Keine Seminar Revision chapters 1 - 7

Def. Kernel & Cokernel

ABELIAN CATEGORIES

- → **Def.** Abelian Category
- → **Def.** Monomorphism & Epimorphism
 - → **Def.** Subobjects & Quotient objects
 - → **Def.** Simple & Semisimple Object/Category
 - → Schur's Lemma
 - → Jordan Holder Theorem & **Def.** Length(Object)
 - → Indecomposable objects & Krull-Schmidt Theorem
- → **Def.** (Short) Exact sequences
 - → **Def.** Left/Right exact functors
 - → **Def.** Projective Object/Cover & Injective Object/Hull

Enough projectiles #(simple obj $/ \sim$) < ∞

ABELIAN CATEGORIES First big results

DEFINITION 1.8.5. A k-linear abelian category \mathcal{C} is said to be *finite* if it is equivalent to the category A-mod of finite dimensional modules over a finite dimensional k-algebra A.

for some object $V \in \mathcal{C}$.

Author's final version made available with permission of the publisher. American Mathematical Society. DEFINITION 1913. A coalgebra C is *pointed* if any simple right C-comodule License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms is 1-dimensional.

COROLLARY 1.8.11. Let C be a finite abelian k-linear category, and let $F: \mathcal{C} \to \mathsf{Vec}$ be an additive k-linear left exact functor. Then $F = \mathsf{Hom}_{\mathcal{C}}(V, -)$

THEOREM 1.9.15 (Takeuchi, [Tak2]). Any essentially small locally finite abelian category \mathcal{C} over a field k is equivalent to the category C-comod for a unique pointed coalgebra C. In particular, if C is finite, it is equivalent to the category A-mod for a unique basic algebra A (namely, $A = C^*$).

CHAPTER II

MONOIDAL CATEGORIES

(2.1)(2.2)

(2.3)(2.4)

DEFINITION 2.1.1. A monoidal category is a quintuple $(\mathcal{C}, \otimes, a, \mathbf{1}, \iota)$ where \mathcal{C} is a category, $\otimes : \mathcal{C} \times \mathcal{C} \to \mathcal{C}$ is a bifunctor called the *tensor product* bifunctor, $a: (-\otimes -) \otimes - \xrightarrow{\sim} - \otimes (-\otimes -)$ is a natural isomorphism:

 $a_{X,Y,Z}: (X \otimes Y) \otimes Z \xrightarrow{\sim} X \otimes (Y \otimes Z), \qquad X,Y,Z \in \mathcal{C}$

called the associativity constraint (or associativity isomorphism), $\mathbf{1} \in \mathcal{C}$ is an object of \mathcal{C} , and $\iota : \mathbf{1} \otimes \mathbf{1} \xrightarrow{\sim} \mathbf{1}$ is an isomorphism, subject to the following two axioms.

Author's final version made available with permission of the publisher, American Mathematical Society License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms is commutative for all objects W, X, Y, Z in \mathcal{C} . 2. The unit axiom. The functors

$$L_{\mathbf{1}} : X \mapsto \mathbf{1} \otimes X$$
 and
 $R_{\mathbf{1}} : X \mapsto X \otimes \mathbf{1}$

CHAPTERII

+ Left & right duals

+ All obj invertible+ All morphisms iso

MONOIDAL CATEGORIES

Note: $U \otimes V \ncong V \otimes U$ in general

Properties of the unit 1

Prop 2.2.6.

Prop 2.2.10.

1 is unique UTUI

End(1) is commutative monoid

CHAPTER II

MONOIDAL CATEGORIES Note on Monoidal Functors

DEFINITION 2.4.1. Let $(\mathcal{C}, \otimes, \mathbf{1}, a, \iota)$ and $(\mathcal{C}^{\mathfrak{d}}, \otimes^{\mathfrak{d}}, \mathbf{1}^{\mathfrak{d}}, \iota^{\mathfrak{d}})$ be two monoidal categories. A monoidal functor from \mathcal{C} to \mathcal{C}^{\wr} is a pair (F, J), where $F : \mathcal{C} \to \mathcal{C}^{\wr}$ is a functor, and

(2.22)

is a natural isomorphism, such that $F(\mathbf{1})$ is isomorphic to $\mathbf{1}^{\wr}$ and the diagram

(F(X(2.23)

 $J_{X,Y}$

is commutative for all X, Y, $Z \in \mathcal{C}$ ("the monoidal structure axiom"). A monoidal functor F is said to be an equivalence of monoidal categories if it is an equivalence of ordinary categories.

