transformation) on C is a

RS Aut(idc) such that Oxgy = ((9)( & Qy) ocy,x °cCxy,

for all X, Y € C.
» A twist 0 is a ribbon structure if (0x)* = 0x-.

» C is a ribbon tensor category if it is rigid and is equipped
with a ribbon structure.
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Ribbon structure is a non-commutative generalization of a
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Remark + Example

Remark:
Ribbon structure is a non-commutative generalization of a
quadratic form.

Recall (Section 8.4):
If a finite abelian group G has a bilinear form

b:GxG— k",

then it defines a braiding on Vecg.



Remark + Example

Remark:
Ribbon structure is a non-commutative generalization of a
quadratic form.

Recall (Section 8.4):
If a finite abelian group G has a bilinear form

b: G x G — k¥,
then it defines a braiding on Vecg.
The corresponding quadratic form
05, = b(z,z)ids,, =€ G,

defines a ribbon structure on Vecg.
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Connection to the Drinfeld morphism | i
Recall (Section 8.9): % /\/ |
Definition ‘

The Drinfeld morphism u is the natural transformation

uy : X — X** defined as the composition

idx ®coev x cx, x+ ®id xé ev x ®id y*x
X X X X®X*®X** X*®X®X** X X X**
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Connection to the Drinfeld morphism

Recall (Section 8.9):

Definition
The Drinfeld morphism u is the natural transformation
uy : X — X** defined as the composition

idx ®coev x cx, x*®idx ev x ®id y*x
X X X X®X*®X** X*®X®X** X X X**

Theorem
IfC is a bra('ded tensor cat, then uyx : X — X™** is an isomorphism
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Proof WL 06 X

If C is a braided tensor cat, then ux : X — X ™" is an isomorphism

\fo%

W XW’“O %%? (TS,
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Proof

If C is a braided tensor cat, then ux : X — X ™" is an isomorphism

Lemma
For any nonzero simple object X the composition

[ =evxocyx+ocoevy € Ende(1) — ‘K

is nonzero.
n / / "ﬁ" .
/ /] / _ Ny
My ) b 0 A / f/wﬂzﬂ i N\pag
X mWﬁ%,J =/ I LorUily %/A@/«\ﬂ 2 w\“@ o ( %)
l /

/ U
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Corollaries

Let C be a braided tensor category.



Corollaries

Let C be a braided tensor category.
For all natural transformations ¥ x : X ~ X™** there exists a

0 € Aut(idg) such that  ¢¥x = uxfx.
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Corollaries

Let C be a braided tensor category.
For all natural transformations ¥ x : X ~ X™** there exists a
RS Aut(idc) such that Yy =uxfyx.

Recall:
» Proposition 8.9.3: ux ® uy = uxgy © cy,x °©cx,y,
» O is a twist if Oxgy = (Ox ®0y)ocy x ocxy,
» 1 is a pivotal structure if Pxgy = Vx ® Yy.



Corollaries

Let C be a braided tensor category.
For all natural transformations ¥ x : X ~ X™** there exists a
RS Aut(idc) such that Yy =uxfyx.

Recall:
» Proposition 8.9.3: ux ® uy = uxgy © cy,x °©cx,y,
» O is a twist if Oxgy = (Ox ®0y)ocy x ocxy,
» 1 is a pivotal structure if Pxgy = Vx ® Yy.
Therefore:

Corollary
W is a pivotal structure on C if and only if 0 is a twist on C.
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Let C be a braided fusion category.

Recall:
» 1) is a spherical structure if dimy (X) = dim(X*) + pivotal,
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Let C be a braided fusion category.
Recall:
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» 6 is a ribbon structure if (0x)* = 0x+ + twist,



Corollaries cont.

Let C be a braided fusion category.

Recall:
» 1) is a spherical structure if dimy (X) = dim(X*) + pivotal,
» 6 is a ribbon structure if (0x)* = 0x+ + twist,

Proposition

Let 6 be a twist on C and 1) = w o 0 the canonical pivotal structure.
W is spherical if and only if 0 is a ribbon structure.
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Trace and dimension
Recall (Section 4.7): For f € End¢(X) we have

coevy

TI'L(f) S SOVXL X @ X F®id xx* X** @ X* ev xx 1’

coe

Tl (f) : 1 20X, v g x MO ey g xSV g
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Trace and dimension ~
Recall (Section 4.7): For f € End¢(X) we have \f; /,“‘
coevx, y g x* LNy ) yx OVXH g

coevy

T (f) : 1

Tefi(f) 11 2200 rx @ X S0 vy @ X0 SN g0

[
Definition \_ i‘f/
The Trace of f € End¢(X) (with respect to 1)) is given by

/.\

N\ \\
1. ‘\Z,/‘ ﬂ‘ )

coevy

x €V xx

The dimension of X € C is defined by dim(X) = Tr(idx).
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Trace and dimension
Recall (Section 4.7): For f € End¢(X) we have

Tel(f) ;1 V%, x @ x* L2,y g xr VX7,
Tl (f) : 1 20X, v g x MO ey g xSV g
Definition

The Trace of f € End¢(X) (with respect to 1)) is given by

coevy

x €V xx

X" X" —— 1.
The dimension of X € C is defined by dim(X) = Tr(idx).

