

Algebras, Coalgebras, Bialgebras, Hopf Algebras

\checkmark
invertible S

 and

$$
\varphi_{A}^{\mathrm{o}}={ }_{A}^{\mathrm{o}}
$$

CHAPTER I

CHAPTER II

CHAPTER I

ABELIAN CATEGORIES

Def. Kernel \& Cokernel
\hookrightarrow Def. Abelian Category
\hookrightarrow Def. Monomorphism \& Epimorphism
\hookrightarrow Def. Subobjects \& Quotient objects
\hookrightarrow Def. Simple \& Semisimple Object/Category
\leftrightarrows Schur's Lemma
\hookrightarrow Jordan Holder Theorem \& Def. Length(Object)
\hookrightarrow Indecomposable objects \& Krull-Schmidt Theorem
\hookrightarrow Def. (Short) Exact sequences
\hookrightarrow Def. Left/Right exact functors
\hookrightarrow Def. Projective Object/Cover \& Injective Object/Hull

CHAPTERI

ABELIAN CATEGORIES

First big results

Definition 1.8.5. A \mathbb{k}-linear abelian category \mathcal{C} is said to be finite if it is equivalent to the category A-mod of finite dimensional modules over a finite dimensional \mathbb{k}-algebra A.

Corollary 1.8.11. Let \mathcal{C} be a finite abelian \mathbb{k}-linear category, and let $F: \mathcal{C} \rightarrow$ Vec be an additive \mathbb{k}-linear left exact functor. Then $F=\operatorname{Hom}_{\mathcal{C}}(V,-)$ for some object $V \in \mathcal{C}$.

Definition 1.9.13. A coalgebra C is pointed if any simple right C-comodule is 1-dimensional.

Theorem 1.9.15 (Takeuchi, [Tak2]). Any essentially small locally finite abelian category \mathcal{C} over a field \mathfrak{k} is equivalent to the category C-comod for a unique pointed coalgebra C. In particular, if \mathcal{C} is finite, it is equivalent to the category $A-\bmod$ for a unique basic algebra A (namely, $A=C^{*}$).

CHAPTER II

MONOIDAL CATEGORIES

Definition 2.1.1. A monoidal category is a quintuple $(\mathcal{C}, \otimes, a, \mathbf{1}, \iota)$ where \mathcal{C} is a category, $\otimes: \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$ is a bifunctor called the tensor product bifunctor, $a:(-\otimes-) \otimes-\stackrel{\sim}{\longrightarrow}-\otimes(-\otimes-)$ is a natural isomorphism:

$$
\begin{equation*}
a_{X, Y, Z}:(X \otimes Y) \otimes Z \xrightarrow{\sim} X \otimes(Y \otimes Z), \quad X, Y, Z \in \mathcal{C} \tag{2.1}
\end{equation*}
$$

called the associativity constraint (or associativity isomorphism), $\mathbf{1} \in \mathcal{C}$ is an object of \mathcal{C}, and $\iota: \mathbf{1} \otimes \mathbf{1} \xrightarrow{\sim} \mathbf{1}$ is an isomorphism, subject to the following two axioms.

1. The pentagon axiom. The diagram

is commutative for all objects W, X, Y, Z in \mathcal{C}.
2. The unit axiom. The functors

$$
\begin{array}{lll}
L_{\mathbf{1}} & : & X \mapsto \mathbf{1} \otimes X \\
R_{\mathbf{1}} & : & \text { and } \tag{2.4}\\
& X \otimes X \otimes \mathbf{1} &
\end{array}
$$

CHAPTER II

MONOIDAL CATEGORIES

Note: $U \otimes V \nsupseteq V \otimes U$ in general

Properties of the unit 1

Prop 2.2.6.

$$
\mathbf{1} \text { is unique UTUI }
$$

Prop 2.2.10.
$\operatorname{End}(1)$ is commutative monoid

CHAPTER II

MONOIDAL CATEGORIES

Note on Monoidal Functors

Definition 2.4.1. Let $(\mathcal{C}, \otimes, \mathbf{1}, a, \iota)$ and $\left(\mathcal{C}^{2}, \otimes^{2}, \mathbf{1}^{2}, a^{2}, \iota^{2}\right)$ be two monoidal categories. A monoidal functor from \mathcal{C} to \mathcal{C}^{2} is a pair (F, J), where $F: \mathcal{C} \rightarrow \mathcal{C}^{2}$ is a functor, and

$$
\begin{equation*}
J_{X, Y}: F(X) \otimes^{2} F(Y) \xrightarrow{\sim} F(X \otimes Y) \tag{2.22}
\end{equation*}
$$

is a natural isomorphism, such that $F(\mathbf{1})$ is isomorphic to $\mathbf{1}^{2}$ and the diagram

is commutative for all $X, Y, Z \in \mathcal{C}$ ("the monoidal structure axiom").
A monoidal functor F is said to be an equivalence of monoidal categories if it is an equivalence of ordinary categories.