 $J_{X,Y}: F(X) \otimes^{\wr} F(Y) \xrightarrow{\sim} F(X \otimes Y)$

$$\begin{array}{cccc} F(Y) \otimes^{\wr} F(Y) \otimes^{\wr} F(Z) & \xrightarrow{a_{F(X),F(Y),F(Z)}^{\wr}} F(X) \otimes^{\wr} (F(Y) \otimes^{\wr} F(Z)) \\ & & & \downarrow^{\mathsf{id}_{F(X)}} \otimes^{\wr} F(Z) & & \downarrow^{\mathsf{id}_{F(X)} \otimes^{\wr} J_{Y,Z}} \\ & & & \downarrow^{\mathsf{id}_{F(X)} \otimes^{\wr} J_{Y,Z}} \\ & & & & \downarrow^{\mathsf{id}_{F(X)} \otimes^{\wr} F(Y \otimes Z)} \\ & & & & \downarrow^{J_{X,Y \otimes Z}} \\ & & & & \downarrow^{J_{X,Y \otimes Z}} \\ & & & & & \downarrow^{J_{X,Y \otimes Z}} \\ & & & & & \downarrow^{F(a_{X,Y,Z})} \longrightarrow F(X \otimes (Y \otimes Z)) \end{array}$$

For given F there can be multiple or no J at all!

CHAPTER II

MONOIDAL CATEGORIES

2 Important Theorems

THEOREM 2.8.5. Any monoidal category is monoidally equivalent to a strict monoidal category.

Note: equivalent \neq isomorphic! Author's final version made available with permission of the publisher, American Mathematical Society. License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms

identity morphisms. Then f = g.

DEFINITION 2.8.1. A monoidal category \mathcal{C} is *strict* if for all objects X, Y, Z in \mathcal{C} one has equalities $(X \otimes Y) \otimes Z = X \otimes (Y \otimes Z)$ and $X \otimes \mathbf{1} = X = \mathbf{1} \otimes X$, and the associativity and unit constraints are the identity maps.

THEOREM 2.9.2. (Coherence Theorem) Let $X_1, \ldots, X_n \in \mathcal{C}$. Let P_1, P_2 be any two parenthesized products of $X_1, ..., X_n$ (in this order) with arbitrary insertions of the unit object 1. Let $f, g: P_1 \to P_2$ be two isomorphisms, obtained by composing associativity and unit isomorphisms and their inverses possibly tensored with

CHAPTERII

+ Left & right duals

All obj invertible All morphisms iso

Graphical Language

CHAPTERII

DEFINITION 2.10.11. An object in a monoidal category is called *rigid* if it has left and right duals. A monoidal category \mathcal{C} is called *rigid* if every object of \mathcal{C} is rigid.

MONOIDAL CATEGORIES Rigid Cats and Cat Groups

CHAPTER III

Masterfully explained by world class expert: I assume its content is still vividly alive in everyones memory

TENSOR CATEGORIES

General results for multi-tensor categories

 \otimes is biexact

$$\operatorname{Im}(f_1 \otimes f_2) = \operatorname{Im}(f_1) \otimes \operatorname{Im}(f_2)$$

*(–) and
$$(-)^*$$
 are exact

$coev_X$ are monos and ev_X are epis

TENSO

*Cor 4.2.13.

*Thm 4.3.1.

*Cor 4.3.2. $1 \cong \bigoplus_{i} I_i v$

*Thm 4.3.8.

***Thm 4.3.8.** C finite, $Char(k) = 0, C \exists !$ simple object $1 \Rightarrow C \cong Vec$

TENSOR CATEGORIES

Properties of the unit 1 of multi-tensor categories

1 projective $\Leftrightarrow C$ semisimple

 $\operatorname{End}(\mathbf{1}) \cong k \oplus \ldots \oplus k$

 $1 \cong \bigoplus I_i$ with I_i non-isomorphic indecomposable objects

C tensor cat \Rightarrow 1 simple

CHAPTERV

Reconstruction theory

Def 5.1.1.

THEOREM 5.2.3. The assignments (5.1)

are mutually inverse bijections between (1) finite ring categories C with a fiber functor $F: \mathcal{C} \to \mathsf{Vec}$, up to tensor equivalence and isomorphism of tensor functors and (2) isomorphism classes of finite dimensional bialgebras H over \Bbbk .