> We have Tr(f) = Trk(vx f) = TeR(fih),
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Definition
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> We have Tr(f) = Tr*(¢vx f) = Tefi(foih),
» dim(X) # 0 when is X is simple,



Trace and dimension
Recall (Section 4.7): For f € End¢(X) we have

Tel(f) ;1 V%, x @ x* L2,y g xr VX7,
Tl (f) : 1 20X, v g x MO ey g xSV g
Definition

The Trace of f € End¢(X) (with respect to 1)) is given by

coevy

x €V xx

X" X" —— 1.
The dimension of X € C is defined by dim(X) = Tr(idx).

> We have Tr(f) = Tr*(¢vx f) = Tefi(foih),
» dim(X) # 0 when is X is simple,

» dim(X) takes values in k while FP-dim(X) takes values in R.



Proposition
Let C be a ribbon tensor category with twist 8, then

0x ®id x * evy

dim(X) =1 2%, X @ X* Xoxr 222 xr g x 5,

for all X €C.
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Proposition

Let C be a ribbon tensor category with twist 8, then

dim(X) = 1 2%, x @ x* DX v o xr XXy g x oYX
forall X € C.
Proof. — - T — o _

X @XT TN X@X*@X**@X*—> X*@X@X**@X* —> X**@X*

) L - = — - N |
coevy evy* BV y = BV y*
. 1 . \ :

coevx X, X*

A 14)X®X*—>X*®X4)1
1/ \‘ 7 /7 gl n VAN -
S - hfw/) -0 hicwul\zo { [ X
-/ - s ‘\ V\(// — U \X 7L \\ V)( U\X’/‘“ - ‘\/% &A/‘vw\‘ \\ ‘/s‘
/

7


sam
Pencil

sam
Pencil


Proposition

Let C be a ribbon tensor category with twist 8, then

dim(X) =1 2%, x @ x* X, v g xr XX g x O g
for all X €C.
Proof.

coev x*

XoX* % Xo X o X @ X* X, X+oXo X" @X* =X, X gX*

CGerT JVGVX* Je\.‘xn lth

coev Cx x*

1— 2 L XX XX 51,

Corollary (Exercise)
If X is simple, then

0% dim(X) = Tr(cy'y).

)



8.11. Ribbon Hopf algebras
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8.11. Ribbon Hopf algebras

Definition
A Ribbon Hopf algebra is a triple (H, R, v) such that
» (H,R) is a quasitriangular Hopf algebra,

» v € H is an invertible central element such that

A(w) = (v®@v)(RaR)™" and v =S(v).

10



8.11. Ribbon Hopf algebras

Definition
A Ribbon Hopf algebra is a triple (H, R, v) such that
» (H,R) is a quasitriangular Hopf algebra,

» v € H is an invertible central element such that

A(w) = (v®@v)(RaR)™" and v =S(v).

Recall:

Definition

A quasitriangular Hopf algebra is a pair (H, R) such that
» H is a Hopf algebra,

» R e H® H is the universal R-matrix of H, i.e.,
R is an invertible element satisfying
(A®id)(R) = R*®R®, (id®A)(R) = R®R'?, A°®(h) = RA(h)R™", h € H,

10



Main properties

Let (H, R,v) be a ribbon Hopf algebra.
» Rep(H) has a canonical structure of a ribbon category.
» The twist 0 is given by the action of v.
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Main properties

Let (H, R,v) be a ribbon Hopf algebra.
» Rep(H) has a canonical structure of a ribbon category.
» The twist 0 is given by the action of v.
There is a bijective correspondence between the following:
» Isomorphism classes of ribbon structures on a quasitriangular
Hopf algebra (H, R),
» Equivalence classes of ribbon structures on the braided tensor
category Rep(H).
» The braiding is the one given by R.

11



Examples

(i) Recall:
A quasitriangular Hopf algebra (H, R) is triangular if
R™! = R
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Examples

(i) Recall:
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(ii) Recall:
The Quantum double D(H) = H @ H*°P of H.
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Examples

(i) Recall:
A quasitriangular Hopf algebra (H, R) is triangular if
R™! = R

Any triangular Hopf algebra has a ribbon structure with v = 1.

