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6.2 Hopf algebras

We review a categorical version of antipodes and Hopf algebras.

6.2.1 Antipodes

Let A = (A,m, u,∆, ε) be a bialgebra in a braided category C. An antipode of A
is a morphism S : A → A in C such that

m(S ⊗ idA)∆ = uε = m(idA ⊗ S)∆.

Pictorially,

A

A

=

A

A

=

A

A

where S =

A

A

.

These conditions may be rephrased by saying that the antipode is a (two-sided)
inverse of idA in the convolution monoid HomC(A,A), see Exercise 6.1.6. As a
consequence, if an antipode exists, then it is unique.

If A has an antipode, then it is anti-multiplicative in the sense that

A

AA

=

A

AA

and

A

=

A

,

and anti-comultiplicative in the sense that

A

AA

=

A

AA

and

A

=

A

.

These equalities may be proved using the convolution monoids (see Exercise 6.1.6)
and the uniqueness of an inverse in a monoid. In particular, the anti-multiplicati-
vity of S follows from the fact that both Sm and m(S ⊗ S)τA,A are inverse to m
in the convolution monoid HomC(A⊗A,A). Here τ is the braiding of C and A⊗A
carries the coalgebra structure from Exercise 6.1.7.

When the antipode S is invertible, we depict its inverse S−1 : A → A as

S−1 =

A

A

, so that

A

A

=

A

A

=

A

A

.
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The axioms above are depicted as

A A A

A

=

A A A

A

and

A

A

=

A

A

=

A

A

.

A coalgebra morphism between coalgebras (A,∆, ε) and (A′,∆′, ε′) in C is a
morphism ψ : A → A′ in C such that ∆′ψ = (ψ ⊗ ψ)∆ and ε′ψ = ε.

One can define comodules over coalgebras in a way opposite to modules over
algebras but we will not study comodules.

6.1.3 Bialgebras

To define bialgebras in a monoidal category, we need compatibility conditions
between multiplication and comultiplication, and the formulation of one of the
conditions requires a braiding. A bialgebra in a braided category C with braiding
τ is a tuple (A,m, u,∆, ε), where A ∈ Ob(C), (m,u) is an algebra structure in A,
and (∆, ε) is a coalgebra structure in A such that

∆m = (m⊗m)(idA ⊗ τA,A ⊗ idA)(∆⊗∆), ∆u = u⊗ u, (6.1)

εm = ε⊗ ε, εu = id1. (6.2)

Pictorially,

AA

AA

=

AA

AA

,

A A

=

AA

,

A A

=

AA

, A = ∅.

For a bialgebra A = (A,m, u,∆, ε) in C, the category modA of A-modules
has a canonical structure of a monoidal category. Its unit object is the pair (1, ε).
Its monoidal product is given on the objects by

(M, r) ⊗ (N, s) = (M ⊗N, t)

where

t = (r ⊗ s)(idA ⊗ τA,M ⊗ idN )(∆ ⊗ idM⊗N ) =

M

M

N

N

A

and on the morphisms by the monoidal product in C. It is clear that the forgetful
functor modA → C is strict monoidal.

A bialgebra morphism φ : A → A′ between two bialgebras in C is a morphism
in C which is both an algebra morphism and a coalgebra morphism. Then the
induced functor φ∗ : modA′ → modA is strict monoidal.
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Hopf algebras in braided
categories

We define and study Hopf algebras in braided categories. This leads us to a useful
re-formulation of the notion of a modular category and paves the way for the study
of Hopf monads in the next chapters.

6.1 Algebras, coalgebras, and bialgebras

We review categorical versions of the notions of an algebra, a module over an
algebra, a coalgebra, and a bialgebra.

6.1.1 Algebras and modules

Let C be a monoidal category. An algebra in C is an object A of C endowed with
morphisms m : A ⊗ A → A (the product) and u : 1 → A (the unit) satisfying the
following associativity and unitality axioms:

m(m⊗ idA) = m(idA ⊗m) and m(idA ⊗ u) = idA = m(u⊗ idA).

We depict the product and the unit as

m =

A

A

A

and u =

A

.

The axioms above have the following graphical interpretation:

A A A

A

=

A A A

A

and

A

A

=

A

A

=

A

A

.
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For an algebra A = (A,m, u) in C, a (left) A-module is a pair (M, r), where
M ∈ Ob(C) and r : A⊗M → M is a morphism in C called the action, such that

r(m ⊗ idM ) = r(idA ⊗ r) and r(u ⊗ idM ) = idM .

Graphically, these conditions are depicted as

AA

M

M

=

A A

M

M

and

M

M

=

M

M

, where r =

A M

M

.

For example, the pair (A,m) is a (left) A-module. One can similarly introduce
right A-modules, but we will not use them. From now on, by an A-module, we
mean a left A-module.

An A-linear morphism between two A-modules (M, r) and (N, s) is a mor-
phism f : M → N in C such that fr = s(idA ⊗ f), that is, pictorially,

A M

N

f
=

A M

N

f .

We let modA = modCA be the category of A-modules and A-linear morphisms
with composition inherited from C. The forgetful functor UA : modA → C carries
any A-module (M, r) to M and any A-linear morphism to itself.

An algebra morphism between algebras (A,m, u) and (A′,m′, u′) in C is a
morphism φ : A → A′ in C such that φm = m′(φ ⊗ φ) and φu = u′. Such a φ
induces a functor φ∗ : modA′ → modA by

φ∗(M, r) = (M, r(φ ⊗ idM )) and φ∗(f) = f

for any A′-module (M, r) and any A′-linear morphism f . Clearly, UA φ∗ = UA′ .

6.1.2 Coalgebras

A coalgebra in a monoidal category C is an algebra in the monoidal category
Cop = (Cop,⊗, 1). In other words, a coalgebra in C is an object A of C endowed
with morphisms ∆ : A → A ⊗ A (the coproduct) and ε : A → 1 (the counit)
satisfying the coassociativity and counitality axioms:

(∆⊗ idA)∆ = (idA ⊗∆)∆ and (idA ⊗ ε)∆ = idA = (ε⊗ idA)∆.

We depict the coproduct and the counit as

∆ =

A A

A

and ε =
A

.
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1.8. Locally finite (artinian) and finite abelian categories

Let k be a field.

Definition 1.8.1. A k-linear abelian category C is said to be locally finite if
the following two conditions are satisfied:

(i) for any two objects X, Y in C the k-vector space HomC(X, Y ) is finite
dimensional;

(ii) every object in C has finite length.

In particular, the Jordan-Hölder Theorem 1.5.4 and Krull-Schmidt Theorem
1.5.7 hold in any locally finite abelian category.

Remark 1.8.2. Locally finite abelian categories are also called artinian cate-
gories.

Almost all abelian categories we consider in this book are locally finite.
We will denote by O(C) the set of isomorphism classes of simple objects of a

locally finite abelian category C.