CHAPTER II

MONOIDAL CATEGORIES

2 Important Theorems

Definition 2.8.1. A monoidal category \mathcal{C} is strict if for all objects X, Y, Z in \mathcal{C} one has equalities $(X \otimes Y) \otimes Z=X \otimes(Y \otimes Z)$ and $X \otimes \mathbf{1}=X=\mathbf{1} \otimes X$, and the associativity and unit constraints are the identity maps.

Theorem 2.8.5. Any monoidal category is monoidally equivalent to a strict monoidal category.

Note: equivalent \neq isomorphic!

Theorem 2.9.2. (Coherence Theorem) Let $X_{1}, \ldots, X_{n} \in \mathcal{C}$. Let P_{1}, P_{2} be any two parenthesized products of X_{1}, \ldots, X_{n} (in this order) with arbitrary insertions of the unit object 1. Let $f, g: P_{1} \rightarrow P_{2}$ be two isomorphisms, obtained by composing associativity and unit isomorphisms and their inverses possibly tensored with identity morphisms. Then $f=g$.

CHAPTER II

MONOIDAL CATEGORIES

Graphical Language

CHAPTER II

MONOIDAL CATEGORIES

Rigid Cats and Cat Groups

Definition 2.10.11. An object in a monoidal category is called rigid if it has left and right duals. A monoidal category \mathcal{C} is called rigid if every object of \mathcal{C} is rigid.

CHAPTERIII \mathbb{Z}_{+}-RINGS

Masterfully explained by world class expert: I assume its content is still vividly alive in everyones memory

CHAPTERIV

Bi-exact \& Bilinear \otimes $+\operatorname{End}(\mathbf{1}) \cong k$

TENSOR CATEGORIES

General results for multi-tensor categories

Thm 4.2.I.
\otimes is biexact
*Thm 4.2.8.

$$
\operatorname{Im}\left(f_{1} \otimes f_{2}\right)=\operatorname{Im}\left(f_{1}\right) \otimes \operatorname{Im}\left(f_{2}\right)
$$

*Thm 4.2.9.

$$
(-) \text { and }(-)^{} \text { are exact }
$$

${ }^{*}$ Cor 4.3.9.
coev_{X} are monos and ev_{X} are epis

CHAPTERIV

Bi-exact \& Bilinear \otimes $+\operatorname{End}(\mathbf{1}) \cong k$

\#\# $-\operatorname{End}(\mathbf{1}) \cong k \underset{\omega}{\omega}$

$-\operatorname{End}(\mathbf{1}) \cong k$

TENSOR CATEGORIES

Properties of the unit 1 of multi-tensor categories

*Cor 4.2.13.

$$
1 \text { projective } \Leftrightarrow C \text { semisimple }
$$

*Thm 4.3.1.

$$
\operatorname{End}(\mathbf{1}) \cong k \oplus \ldots \oplus k
$$

*Cor 4.3.2.
$\mathbf{1} \cong \bigoplus_{i} I_{i}$ with I_{i} non-isomorphic indecomposable objects
*Thm 4•3.8.

$$
C \text { tensor cat } \Rightarrow \mathbf{1} \text { simple }
$$

*Thm 4.3.8.
C finite, Char $(k)=0, C \exists!$ simple object $\mathbf{1} \Rightarrow C \cong \mathrm{Vec}$

REPRESENTATION CATEGORIES OF HOPF ALGEBRAS

Reconstruction theory

Def 5.i.i.