(ii) Recall:
The Quantum double D(H) = H @ H*°P of H.

The quantum double of D(kG) of the group algebra of a
finite group G has a ribbon structure with v = u.

(iii) Any semisimple cosemisimple quasitriangular Hopf algebra has
a ribbon structure with v = w.
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Examples

(i) Recall:
A quasitriangular Hopf algebra (H, R) is triangular if
R™! = R

Any triangular Hopf algebra has a ribbon structure with v = 1.

(ii) Recall:
The Quantum double D(H) = H @ H*°P of H.

The quantum double of D(kG) of the group algebra of a
finite group G has a ribbon structure with v = u.

(iii) Any semisimple cosemisimple quasitriangular Hopf algebra has
a ribbon structure with v = w.

(iv) wuq(slz), for ¢ a root of unity of odd order, is a ribbon Hopf
algebra.

12



8.12. Characterization of Morita equivalence
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8.12. Characterization of Morita equivalence

Definition (7.12.17)

Let C and D be two tensor cats. C and D are Morita equivalent
if there is an exact C-module category M and a tensor equivalence
DP = (.
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8.12. Characterization of Morita equivalence

Definition (7.12.17)

Let C and D be two tensor cats. C and D are Morita equivalent
if there is an exact C-module category M and a tensor equivalence
DP = (.

Theorem

Let C and D be two finite tensor cats.

C and D are Morita equivalent if and only if Z(C) and Z(D) are
equivalent as braided tensor cats.

R | 9 g N 1
D I/ FoPR 00 o MNen 4 H )
-/ //‘/\_ j/{/f( O f)‘/,xm i Pop v )

/
Lo f -
- A1, 1 N
— AW g Lo

13
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8.13. The S-matrix of a pre-modular category

k = algebraically closed field of characteristic 0
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8.13. The S-matrix of a pre-modular category

k = algebraically closed field of characteristic 0

Definition
A pre-modular category is:

e a ribbon fusion category,
(or equivalently)

e a spherical braided fusion category.

14
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8.13. The S-matrix of a pre-modular category
k = algebraically closed field of characteristic 0

Definition
A pre-modular category is:

e a ribbon fusion category,
(or equivalently)

e a spherical braided fusion category.

VoY
Definition (S-matrix) X
The S-matrix of a pre-modular cat C is defined by i\ NN
Xy
( y )

S = <3XY)X,YEO(C)a where SXy = TT(CY7xéX7y), i\\ >L/‘
with O(C) the set of (isomorphism classes of) simple objects of C.

14
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Remarks
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Remarks

> The S-matrix of C is a symmetric n X n matrix,
with n = |O(C)| = the number of simple objects of C,
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Remarks

> The S-matrix of C is a symmetric n X n matrix,
with n = |O(C)| = the number of simple objects of C,

P Sxryx = SXY for all X,Y € O(C),
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Remarks

> The S-matrix of C is a symmetric n X n matrix,
with n = |O(C)| = the number of simple objects of C,

P Sxryx = SXY for all X,Y € O(C),

> SX1 = S1x = dim(X),
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Remarks

> The S-matrix of C is a symmetric n X n matrix,
with n = |O(C)| = the number of simple objects of C,

P Sxryx = SXY for all X,Y € O(C),

SX1 = S1x = dim(X),

v

» The S-matrix of C depends on the choice of 1 : X = X**.
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Remarks

> The S-matrix of C is a symmetric n X n matrix,
with n = |O(C)| = the number of simple objects of C,

> sx«y+ = sxy forall X, Y € O(C),

SX1 = S1x = dim(X),

» The S-matrix of C depends on the choice of ¢ : X = X**,
» A canonical alternative is obtained by using w instead of 1.

v
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Remarks

> The S-matrix of C is a symmetric n X n matrix,
with n = |O(C)| = the number of simple objects of C,

P Sxryx = SXY for all X,YGO(C),
> SXl:81X:dim(X>,
» The S-matrix of C depends on the choice of 1 : X = X**.

» A canonical alternative is obtained by using u instead of .
» This results in replacing sxy by 0)_(19{,15)(3/.

15



Remarks

> The S-matrix of C is a symmetric n X n matrix,
with n = |O(C)| = the number of simple objects of C,
> sx«y+ = sxy forall X, Y € O(C),
> SX1 = S1Xx — dim(X),
» The S-matrix of C depends on the choice of ¢ : X = X**,

» A canonical alternative is obtained by using u instead of .
» This results in replacing sxy by 0)_(19{,15)(}/.