Definition 1.8.3. An additive functor F : C → D between two locally finite
abelian categories is injective if it is fully faithful (i.e., bijective on the sets of
morphisms).2 We say that F is surjective if any simple object of D is a subquotient
of some object F (X), where X is an object of C 3.

Proposition 1.8.4. Suppose that k is algebraically closed. In any locally finite
category C over k we have HomC(X, Y ) = 0 if X, Y are simple and non-isomorphic
and HomC(X, X) = k for any simple object X.

Proof. Let f : X → Y be a morphism. By Schur’s Lemma 1.5.2 either f = 0
or f is an isomorphism. This implies that HomC(X, Y ) = 0 if X, Y are simple
and non-isomorphic, and Hom(X, X) is a division algebra. Since k is algebraically
closed, condition (i) of Definition 1.8.1 implies that Hom(X, X) = k for any simple
object X ∈ C. !

Definition 1.8.5. A k-linear abelian category C is said to be finite if it is equiv-
alent to the category A−mod of finite dimensional modules over a finite dimensional
k-algebra A.

Of course, such an algebra A is not canonically attached to the category C.
Instead, C determines the Morita equivalence class of A. For this reason, it is
often better to use the following “intrinsic” definition, which is well known to be
equivalent to Definition 1.8.5.

Definition 1.8.6. A k-linear abelian category C is finite if

(i) C has finite dimensional spaces of morphisms;
(ii) every object of C has finite length;
(iii) C has enough projectives, i.e., every simple object of C has a projective

cover; and
(iv) there are finitely many isomorphism classes of simple objects.

2We will use the terms “injective functor” and “fully faithful functor” interchangeably.
3This definition does not coincide with a usual categorical definition of an essentially surjec-

tive functor which requires that every object of D be isomorphic to some F (X) for an object X
in C.
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Note that the first two conditions of Definition 1.8.6 are the requirement that
C be locally finite.

To see the equivalence of Definitions 1.8.5 and 1.8.6, observe that if A is a
finite dimensional algebra then A−mod clearly satisfies (i)-(iv), and conversely, if C
satisfies (i)-(iv), then one can take A = End(P )op, where P is a projective generator
of C (e.g., P =

⊕n
i=1 Pi, where Pi are projective covers of all the simple objects

Xi, i = 1, . . . , n, of C).
A projective generator P of C represents a functor F = FP : C → Vec

from C to the category of finite dimensional k-vector spaces, given by the formula
F (X) = HomC(P, X). The condition that P is projective translates into the ex-
actness property of F , and the condition that P is a generator (i.e., covers any
simple object) translates into the property that F is faithful (does not kill nonzero
objects or morphisms). Moreover, the algebra A = End(P )op can be alternatively
defined as End(F ), the algebra of functorial endomorphisms of F . Conversely, it
is well known (and easy to show) that any exact faithful functor F : C → Vec is
represented by a unique (up to a unique isomorphism) projective generator P .

Remark 1.8.7. The dual category of a finite abelian category is finite. Namely,
the dual to the category of finite dimensional A-modules is the category of finite
dimensional Aop-modules, where Aop is the algebra A with opposite multiplica-
tion, and the duality functor between these categories is the functor of taking the
dual module, V #→ V ∗. Thus, in a finite abelian category, any object has both a
projective cover and an injective hull.

Let A, B be finite dimensional k-algebras and let A−mod, B−mod denote the
categories of finite dimensional modules over them.

Definition 1.8.8. We say that an additive k-linear functor

F : A−mod → B−mod

is (⊗-)representable if there exists a (B, A)-bimodule V such that F is naturally
isomorphic to (V ⊗A −).

Remark 1.8.9. An additive k-linear functor F : A−mod → k−Vec is repre-
sentable if and only if it has a right adjoint.

Proposition 1.8.10. An additive k-linear functor F : A−mod → B−mod is
representable if and only if it is right exact.

Proof. The “only if” direction is clear, as the tensor product functor is right
exact. To prove the “if” direction, let F be a right exact functor. Let V = F (A).
Then V is a B-module which has a commuting right action of A, i.e., is a (B, A)-
bimodule. We claim that F (X) may be identified with V ⊗A X for all X, naturally
in X. Indeed, this is clearly true if X is free. Let M → N → X → 0 be an exact
sequence such that M, N are free. If we apply F to this sequence and use that it is
right exact, F (X) gets identified with the cokernel of the map V ⊗A M → V ⊗A N ,
which is canonically V ⊗A X. It is easy to check that this isomorphism F (X) →
V ⊗A X is independent on the choice of the sequence M → N → X → 0, and is
functorial in X, so we are done. !

Corollary 1.8.11. Let C be a finite abelian k-linear category, and let
F : C → Vec be an additive k-linear left exact functor. Then F = HomC(V, −)
for some object V ∈ C.
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Proof. Using Exercise 1.9.3, the category of left C-comodules is a full sub-
category of the category of right C∗-modules, which is the whole category if C is
finite dimensional. This implies the statement. !

Exercise 1.9.6. Let A, B be coalgebras, and f : A → B a homomorphism.
Let F = f∗ : A−comod → B−comod be the corresponding pushforward functor.
Then F is surjective if and only if f is surjective.

Definition 1.9.7. Let C be a coalgebra. A nonzero element x ∈ C is called
grouplike if ∆(x) = x ⊗ x.

This terminology will be justified in Exercises 5.2.6 and 5.3.13.

Remark 1.9.8. There is a bijection between grouplike elements of a coalgebra
C and its one-dimensional subcoalgebras, given by x %→ kx.

Example 1.9.9. Let X be a set. Then kX, the set of formal linear combinations
of elements of X, is a coalgebra, with ∆(x) = x ⊗ x for x ∈ X. The grouplike
elements of kX are precisely elements x ∈ X.

Definition 1.9.10. Let C be a coalgebra and let g, h be grouplike elements in
C. An element x ∈ C is called skew-primitive (or (g, h)-skew-primitive) if ∆(x) =
g ⊗ x + x ⊗ h.

The subspace of (g, h)-skew-primitive elements of C will be denoted Primg,h(C).

Remark 1.9.11. Let g, h be grouplike elements of a coalgebra C. A multiple
of g − h is always a (g, h)-skew-primitive element. Such a skew-primitive element
is called trivial.

In fact, the notion of a skew-primitive element has a categorical meaning.
Namely, we have the following proposition.

Proposition 1.9.12. Let g and h be grouplike elements of a coalgebra C. The
space Primg,h(C)/k(g − h) is naturally isomorphic to Ext1(h, g), where g, h are
regarded as 1-dimensional right C-comodules.

Proof. Let V be a 2-dimensional C-comodule, such that we have an exact
sequence

0 → g → V → h → 0.

Then V has a basis v0, v1 such that

π(v0) = v0 ⊗ g, π(v1) = v0 ⊗ x + v1 ⊗ h.