THEOREM 5.3.12. The assignments (5.5)

Authors field and a set an

REPRESENTATION CATEGORIES OF HOPF ALGEBRAS

A (Quasi-)Fiber functor is a (quasi-)tensor functor to Vec

 $(\mathcal{C}, F) \mapsto H = \mathsf{End}(F), \quad H \mapsto (\mathsf{Rep}(H), \text{ Forget})$

 $(\mathcal{C}, F) \mapsto H = \mathsf{End}(F), \quad H \mapsto (\mathsf{Rep}(H), \text{ Forget})$

are mutually inverse bijections between (1) equivalence classes of finite tensor categories \mathcal{C} with a fiber functor F, up to tensor equivalence and isomorphism of tensor functors, and (2) isomorphism classes of finite dimensional Hopf algebras over \Bbbk .

CHAPTERV

REPRESENTATION CATEGORIES OF HOPF ALGEBRAS Reconstruction theory in the infinite setting

(5.9)phism; isomorphism.

THEOREM 5.4.1. The assignments

 $(\mathcal{C}, F) \mapsto H = \mathsf{Coend}(F), \quad H \mapsto (H - \mathsf{Comod}, \mathsf{Forget})$

are mutually inverse bijections between the following pairs of sets:

(1) ring categories C over \Bbbk with a fiber functor F, up to tensor equivalence and isomorphism of tensor functors, and bialgebras over \Bbbk , up to isomor-

(2) ring categories \mathcal{C} over \Bbbk with left duals with a fiber functor F, up to tensor equivalence and isomorphism of tensor functors, and bialgebras over \Bbbk with an antipode, up to isomorphism;

(3) tensor categories \mathcal{C} over \Bbbk with a fiber functor F, up to tensor equivalence and isomorphism of tensor functors, and Hopf algebras over \Bbbk , up to

CHAPTERVI

Self-study

FINITE TENSOR CATEGORIES

CHAPTERVII

MODULE CATEGORIES

isomorphism

 $m_{X,Y,M}: (X \otimes Y) \otimes M \xrightarrow{\sim} X \otimes (Y \otimes M), \qquad X, Y \in \mathcal{C}, M \in \mathcal{M},$ (7.1)

(7.2)

 $(X \otimes (Y \otimes Z)) \stackrel{\cdot}{\otimes} M$ $m_{X,Y\otimes Z,M}$ $X \otimes ((Y \otimes Z) \otimes M)$

DEFINITION 7.1.1. A left module category over \mathcal{C} is a category \mathcal{M} equipped with an action (or module product) bifunctor $\otimes : \mathcal{C} \times \mathcal{M} \to \mathcal{M}$ and a natural

called module associativity constraint such that the functor $M \mapsto \mathbf{1} \otimes M : \mathcal{M} \to \mathcal{M}$ is an autoequivalence, and the *pentagon diagram*:

PROPOSITION 7.1.3. There is a bijective correspondence between structures of a *C*-module category on \mathcal{M} and monoidal functors $F : \mathcal{C} \to \mathsf{End}(\mathcal{M})$.

CHAPTERVII

MODULE CATEGORIES

Let \mathcal{C} be a multitensor category over \Bbbk .

DEFINITION 7.3.1. A module category over \mathcal{C} (or \mathcal{C} -module category) is a locally finite abelian category \mathcal{M} over k which is equipped with a structure of a \mathcal{C} -module category, such that the module product bifunctor $\otimes : \mathcal{C} \times \mathcal{M} \to \mathcal{M}$ is bilinear on morphisms and exact in the first variable.

Let $\operatorname{End}_{l}(\mathcal{M})$ be the category of left exact functors from \mathcal{M} to \mathcal{M} .

PROPOSITION 7.3.3. There is a bijection between structures of a C-module category on \mathcal{M} and tensor functors $F: \mathcal{C} \to \mathsf{End}_l(\mathcal{M})$.¹

CHAPTERVII

MODULE CATEGORIES

THEOREM. A graduate student dividing time between productive tasks and browsing cat pictures will spend too much time doing the latter.

COROLLARY I didn't have enough time to include the rest of chapter 7.

• Pictures of graphical calculus were copied from

Turaev and Virelizier: Monoidal Categories and Topological Field Theory, which itself was copied from an unspecified source on the internet