Definition
A Modular category is a pre-modular
category with a non-degenerate S-matrix.

15



Example 1

Suppose:
> ( is a afinite abelian group,
» ¢:G — k* is a quadratic form on G,

» b:G x G — k* is the associated symmetric bilinear form.
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Example 1

Suppose:

> G is a afinite abelian group,

» ¢:G — k™ is a quadratic form on G,

» b:G x G — k* is the associated symmetric bilinear form.
Recall (Things Alexis skipped):

THEOREM 8.4.9. The above homomorphism H?>

(G, k) = Quad(G) is an iso-
morphism.
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Example 1

Suppose:
> G is a afinite abelian group,
» ¢:G — k™ is a quadratic form on G,
» b:G x G — k* is the associated symmetric bilinear form.

Recall (Things Alexis skipped):

THEOREM 8.4.9. The above homomorphism H2 (G,k*) — Quad(G) is an iso-
morphism.

EXERCISE 8.4.10. Prove that for an abelian group of odd order any quadratic
form is of the form B(g, g) for some bicharacter B.
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Example 1

Suppose:

> G is a afinite abelian group,

» ¢:G — k™ is a quadratic form on G,

» b:G x G — k* is the associated symmetric bilinear form.
Recall (Things Alexis skipped):

THEOREM 8.4.9. The above homomorphism H2 (G,k*) — Quad(G) is an iso-
morphism.

EXERCISE 8.4.10. Prove that for an abelian group of odd order any quadratic
form is of the form B(g, g) for some bicharacter B.

Corollary

For all pre-metric groups (G, q) there exists a unique up to a
braided equivalence pointed braided fusion category C(G,q) such
that the group of isomorphism classes of simple objects is G and
the associated quadratic form is q.

16



Example 1 Continued

Suppose:
> G is a finite abelian group,
» ¢:G — k™ is a quadratic form on G,
» b:G x G — k* is the associated symmetric bilinear form.

» C(G,q) is corresponding pointed braided fusion category.
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Example 1 Continued

Suppose:
> G is a finite abelian group,
» ¢:G — k™ is a quadratic form on G,
» b:G x G — k* is the associated symmetric bilinear form.

» C(G,q) is corresponding pointed braided fusion category.

Then:
» C(G,q) is a pre-modular cat with S-matrix {b(g, h)}4 nec-
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Example 1 Continued

Suppose:
> G is a finite abelian group,
» ¢:G — k™ is a quadratic form on G,
» b:G x G — k* is the associated symmetric bilinear form.

» C(G,q) is corresponding pointed braided fusion category.

Then:
» C(G,q) is a pre-modular cat with S-matrix {b(g, h)}4 nec-
» C(G,q) is a modular cat if and only if ¢ is non-degenerate.

17



Example 2
Let GG be a finite group and Vecg the category of GG-graded VS.
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Example 2
Let GG be a finite group and Vecg the category of GG-graded VS.

Recall (Example 8.5.4):
Simple objects of Z(Vec) are parametrized by pairs (C, V) with

» (' a conjugacy class in G,
» V an irreducible rep of the centralizer Cz(a) of a € @

18
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Example 2
Let GG be a finite group and Vecg the category of GG-graded VS.

Recall (Example 8.5.4):
Simple objects of Z(Vec) are parametrized by pairs (C, V'), with

» (' a conjugacy class in G,
» V an irreducible rep of the centralizer Cg(a) of a € G.
Z(Vecg) is a (pre-)modular fusion cat with twist

o . _ Trv(a)
OV dimg(V)’

and S-matrix given by

B G|
SOV T 10a(a)]|Cald)]

> Try(gdg )Try(g 'ag),
g€G(a,a’)

where a € C, a’ € C', G(a,d’) = {g € Glagd' g~ = ga'g~'a}.

18



Properties
Let C be a pre-modular cat and X, Y, Z € O(C).

Denote by N%, := [X ® Y : Z] the muIt|pI|C|ty of Z in X®Y.

< \|Z

N
2y [7 ]+ \ /- _ >

nw ML) T NN N
k) Xy = 2 Ny
zgij;

- //y%//*l%» &////3
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Properties

Let C be a pre-modular cat and X,Y,Z € O(C).
Denote by N%,, := [X ® Y : Z] the multiplicity of Z in X ® Y.

Proposition
sxy =05'0y" Y N¥y0,dim(2)
' Zeo(C)
el O m& .
- -7 WY, d L9 &
Loy = YUYy @ o © Sy

19
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Properties

Let C be a pre-modular cat and X,Y,Z € O(C).
Denote by N%,, := [X ® Y : Z] the multiplicity of Z in X ® Y.