The condition that this is a comodule yields that x is a skew-primitive element
of type (g, h). So any extension defines a skew-primitive element, and vice versa.
Also, we can change the basis by v0 → v0, v1 → v1 + λv0, which modifies x by
adding a trivial skew-primitive element. This implies the result. !

An important class of coalgebras is the class of pointed coalgebras.

Definition 1.9.13. A coalgebra C is pointed if any simple right C-comodule
is 1-dimensional.

Remark 1.9.14. A finite dimensional coalgebra C is pointed if and only if the
algebra C∗ is basic, i.e., the quotient C∗/Rad(C∗) of C∗ by its radical is commuta-
tive. In this case, simple C-comodules are points of Spec(C∗/Rad(C∗)) (here Spec
stands for the set of maximal ideals), which justifies the term “pointed”.
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In the next section we will prove the following theorem:

Theorem 1.9.15 (Takeuchi, [Tak2]). Any essentially small locally finite abelian
category C over a field k is equivalent to the category C−comod for a unique pointed
coalgebra C. In particular, if C is finite, it is equivalent to the category A−mod for
a unique basic algebra A (namely, A = C∗).

1.10. The Coend construction

Let C be a k-linear abelian category, and F : C → Vec an exact, faithful functor.
In this case one can define the space Coend(F ) as follows:

(1.9) Coend(F ) := (⊕X∈CF (X)∗ ⊗ F (X))/E

where E is spanned by elements of the form y∗ ⊗ F (f)x− F (f)∗y∗ ⊗ x, x ∈ F (X),
y∗ ∈ F (Y )∗, f ∈ Hom(X, Y ); in other words,

Coend(F ) = lim−→End(F (X))∗.

Thus we have End(F ) = lim←−End(F (X)) = Coend(F )∗, which yields a coalgebra

structure on Coend(F ). So the algebra End(F ) (which may be infinite dimensional)
carries the inverse limit topology, in which a basis of neighborhoods of zero is formed
by the kernels KX of the maps End(F ) → End(F (X)), X ∈ C, and Coend(F ) =
End(F )∨, the space of continuous linear functionals on End(F ).

The following theorem is standard (see [Tak2]).

Theorem 1.10.1. Let C be a k-linear abelian category with an exact faithful
functor F : C → Vec. Then C is locally finite, and F defines an equivalence be-
tween C and the category of finite dimensional right comodules over C := Coend(F )
(or, equivalently, with the category of continuous finite dimensional left End(F )-
modules).

Proof. We sketch the proof, leaving the details to the reader. Consider the
ind-object Q := ⊕X∈CF (X)∗ ⊗ X. For X, Y ∈ C and f ∈ Hom(X, Y ), let

jf : F (Y )∗ ⊗ X → F (X)∗ ⊗ X ⊕ F (Y )∗ ⊗ Y ⊂ Q

be the morphism defined by the formula

jf = id⊗f − F (f)∗ ⊗ id .

Let I be the quotient of Q by the image of the direct sum of all jf .
The following statements are not hard to verify:

(i) I represents the functor F (−)∗, i.e., Hom(X, I) is naturally isomorphic to
F (X)∗; in particular, I is injective.

(ii) F (I) = C, and I is naturally a left C-comodule. Its comodule structure
is induced by the coevaluation morphism

F (X)∗ ⊗ X
coevF (X)−−−−−→ F (X)∗ ⊗ F (X) ⊗ F (X)∗ ⊗ X.

(iii) Let us regard F as a functor C → C − comod. For M ∈ C − comod, let
θM : M ⊗ I → M ⊗C ⊗ I be the morphism πM ⊗ id− id⊗πI , and let KM

be the kernel of θM . Then the functor G : C − comod → C given by the
formula G(M) = Ker θM , is a quasi-inverse to F .

This completes the proof. !
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CHAPTER II MONOIDAL CATEGORIES

CHAPTER 2

Monoidal categories

2.1. Definition of a monoidal category

A good way of thinking about category theory (which will be especially useful
throughout this book) is that category theory is a refinement (or “categorification”)
of ordinary algebra. In other words, there exists a dictionary between these two
subjects, such that usual algebraic structures are recovered from the corresponding
categorical structures by passing to the set of isomorphism classes of objects.

For example, the notion of a category is a categorification of the notion of a
set. Similarly, abelian categories are a categorification of abelian groups 1 (which
justifies the terminology).

This dictionary goes surprisingly far, and many important constructions below
will come from an attempt to enter into it a categorical “translation” of an algebraic
notion.

In particular, the notion of a monoidal category is the categorification of the
notion of a monoid.

Recall that a monoid may be defined as a set C with an associative multipli-
cation operation (x, y) → x · y (i.e., a semigroup), with an element 1 such that
12 = 1 and the maps x "→ 1 · x, x "→ x · 1 : C → C are bijections. It is easy to
show that in a semigroup, the last condition is equivalent to the usual unit axiom
1 · x = x · 1 = x.2

As usual in category theory, to categorify the definition of a monoid, we should
replace the equalities in the definition of a monoid (namely, the associativity equa-
tion (xy)z = x(yz) and the equation 12 = 1) by isomorphisms satisfying some
consistency properties, and the word “bijection” by the word “equivalence” (of
categories). This leads to the following definition.

Definition 2.1.1. A monoidal category is a quintuple (C, ⊗, a, 1, ι) where C
is a category, ⊗ : C × C → C is a bifunctor called the tensor product bifunctor,
a : (−⊗−) ⊗− ∼−→ −⊗ (−⊗−) is a natural isomorphism:

(2.1) aX,Y,Z : (X ⊗ Y ) ⊗ Z
∼−→ X ⊗ (Y ⊗ Z), X, Y, Z ∈ C

called the associativity constraint (or associativity isomorphism), 1 ∈ C is an object
of C, and ι : 1 ⊗ 1

∼−→ 1 is an isomorphism, subject to the following two axioms.

1To be more precise, the set of isomorphism classes of objects in an abelian category C is a
commutative monoid, but one usually extends it to a group by considering “virtual objects” of
the form X − Y , X, Y ∈ C.

2Indeed, if left and right multiplication by 1 are bijections and 12 = 1, then we have
1 · 1 · x = 1 · x, hence 1 · x = x, and similarly x · 1 = x.
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1. The pentagon axiom. The diagram

(2.2) ((W ⊗ X) ⊗ Y ) ⊗ Z

aW,X,Y ⊗idZ
!!!!!

!!!
!!!

!!!
!!!

aW⊗X,Y,Z
""""

"""
"""

"""
"""

"

(W ⊗ (X ⊗ Y )) ⊗ Z

aW,X⊗Y,Z

##

(W ⊗ X) ⊗ (Y ⊗ Z)

aW,X,Y ⊗Z

##

W ⊗ ((X ⊗ Y ) ⊗ Z)
idW ⊗aX,Y,Z

$$ W ⊗ (X ⊗ (Y ⊗ Z))

is commutative for all objects W, X, Y, Z in C.
2. The unit axiom. The functors

L1 : X "→ 1 ⊗ X and(2.3)

R1 : X "→ X ⊗ 1(2.4)

of left and right multiplication by 1 are autoequivalences of C.