A (Quasi-)Fiber functor is a (quasi-)tensor functor to Vec

Theorem 5.2.3. The assignments

$$
\begin{equation*}
(\mathcal{C}, F) \mapsto H=\operatorname{End}(F), \quad H \mapsto(\operatorname{Rep}(H), \text { Forget }) \tag{5.1}
\end{equation*}
$$

are mutually inverse bijections between (1) finite ring categories \mathcal{C} with a fiber functor $F: \mathcal{C} \rightarrow \mathrm{Vec}$, up to tensor equivalence and isomorphism of tensor functors and (2) isomorphism classes of finite dimensional bialgebras H over \mathbb{k}.

Theorem 5.3.12. The assignments

$$
\begin{equation*}
(\mathcal{C}, F) \mapsto H=\operatorname{End}(F), \quad H \mapsto(\operatorname{Rep}(H), \text { Forget }) \tag{5.5}
\end{equation*}
$$

are mutually inverse bijections between (1) equivalence classes of finite tensor categories \mathcal{C} with a fiber functor F, up to tensor equivalence and isomorphism of tensor functors, and (2) isomorphism classes of finite dimensional Hopf algebras over \mathbb{k}.

REPRESENTATION CATEGORIES OF HOPF ALGEBRAS

Reconstruction theory in the infinite setting

Theorem 5.4.1. The assignments

$$
\begin{equation*}
(\mathcal{C}, F) \mapsto H=\operatorname{Coend}(F), \quad H \mapsto(H-\text { Comod, Forget }) \tag{5.9}
\end{equation*}
$$

are mutually inverse bijections between the following pairs of sets:
(1) ring categories \mathcal{C} over \mathbb{k} with a fiber functor F, up to tensor equivalence and isomorphism of tensor functors, and bialgebras over \mathbb{k}, up to isomorphism;
(2) ring categories \mathcal{C} over \mathbb{k} with left duals with a fiber functor F, up to tensor equivalence and isomorphism of tensor functors, and bialgebras over \mathbb{k} with an antipode, up to isomorphism;
(3) tensor categories \mathcal{C} over \mathbb{k} with a fiber functor F, up to tensor equivalence and isomorphism of tensor functors, and Hopf algebras over \mathbb{k}, up to isomorphism.

CHAPTERVI
 FINITE TENSOR CATEGORIES

Self-study

MODULE CATEGORIES

Definition 7.1.1. A left module category over \mathcal{C} is a category \mathcal{M} equipped with an action (or module product) bifunctor $\otimes: \mathcal{C} \times \mathcal{M} \rightarrow \mathcal{M}$ and a natural isomorphism

$$
\begin{equation*}
m_{X, Y, M}:(X \otimes Y) \otimes M \xrightarrow{\sim} X \otimes(Y \otimes M), \quad X, Y \in \mathcal{C}, M \in \mathcal{M} \tag{7.1}
\end{equation*}
$$

called module associativity constraint such that the functor $M \mapsto \mathbf{1} \otimes M: \mathcal{M} \rightarrow \mathcal{M}$ is an autoequivalence, and the pentagon diagram:

is commutative for all objects X, Y, Z in \mathcal{C} and M in \mathcal{M}.

Proposition 7.1.3. There is a bijective correspondence between structures of a \mathcal{C}-module category on \mathcal{M} and monoidal functors $F: \mathcal{C} \rightarrow \operatorname{End}(\mathcal{M})$.

Let \mathcal{C} be a multitensor category over \mathbb{k}.
Definition 7.3.1. A module category over \mathcal{C} (or \mathcal{C}-module category) is a locally finite abelian category \mathcal{M} over \mathbb{k}_{k} which is equipped with a structure of a \mathcal{C}-module category, such that the module product bifunctor $\otimes: \mathcal{C} \times \mathcal{M} \rightarrow \mathcal{M}$ is bilinear on morphisms and exact in the first variable.

Let $\operatorname{End}_{l}(\mathcal{M})$ be the category of left exact functors from \mathcal{M} to \mathcal{M}.
Proposition 7.3.3. There is a bijection between structures of a \mathcal{C}-module category on \mathcal{M} and tensor functors $F: \mathcal{C} \rightarrow \operatorname{End}_{l}(\mathcal{M}) .{ }^{1}$

CHAPTERVII
 MODULE CATEGORIES

Theorem. A graduate student dividing time between productive tasks and browsing cat pictures will spend too much time doing the latter.

Corollary I didn't have enough time to include the rest of chapter 7 .

- Pictures of graphical calculus were copied from Turaev and Virelizier: Monoidal Categories and Topological Field Theory, which itself was copied from an unspecified source on the internet

