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Examples

Let F : C → D be a tensor functor. 
Then M = D has a structure of a module category over C with 
 X ⊗ Y := F (X) ⊗ Y .



Alternative definition

Prop:

Prop:



A module is a representation

Proposition 7.3.3. There is a bijection between structures of a C-module ca-
tegory on M and tensor functors F : C → End  (M)



Example



Proposition 7.1.6. Let C be a rigid monoidal category and let M be a C-
module category. There is a canonical isomorphism

natural in X ∈ C and M, N ∈ M.





Subcategory and duals 

A module subcategory N of a C-module category M is a full
subcategory N ⊂ M which is closed under the action of C.

A right C-module category  is the same thing as a left C   -module category.

Let C be a rigid monoidal category, and let M be a right C-
module category. Let M  be the category dual to M. Then M  is a left C-module
category with the C-action

and the associativity constraint given by 

 Similarly, if N is a left C-module category, then N  is a right C-module
category, with the C-action



Bimodules
Let C, D be monoidal categories. A (C, D)-bimodule category
is a category M that has left C-module and right D-module category structures with
modules associativity constraints

 compatible by a collection

 called middle associativity constraints such that the expected diagrams commute



Let M and N be two module categories over C with associativity constraints m and n, respectively. 
A C-module functor from M to N consists of a functor F : M → N and a natural isomorphism

such that the following diagrams

Module functors



Exact module categories

Let C be a multitensor category with enough projective ob-
jects. A locally finite module category M over C is called exact if for any projective
object P ∈ C and any object M ∈ M the object P ⊗ M is projective in M.

Exercise 7.5.2. Let M be an arbitrary module category over C. Show that for
any object X ∈ C and any projective object Q ∈ M the object X ⊗ Q is projective
in M.

Motivation:



Examples

•

•

• If C is semisimple (and hence 1 is projective) then any exact module category over C is semisimple.

•

• Let C and D be finite multitensor categories and let F : C → D be a surjective tensor functor. 
Then the category D considered as a module category over C is exact.

Any semisimple module category is exact (since any object in a semisimple category is projective)

Notice that in the category C = Vec the object 1 is projective.
Therefore for an exact module category M over C any object M = 1 ⊗ M is
projective. Hence an abelian category M considered as a module category over
C is exact if and only if it is semisimple.

Any finite multitensor category C considered as a module category over itself is exact.



Let M be an exact C-module category. Then the category M has enough projective objects.

Corollary: Assume that an exact module category M over C has finitely many isomorphism classes
                   of simple objects. Then M is finite.

Properties of exact modules

Proof



Properties of exact modules
Let M be an exact module category over C. Let P ∈ C be projective and X ∈ M. Then P ⊗ X is injective.

Corollary: In an exact C-module category any projective object is injective, and vice versa.

Proof:



Complete reducibility of exact module categories
O(M)

O(M)

Let           denote the set of (isomorphism classes of) simple objects in M
Let us introduce the following relation on             : 
two objects X, Y ∈              are related if Y appears as a subquotient of
L ⊗ X for some L ∈ C.

Lemma: The relation above is reflexive, symmetric and transitive.

O(M)

Let  M_i denote  the full subcategory of M consisting of objects whose simple subquotients lie in the .

O(M)i

The module categories M_i are exact. The category M is
the direct sum of its module subcategories M_i  i.e.,



characterizing property of exact module categories

Let  M_1   and M_2 be two module categories over C. Assume that M_1 is exact. 
Then any additive module functor F : M_1 → M_2 is exact.