Definition 2.1.2. The pair (1, ι) is called the unit object of C.3

Remark 2.1.3. An alternative (and, perhaps, more traditional) definition of a
monoidal category is given in the next section, see Definition 2.2.8.

We see that the set of isomorphism classes of objects in a monoidal category
indeed has a natural structure of a monoid, with multiplication ⊗ and unit 1. Thus,
in the categorical-algebraic dictionary, monoidal categories indeed correspond to
monoids (which explains their name).

Definition 2.1.4. A monoidal subcategory of a monoidal category (C,⊗, a,1, ι)
is a quintuple (D,⊗, a,1, ι), where D ⊂ C is a subcategory closed under the tensor
product of objects and morphisms and containing 1 and ι.

Unless otherwise specified, we will always consider full monoidal subcategories.

Definition 2.1.5. Let (C, ⊗, a, 1, ι) be a monoidal category. The monoidal
category (Cop, ⊗op, 1, aop, ι) opposite to C is defined as follows. As a category
Cop = C, its tensor product is given by X ⊗op Y := Y ⊗ X and the associativity
constraint of Cop is aop

X,Y,Z := a−1
Z,Y,X .

Remark 2.1.6. The notion of the opposite monoidal category is not to be
confused with the usual notion of the dual category, which is the category C∨

obtained from C by reversing arrows (for any category C). Note that if C is monoidal,
so is C∨ (in a natural way), which makes it even easier to confuse the two notions.

2.2. Basic properties of unit objects

Let (C,⊗, a,1, ι) be a monoidal category. Define natural isomorphisms

(2.5) lX : 1⊗ X → X and rX : X ⊗ 1 → X

in such a way that L1(lX) and R1(rX) are equal, respectively, to the compositions

1⊗ (1⊗ X)
a−1
1,1,X−−−−→ (1⊗ 1) ⊗ X

ι⊗idX−−−−→ 1 ⊗ X,(2.6)

(X ⊗ 1) ⊗ 1
aX,1,1−−−−→ X ⊗ (1⊗ 1)

idX ⊗ι−−−−→ X ⊗ 1.(2.7)

3We note that there is no condition on the isomorphism ι, so it can be chosen arbitrarily.
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(2) There is an obvious associativity isomorphism for ⊗, which turns T into
a monoidal category (with unit object being the empty tangle).

2.4. Monoidal functors and their morphisms

As we have explained, the notion of a monoidal category is a categorification
of the notion of a monoid. Now we pass to categorification of morphisms between
monoids, namely, to monoidal functors.

Definition 2.4.1. Let (C, ⊗, 1, a, ι) and (C!, ⊗!, 1!, a!, ι!) be two monoidal
categories. A monoidal functor from C to C! is a pair (F, J), where F : C → C! is a
functor, and

(2.22) JX,Y : F (X) ⊗! F (Y )
∼−→ F (X ⊗ Y )

is a natural isomorphism, such that F (1) is isomorphic to 1! and the diagram

(2.23) (F (X) ⊗! F (Y )) ⊗! F (Z)
a!

F (X),F (Y ),F (Z)
!!

JX,Y ⊗!idF (Z)

""

F (X) ⊗! (F (Y ) ⊗! F (Z))

idF (X) ⊗!JY,Z

""

F (X ⊗ Y ) ⊗! F (Z)

JX⊗Y,Z

""

F (X) ⊗! F (Y ⊗ Z)

JX,Y ⊗Z

""

F ((X ⊗ Y ) ⊗ Z)
F (aX,Y,Z)

!! F (X ⊗ (Y ⊗ Z))

is commutative for all X, Y, Z ∈ C (“the monoidal structure axiom”).
A monoidal functor F is said to be an equivalence of monoidal categories if it

is an equivalence of ordinary categories.

Remark 2.4.2. It is important to stress that, as seen from this definition, a
monoidal functor is not just a functor between monoidal categories, but a functor
with an additional structure (the isomorphism J) satisfying a certain equation (the
monoidal structure axiom). As we will see in Section 2.5, this equation may have
more than one solution or no solutions at all, so the same functor can be equipped
with different monoidal structures or not admit any monoidal structure at all.

It turns out that if F is a monoidal functor, then there is a canonical isomor-
phism ϕ : 1! → F (1). This isomorphism is defined by the commutative diagram

(2.24) 1! ⊗! F (1)
l!
F (1)

!!

ϕ⊗! idF (1)

""

F (1)

F (l1)−1

""

F (1) ⊗! F (1)
J1,1

!! F (1⊗ 1)

where l, r, l!, r! are the unit isomorphisms for C and C! defined in (2.5).
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A similar definition can be made for monoidal categories C, replacing Aut(C)
with Aut⊗(C). When C is a monoidal category, the category CG inherits a structure
of a monoidal category such that the functor (2.37) is a monoidal functor.

Exercise 2.7.3. Show that actions of a group G on the category Vec viewed
as an abelian category correspond to elements of H2(G,k×), while any action of G
on Vec viewed as a monoidal category is trivial.

2.8. The Mac Lane strictness theorem

As we have seen above, it is simpler to work with monoidal categories in which
the associativity and unit constrains are the identity maps.

Definition 2.8.1. A monoidal category C is strict if for all objects X, Y, Z in
C one has equalities (X ⊗Y )⊗Z = X ⊗ (Y ⊗Z) and X ⊗1 = X = 1⊗X, and the
associativity and unit constraints are the identity maps.

Example 2.8.2. The category End(C) of endofunctors of a category C (see
Example 2.3.12) is strict.

Example 2.8.3. Let Sets be the category whose objects are non-negative in-
tegers, and HomSets(m, n) is the set of maps from {0, ..., m − 1} to {0, ..., n − 1}.
Define the tensor product functor on objects by m ⊗ n = mn, and for

f1 : m1 → n1 and f2 : m2 → n2

define f1 ⊗ f2 : m1m2 → n1n2 by

(f1 ⊗ f2)(m2x + y) = n2f1(x) + f2(y), 0 ≤ x ≤ m1 − 1, 0 ≤ y ≤ m2 − 1.

Then Sets is a strict monoidal category. Moreover, we have a natural inclusion
Sets ↪→ Sets (recall that Sets stands for the category of finite sets), which is obvi-
ously a monoidal equivalence.

Example 2.8.4. This is a linear version of the previous example. Let k be a
field. Let k − Vec be the category whose objects are non-negative integers, and
Homk−Vec(m, n) is the set of matrices with m columns and n rows over k (and the
composition of morphisms is the product of matrices). Define the tensor product
functor on objects by m ⊗ n = mn, and for f1 : m1 → n1, f2 : m2 → n2, define
f1⊗f2 : m1m2 → n1n2 to be the Kronecker product of f1 and f2. Then k−Vec is a
strict monoidal category. Moreover, we have a natural inclusion k−Vec ↪→ k−Vec,
which is obviously a monoidal equivalence.