Proposition

sxy =05'0y" Y N¥y0,dim(2)
ZeO(C)

SXySXZ:dim(X) Z N%SXW
WeO(C)
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Properties

Let C be a pre-modular cat and X,Y,Z € O(C).
Denote by N%,, := [X ® Y : Z] the multiplicity of Z in X ® Y.

Proposition

sxy =05'0y" Y N¥y0,dim(2)
ZeO(C)

SXySXZ:dim(X) Z N%SXW
WeO(C)

The proof uses that forall f: X ®Y — X ® Y we have
idx ®Tr(f) . X coevy X @Y@Y* (idx @y )(fRidy =) X@Y** ®Y* EVy= X,

N iy L l®id ev
Treidy(f) : ¥ <2 x* @ x** @y Lo @0« ), e o x o7 &%,y

‘We thus can talk about “applying trace to factors of morphisms between tensor
products”. Note that Tr(Tr@idy)(f) = Tr(idx @ Tr)(f) = Tr(f).

19
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Proof
sxysxz =dim(X) > o Wz

RS

-
N\
/

X

[ )
/ \ /) 7YX XY )
/ / 7 /’X >\/ \//,

A
\ Mo /
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Propositions

(i) O(C) gives rise to characters of the Grothendieck ring K¢(C),
i.e.,
for a fixed X € O(C) the following map defines a morphism,

SXY
dim(X)

hx : Ko(C) - k:Y —

21



Propositions

(i) O(C) gives rise to characters of the Grothendieck ring K¢(C),
i.e.,
for a fixed X € O(C) the following map defines a morphism,

SXY
dim(X)

hx : Ko(C) - k:Y —

(i) The numbers are algebraic integers.

SXY
dim(X)

21



8.14. Modular categories
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8.14. Modular categories

Definition
The dimension of a pre-modular cat is given by

dim(C) := ) dim(X)*.

22



8.14. Modular categories

Definition
The dimension of a pre-modular cat is given by

dim(C) := ) dim(X)*.

Let F = {Exy}x,yeo() be the matrix such that

1 fX=Y"

Exy =oxy- = {0 otherwise

22



Proposition

Let C be a modular cat and S its S-matrix. Then

S? =dim(C)E  and S7!' = {dim(C) tsxy+}.

23



Proposition
S? =dim(C)E and S = {dim(C) 'sxy+}

Lemma
Let A be a fusion ring with Z.,-basis B, and let x1, x2 be distinct
characters A — k. Then

> xa(X)xae(X*) =0

XeB

24



Proposition
S? =dim(C)E and S = {dim(C) 'sxy+}

Lemma
Let A be a fusion ring with Z.,-basis B, and let x1, x2 be distinct
characters A — k. Then

> xa(X)xae(X*) =0

XeB
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Corollaries

Corollary (Verlinde formula)
For allY,Z, W € O(C) we have

2 : SXYSXZSXW+ . w
_—— = m /\/
Xeo(C)

i.e, the S-matrix determines the fusion rules of C from Section 4.5.
i.e, S determines multiplication on the Grothendieck ring Ky(C).

25



Corollaries

Corollary (Verlinde formula)
For allY,Z, W € O(C) we have

2 : SXYSXZSXW+ . w
_—— = m /\/
Xeo(C)

i.e, the S-matrix determines the fusion rules of C from Section 4.5.
i.e, S determines multiplication on the Grothendieck ring Ky(C).

For all Z € O(C) we define the square matrices

D? = <(5X7y ,SXZ >
dim(X) / x yeo(e)

, and NZ%.= (N)%Y)X,YEO(C)'
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Corollaries

Corollary (Verlinde formula)
For allY,Z, W € O(C) we have

2 : SXYSXZSXW+ . w
_—— = m /\/
Xeo(C)

i.e, the S-matrix determines the fusion rules of C from Section 4.5.
i.e, S determines multiplication on the Grothendieck ring Ky(C).

For all Z € O(C) we define the square matrices

D? = <(5X7y ,SXZ >
dim(X) / x yeo(e)

, and NZ%.= (N)%Y)X,YGO(C)'

Corollary
Conjugation by the S-matrix diagonalizes the fusion rules of C, i.e.,

D? = 8S7IN%S,  forall Z € O(C).
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Proposition
Let C be a modular category and X € O(C). Then

dim(C)
dim(X)?2

is an algebraic integer.
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Theorem (entries of S lie in a cyclotomic field)
k=0C

There exists a root of unity £ € k such that sxy € Q(§).
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