Similarly, for any group G one can define a strict monoidal category k−VecG,
whose objects are Z+-valued functions on G with finitely many nonzero values, and
which is monoidally equivalent to k−VecG. We leave this definition to the reader.

On the other hand, some of the most important monoidal categories, such as
Sets, Vec, VecG, Sets, Vec, VecG, should be regarded as non-strict (at least if one
defines them in the usual way). It is even more indisputable that the categories
VecωG, VecωG for cohomologically nontrivial ω are not strict.

However, the following remarkable theorem of Mac Lane implies that in prac-
tice, one may always assume that a monoidal category is strict.

Theorem 2.8.5. Any monoidal category is monoidally equivalent to a strict
monoidal category.
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Theorem 2.9.2. (Coherence Theorem) Let X1, . . . , Xn ∈ C. Let P1, P2 be any
two parenthesized products of X1, ..., Xn (in this order) with arbitrary insertions of
the unit object 1. Let f, g : P1 → P2 be two isomorphisms, obtained by compos-
ing associativity and unit isomorphisms and their inverses possibly tensored with
identity morphisms. Then f = g.

Proof. We derive this theorem as a corollary of the Mac Lane’s strictness
Theorem 2.8.5. Let L : C → C′ be a monoidal equivalence between C and a strict
monoidal category C′. Consider a diagram in C representing f and g and apply
L to it. Over each arrow of the resulting diagram representing an associativity
isomorphism, let us build a rectangle as in (2.23), and do similarly for the unit
morphisms. This way we obtain a prism one of whose faces consists of identity
maps (associativity and unit isomorphisms in C′) and whose sides are commutative.
Hence, the other face is commutative as well, i.e., f = g. !

Remark 2.9.3. As we mentioned, Theorem 2.9.2 implies that any two paren-
thesized products of X1, ..., Xn with insertions of unit objects are indeed canonically
isomorphic, and thus one can safely identify all of them with each other and ignore
bracketings in calculations in a monoidal category. We will do so from now on,
unless confusion is possible.

2.10. Rigid monoidal categories

Let (C,⊗,1, a, ι) be a monoidal category, and let X be an object of C. In what
follows, we suppress the unit constraints l and r.

Definition 2.10.1. An object X∗ in C is said to be a left dual of X if there
exist morphisms evX : X∗⊗X → 1 and coevX : 1 → X ⊗X∗, called the evaluation
and coevaluation, such that the compositions

X
coevX ⊗ idX−−−−−−−→ (X ⊗ X∗) ⊗ X

aX,X∗,X−−−−−→ X ⊗ (X∗ ⊗ X)
idX ⊗ evX−−−−−−→ X,(2.43)

X∗ idX∗ ⊗ coevX−−−−−−−−→ X∗ ⊗ (X ⊗ X∗)
a−1

X∗,X,X∗
−−−−−−→ (X∗ ⊗ X) ⊗ X∗ evX ⊗ idX∗−−−−−−−→ X∗(2.44)

are the identity morphisms.

Definition 2.10.2. An object ∗X in C is said to be a right dual of X if there
exist morphisms ev′X : X ⊗ ∗X → 1 and coev′X : 1 → ∗X ⊗ X such that the
compositions

X
idX ⊗ coev′X−−−−−−−→ X ⊗ (∗X ⊗ X)

a−1
X,∗X,X−−−−−→ (X ⊗ ∗X) ⊗ X

ev′X ⊗ idX−−−−−−→ X,(2.45)

∗X
coev′X ⊗ id∗X−−−−−−−−→ (∗X ⊗ X) ⊗ ∗X

a∗X,X,∗X−−−−−−→ ∗X ⊗ (X ⊗ ∗X)
id∗X ⊗ ev′X−−−−−−−→ ∗X(2.46)

are the identity morphisms.

Remark 2.10.3. It is obvious that if X∗ is a left dual of an object X then
X is a right dual of X∗ with ev′X∗ = evX and coev′X∗ = coevX , and vice versa.
Therefore, ∗(X∗) ∼= X ∼= (∗X)∗ for any object X admitting left and right duals.
Also, in any monoidal category, 1∗ = ∗1 = 1 with the evaluation and coevaluation
morphisms ι and ι−1. Also note that changing the order of tensor product switches
left duals and right duals, so to any statement about right duals there corresponds
a symmetric statement about left duals.
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Graphical Language

Chapter 2

The graphical calculus

A beautiful method, first suggested by Roger Penrose [Pe] in a special case, allows
to represent morphisms in categories by planar diagrams. We discuss this method
and its applications focusing on the case of pivotal categories.

2.1 Pictorial representation of morphisms

We discuss the basics of the Penrose graphical calculus.

2.1.1 The case of categories

Given a category C, the identity idX of an object X of C, a morphism f : X → Y
in C, and the composition of two morphisms f : X → Y and g : Y → Z may be
graphically represented as follows:

idX =

X

, f =

X

Y

f , and gf =

X

Y

f

g

Z

.

We call X,Y, Z the colors of the corresponding arcs of the diagram and call f, g
the colors of the boxes.

2.1.2 The case of monoidal categories

Suppose that C is a monoidal category. The monoidal product of two morphisms
f : X → Y and g : U → V in C is represented by juxtaposition:

f ⊗ g =

X

f

Y

U

g

V

.
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32 Chapter 2. The graphical calculus

We can also use boxes with several strands attached to their horizontal sides. For
example, a morphism f : X ⊗ Y → A⊗B⊗C with X,Y,A,B,C ∈ Ob(C) may be
represented in various ways, such as

X

f

Y

A B C

or

X ⊗ Y

f

A B ⊗ C

or

X

f

Y

A⊗B C

.

In accordance with conventions of Section 1.4.5, we ignore here the associativity
constraint between the objects A⊗B ⊗ C = (A⊗B)⊗ C and A⊗ (B ⊗ C).

A box whose lower/upper side has no attached strands represents a morphism
with source/target 1. For example, morphisms α : 1 → 1, β : 1 → X , γ : X → 1

with X ∈ Ob(C) may be represented by the diagrams

α ,
X

β ,

X

γ .

In accordance with conventions of Section 1.4.5, we ignore the unitality constraints.
Therefore, deleting a strand colored by 1 in a diagram does not change the mor-
phism represented by the diagram.

The level-exchange property allows us to push boxes lying on the same hor-
izontal level up or down so that they move to different horizontal levels. The
functoriality of ⊗ ensures that this operation keeps the morphism represented by
the diagram. The simplest case of the level-exchange property is shown in Fig-
ure 2.1, where f : X → Y and g : U → V are any morphisms in C. Figure 2.1
graphically expresses the formulas

f ⊗ g = (idY ⊗ g)(f ⊗ idU ) = (f ⊗ idV )(idX ⊗ g).

In Figure 2.1 and in the sequel, the equality sign between the diagrams means the
equality of the corresponding morphisms.

X

f

Y

U

g

V

=

X

f

Y

U

g

V

=

X

f

Y

U

g

V

Figure 2.1: The level-exchange property

For example, consider a non-degenerate pairing ω : X ⊗ Y → 1 in C with
inverse Ω. Conditions (1.9) are graphically represented as

X

ω

Y

Y

Ω

= Y and

X

ω

Y

Ω

X

= X . (2.1)

Mon Cats:

1 α→ 1 1 β
→ X X

γ
→ 1

,
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evX

X X*coevX

X

X* X= &
evX

coevX

X

X*

= X*
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Exercise 2.10.6. Let C, D be monoidal categories. Suppose F = (F, J,ϕ) is a
monoidal functor, F : C → D. Let X be an object in C with a left dual X∗. Prove
that F (X∗) is a left dual of F (X) with the evaluation and coevaluation given by

evF (X) : F (X∗) ⊗ F (X)
JX∗,X−−−−→ F (X∗ ⊗ X)

F (evX)−−−−→ F (1)
ϕ−1

−−→ 1,

coevF (X) : 1
ϕ−→ F (1)

F (coevX)−−−−−−→ F (X ⊗ X∗)
J−1

X,X∗
−−−−→ F (X) ⊗ F (X∗).

State and prove a similar result for right duals.

Exercise 2.10.7. Let C be a monoidal category, let U, V, W be objects in C,
and let f : V → W , g : U → V be morphisms in C. Prove that

(a) If U, V, W have left (respectively, right) duals then (f ◦ g)∗ = g∗ ◦ f∗

(respectively, ∗(f ◦ g) = ∗g ◦ ∗f).
(b) If U, V have left (respectively, right) duals then U ⊗ V has a left dual

V ∗ ⊗ U∗ (respectively, right dual ∗V ⊗ ∗U).

Proposition 2.10.8. Let C be a monoidal category and let V be an object in
C.

(a) If V has a left dual V ∗ then there are natural adjunction isomorphisms

HomC(U ⊗ V, W )
∼−→ HomC(U, W ⊗ V ∗),(2.49)

HomC(V ∗ ⊗ U, W )
∼−→ HomC(U, V ⊗ W ).(2.50)

(b) If V has a right dual ∗V then there are natural adjunction isomorphisms

HomC(U ⊗ ∗V, W )
∼−→ HomC(U, W ⊗ V ),(2.51)

HomC(V ⊗ U, W )
∼−→ HomC(U, ∗V ⊗ W ).(2.52)

Proof. An isomorphism in (2.49) is given by f %→ (f ⊗ idV ∗) ◦ (idU ⊗ coevV )
and has the inverse g %→ (idW ⊗ evV ) ◦ (g ⊗ idV ). Other isomorphisms are similar
and are left to the reader as an exercise. !

Remark 2.10.9. Proposition 2.10.8 says, in particular, that when a left (re-
spectively, right) dual of V exists, then the functor V ∗ ⊗ − is the left adjoint of
V ⊗ − (respectively, − ⊗ V ∗ is the right adjoint of − ⊗ V ).

Remark 2.10.10. Proposition 2.10.8 provides another proof of Proposition
2.10.5. Namely, setting U = 1 and V = X in (2.50), we obtain a natural
isomorphism HomC(X∗, W ) ∼= HomC(1, X ⊗ W ) for any left dual X∗ of X.
Hence, if Y1, Y2 are two such duals then there is a natural isomorphism
HomC(Y1, W ) ∼= HomC(Y2, W ), whence there is a canonical isomorphism Y1

∼= Y2

by the Yoneda Lemma. The proof for right duals is similar.

Definition 2.10.11. An object in a monoidal category is called rigid if it has
left and right duals. A monoidal category C is called rigid if every object of C is
rigid.

Example 2.10.12. The category Vec of finite dimensional k-vector spaces is
rigid: the right and left dual to a finite dimensional vector space V are its dual
space V ∗, with the evaluation map evV : V ∗ ⊗ V → k being the contraction,
and the coevaluation map coevV : k → V ⊗ V ∗ being the usual embedding. On
the other hand, the category Vec of all k-vector spaces is not rigid, since for
infinite dimensional spaces there is no coevaluation maps (indeed, suppose that
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CHAPTER V REPRESENTATION CATEGORIES 
OF HOPF ALGEBRAS
Reconstruction theory

Def 5.1.1. 
A (Quasi-)Fiber functor is a (quasi-)tensor functor to Vec

96 5. REPRESENTATION CATEGORIES OF HOPF ALGEBRAS

Remark 5.3.8. A similar statement holds for finite dimensional comodules.
Namely, if X is a finite dimensional right comodule over a bialgebra H with an
antipode, then the left dual is the dual vector space X∗ with the coaction defined
by

(πX∗(f), x ⊗ φ) := ((id⊗S)(πX(x)), f ⊗ φ),

x ∈ X, f ∈ X∗,φ ∈ H∗. If S is invertible, then the right dual ∗X is defined by the
same formula with S replaced by S−1.

Remark 5.3.9. The fact that S is an antihomomorphism of coalgebras is the
“linear algebra” version of the categorical fact that dualization changes the order
of tensor product (Proposition 2.10.7(ii)).

Definition 5.3.10. A bialgebra equipped with an invertible antipode S is
called a Hopf algebra.

Remark 5.3.11. We note that many authors use the term “Hopf algebra” for
any bialgebra with an antipode (not necessarily invertible).

Thus, Corollary 5.3.7 states that if H is a Hopf algebra then Rep(H) is a tensor
category. So, we get the following reconstruction theorem for finite dimensional
Hopf algebras.

Theorem 5.3.12. The assignments

(5.5) (C, F ) #→ H = End(F ), H #→ (Rep(H), Forget)

are mutually inverse bijections between (1) equivalence classes of finite tensor cate-
gories C with a fiber functor F , up to tensor equivalence and isomorphism of tensor
functors, and (2) isomorphism classes of finite dimensional Hopf algebras over k.

Proof. Straightforward from the above. !

Exercise 5.3.13. The bialgebra of functions Fun(G, k) on a finite monoid G
from Exercise 5.2.6(i) is a Hopf algebra if and only if G is a group. In this case, the
antipode is given by the formula S(f)(x) = f(x−1), x ∈ G.

More generally, if G is an affine algebraic group over k, or still more generally
an affine group scheme, then the algebra O(G) of regular functions on G is a Hopf
algebra, with the comultiplication, counit, and antipode defined as in the finite
case.

Similarly, kG is a Hopf algebra if and only if G is a group, with S(x) = x−1,
x ∈ G.

Exercise 5.3.14. Show that if g is a grouplike element of a Hopf algebra H
(see Definition 1.9.7), then g is invertible, with g−1 = S(g). Also, show that the
product of two grouplike elements is grouplike. In particular, grouplike elements of
any Hopf algebra H form a group, denoted G(H). Show that G(H) can also be
defined as the group of isomorphism classes of 1-dimensional H-comodules under
tensor multiplication.

Proposition 5.3.15. If H is a finite dimensional bialgebra with an antipode
S, then S is invertible, so H is a Hopf algebra.

Proof. Let Hn be the image of Sn. Since S is an antihomomorphism of
algebras and coalgebras, Hn is a sub-bialgebra of H. Let m be the smallest n such
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where ∆̃(a) ∈ End(F ! F ) is given by

∆̃(a)X,Y = J−1
X,Y aX⊗Y JX,Y ,

and the counit is defined by the formula

ε(a) = a1 ∈ k.

Theorem 5.2.1. Let H = End(F ) be as above.

(i) The algebra H is a coalgebra with comultiplication ∆ and counit ε.
(ii) The maps ∆ and ε are unital algebra homomorphisms.

Proof. The coassociativity of ∆ follows from axiom (2.23) of a monoidal func-
tor. The counit axiom follows from (2.25) and (2.26). Finally, observe that for all
η, ν ∈ End(F ) the images under α of both ∆(η)∆(ν) and ∆(ην) have components
J−1

X,Y (ην)X⊗Y JX,Y ; hence, ∆ is an algebra homomorphism (which is obviously uni-
tal). The fact that ε is a unital algebra homomorphism is clear. "

Definition 5.2.2. An algebra H equipped with a comultiplication ∆ and a
counit ε satisfying properties (i),(ii) of Theorem 5.2.1 is called a bialgebra. A
homomorphism of bialgebras is a unital algebra homomorphism between bialgebras
which preserves the coproduct and counit.

Thus, Theorem 5.2.1 claims that the algebra H = End(F ) has a natural struc-
ture of a bialgebra.

Now let H be any bialgebra (not necessarily finite dimensional). Then the
category Rep(H) of representations (i.e., left modules) of H and its subcategory
Rep(H) of finite dimensional representations of H are naturally monoidal categories
(and the same applies to right modules). Indeed, one can define the tensor product
of two H-modules X, Y to be the usual tensor product of vector spaces X⊗Y , with
the action of H defined by the formula

ρX⊗Y (a) = (ρX ⊗ ρY )(∆(a)), a ∈ H

(where ρX : H → End(X), ρY : H → End(Y )), the associativity isomorphism to
be the obvious one, and the unit object to be the 1-dimensional space k with
the action of H given by the counit, a → ε(a). Moreover, the forgetful functor
Forget : Rep(H) → Vec is a fiber functor.

Thus, one has the following theorem.

Theorem 5.2.3. The assignments

(5.1) (C, F ) $→ H = End(F ), H $→ (Rep(H), Forget)

are mutually inverse bijections between (1) finite ring categories C with a fiber func-
tor F : C → Vec, up to tensor equivalence and isomorphism of tensor functors and
(2) isomorphism classes of finite dimensional bialgebras H over k.

Proof. Straightforward from the above. "

Theorem 5.2.3 is called the reconstruction theorem for finite dimensional bial-
gebras (as it reconstructs the bialgebra H from the category of its modules using a
fiber functor).
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If C has left duals, the bialgebra Coend(F ) acquires an antipode, defined in
the same way as in the finite dimensional case. This antipode is invertible if there
are also right duals (i.e., if C is rigid). Thus, Theorem 1.10.1 implies the following
“infinite” extensions of the reconstruction theorems.

Theorem 5.4.1. The assignments

(5.9) (C, F ) !→ H = Coend(F ), H !→ (H − Comod, Forget)

are mutually inverse bijections between the following pairs of sets:

(1) ring categories C over k with a fiber functor F , up to tensor equivalence
and isomorphism of tensor functors, and bialgebras over k, up to isomor-
phism;

(2) ring categories C over k with left duals with a fiber functor F , up to tensor
equivalence and isomorphism of tensor functors, and bialgebras over k

with an antipode, up to isomorphism;
(3) tensor categories C over k with a fiber functor F , up to tensor equivalence

and isomorphism of tensor functors, and Hopf algebras over k, up to
isomorphism.

Remark 5.4.2. This theorem allows one to give a categorical proof of Propo-
sition 5.3.5, deducing it from the fact that a left dual, when it exists, is unique up
to a unique isomorphism.

Remark 5.4.3. Corollary 5.3.15 is not true, in general, in the infinite dimen-
sional case: there exist bialgebras H with a non-invertible antipode S, see [Tak1].
Therefore, there exist ring categories with simple object 1 and left duals that do
not have right duals, i.e., are not tensor categories (namely, H − comod).

Reconstruction theory was first developed by T. Tannaka and M. Krein ([Tan],
[Kr]) for compact topological groups, to reconstruct such a group from the category
of its representations; it was a nonabelian analog of Pontryagin’s duality and is
called the Tannaka-Krein duality. Later this duality was adapted by P. Cartier
and Grothendieck’s school to algebraic groups, which led to creation of the theory
of Tannakian categories (see [Car1] and [Sa, DelM]). The following example
summarizes some of the main results of this theory, and explains how to use this
theory to define various completions of an abstract group.

Example 5.4.4. (i) Let C be the category of algebraic representations
of an affine algebraic (or, more generally, proalgebraic) group G over k.
Let F : C → Vec be the forgetful functor. Then it is easy to check that
Coend(F ) = O(G), the Hopf algebra of regular functions on G. More
generally, the same holds for affine group schemes.

(ii) Let C be the category of finite dimensional representations over k of any
(discrete) group G, and let the functor F be as in (i). It is easy to check
that Coend(F ) is a commutative Hopf algebra. So Coend(F ) = O(Ĝalg),

where Ĝalg = SpecCoend(F ) is a certain proalgebraic group canonically
attached to G (its closed points are characters of the algebra Coend(F )).
The group Ĝalg is called the proalgebraic completion of G.

(iii) Let G be as in (ii), char(k) = 0, and C be the category of semisimple finite
dimensional representations of G. By Chevalley’s theorem, C is a tensor
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CHAPTER 7

Module categories

We have seen that the notion of a tensor category categorifies the notion of a
ring. In a similar way, the notion of a module category categorifies the notion of a
module over a ring. In this section we will develop a systematic theory of module
categories over tensor categories. This theory is interesting by itself, but is also
crucial for understanding the structure of tensor categories, similarly to how the
study of modules is important in understanding the structure of rings.

We will begin with a discussion of module categories over general monoidal
categories, and then pass to the k-linear case.

7.1. The definition of a module category

Let C = (C, ⊗, 1, a, l, r) be a monoidal category.

Definition 7.1.1. A left module category over C is a category M equipped
with an action (or module product) bifunctor ⊗ : C × M → M and a natural
isomorphism

(7.1) mX,Y,M : (X ⊗ Y ) ⊗ M
∼−→ X ⊗ (Y ⊗ M), X, Y ∈ C, M ∈ M,

called module associativity constraint such that the functor M &→ 1⊗M : M → M
is an autoequivalence, and the pentagon diagram:

(7.2) ((X ⊗ Y ) ⊗ Z) ⊗ M
aX,Y,Z⊗idM

!!!!!
!!!

!!!
!!!

!!! mX⊗Y,Z,M

""""
"""

"""
"""

"""
"

(X ⊗ (Y ⊗ Z)) ⊗ M

mX,Y ⊗Z,M

##

(X ⊗ Y ) ⊗ (Z ⊗ M)

mX,Y,Z⊗M

##

X ⊗ ((Y ⊗ Z) ⊗ M)
idX ⊗mY,Z,M

$$ X ⊗ (Y ⊗ (Z ⊗ M))

is commutative for all objects X, Y, Z in C and M in M.

Clearly, this definition categorifies the notion of a module over a monoid.
In a similar way one defines a right C-module category. Namely, a right C-

module category is the same thing as a left Cop-module category. By a module
category we will always mean a left module category unless otherwise specified.

Similarly to the case of monoidal categories, for any C-module category M, one
has a canonical functorial unit isomorphism of a module category

(7.3) lM : 1 ⊗ M
∼−→ M,

called the unit constraint, and one can give the following equivalent definition of a
module category, making this isomorphism a part of the data.
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Definition 7.1.2. A left module category over C is a category M equipped
with a bifunctor ⊗ : C × M → M and natural isomorphisms (7.1) and (7.3) such
that the pentagon diagram (7.2) and the triangle diagram:

(7.4) (X ⊗ 1) ⊗ M
mX,1,M

!!

rX⊗idM
""!!

!!!
!!!

!!!
X ⊗ (1⊗ M)

idX ⊗lM
##"""

"""
"""

""

X ⊗ M

commute for all X ∈ C, M ∈ M.

We leave it to the reader to establish the equivalence of the two definitions;
this is entirely parallel to the case of monoidal categories, cf. Section 2.1.

The following proposition gives an alternative definition of a module category.
Let M be a category. Consider the category End(M) of endofunctors of M. As we
have seen in Example 2.3.12, End(M) is a monoidal category.

Proposition 7.1.3. There is a bijective correspondence between structures of
a C-module category on M and monoidal functors F : C → End(M).

Proof. Let F : C → End(M) be a monoidal functor with the monoidal struc-
ture JX,Y : F (X) ◦ F (Y )

∼−→ F (X ⊗ Y ), see Definition 2.4.1. Set

X ⊗ M := F (X)(M), X ∈ C, M ∈ M,

and define the associativity constraint m of M using the monoidal structure of F :

mX,Y,M : (X ⊗ Y ) ⊗ M = F (X ⊗ Y )(M)
J−1

X,Y−−−→ F (X)(F (Y )(M)) = X ⊗ (Y ⊗ M),

for all X, Y ∈ C, M ∈ M. Conversely, let M be a module category over C. Then
for any X ∈ C we have the functor M '→ X ⊗M of left tensor multiplication by X.
Thus we have a functor F : C → End(M). Using the associativity isomorphism m
of M, one defines a monoidal structure on F :

(JX,Y )M : F (X)(F (Y )(M)) = X⊗(Y ⊗M)
m−1

X,Y,M−−−−−→ (X⊗Y )⊗M = F (X⊗Y )(M).

Note that under the above correspondence the hexagon diagram (2.23) for the
monoidal structure on F corresponds to the pentagon diagram (7.2). This is because
one of the sides of the hexagon (2.23) disappears due to the fact that the category
End(M) is strict, so its associativity constraint is the identity. !

Clearly, Proposition 7.1.3 categorifies the fact in elementary algebra that a
module over a ring is the same thing as a representation.

Definition 7.1.4. A module subcategory N of a C-module category M is a full
subcategory N ⊂ M which is closed under the action of C.

Remark 7.1.5. Let C be a rigid monoidal category, and let M be a right C-
module category. Let M∨ be the category dual to M. Then M∨ is a left C-module
category with the C-action ) : C × M∨ → M∨ given by X ) M := M ⊗ ∗X and
the associativity constraint given by

(X⊗Y ))M = M⊗∗(X⊗Y ) ∼= M ⊗(∗Y ⊗∗X)
∼−→ (M ⊗∗Y )⊗∗X = X)(Y )M),

for all X, Y ∈ C, M ∈ M∨, where the middle arrow is the associativity constraint
of M. Similarly, if N is a left C-module category, then N∨ is a right C-module
category, with the C-action ) given by N ) X := X∗ ⊗ N .
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to state and prove this theorem. Hence, one can assume without loss of generality
that 1 ⊗ M = M and lM = idM for all M ∈ M. We will often do so from now on.

Remark 7.2.5. Note that in the strict case diagram (7.7) reduces to the con-
dition that s1,M = idF (M).

7.3. Module categories over multitensor categories

We will be interested in module categories over multitensor categories (defined
over a field k), see Definition 4.1.1. In this case, we would like to consider module
categories with an additional structure of an abelian category.

Let C be a multitensor category over k.

Definition 7.3.1. A module category over C (or C-module category) is a locally
finite abelian category M over k which is equipped with a structure of a C-module
category, such that the module product bifunctor ⊗ : C × M → M is bilinear on
morphisms and exact in the first variable.

Exercise 7.3.2. Show that the module product ⊗ : C × M → M is always
exact in the second variable.

Let Endl(M) be the category of left exact functors from M to M. This is an
abelian category. (Namely, if M is the category of finite dimensional comodules
over a coalgebra C then Endl(M) is equivalent to a full subcategory of the category
of C-bicomodules, via F %→ F (C); note that F (C) is well defined, since F , being
left exact, commutes with direct limits, and thus extends to the ind-completion of
M).

Proposition 7.3.3. There is a bijection between structures of a C-module ca-
tegory on M and tensor functors F : C → Endl(M).1

Proof. The proof is the same as that of Proposition 7.1.3. !
We will also need to consider module functors between module categories over

multitensor categories. Unless otherwise specified, we will consider only left exact
module functors, referring to them just as “module functors”.

There is an obvious construction of the direct sum of module categories.

Proposition 7.3.4. Let M1, M2 be two module categories over C. Then the
category M = M1 ⊕ M2 with module product, associativity constraints, and the
unit constraints being sums of those of M1 and M2 is a module category over C.

Proof. Obvious. !
Definition 7.3.5. The module category M is called the direct sum of the

module categories M1 and M2.

Definition 7.3.6. We will say that a module category M over C is indecom-
posable if it is not equivalent to a nontrivial direct sum of module categories (that
is, with M1, M2 nonzero).

1The category EndC(M) is not, in general, a multiring category, so we use the term
“tensor functor” in a broader sense (meaning an exact monoidal functor). Also, note that for any
X ∈ C, F (X) is dualizable, i.e., has left and right duals of all orders, so we also have that
F : C → Endr(M), where Endr(M) is the category of right exact end functors of M. In other
words, F (X) is exact for any X ∈ C.
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