# **Chapter 5 part I**

Kleine seminar

Alexis Langlois-Rémillard

2021-11-19







EOS THE EXCELLENCE OF SCIENCE

- 1. (Quasi-)Fiber fuctor
- 2. Bialgebras
- 3. Hopf algebras
- 4. Reconstruction theory in the infinite setting

# (Quasi-)Fiber fuctor

# What is a fiber functor

Let *C* be a ring category over  $\Bbbk$ .

1 locally fin K-linear abelien monoridal Cutogooy With & Steinen Gierard > multiving category + End I sik is a ring category

Let *C* be a ring category over  $\Bbbk$ .

 $(F_{X\otimes}F_{Y})\otimes F(z)$ 

=X(x, Y)

(X) f(Z)

#### Definition

A quasi-fiber functor on C is an exact faithful functor

$$F: C \to \operatorname{Vec}, \qquad F(1) = \Bbbk$$

with a natural isomorphism  $J : F(X) \otimes F(Y) \xrightarrow{\sim} F(X \otimes Y)$ ,  $X, Y \in C$ . It is called a fiber functor if J is a tensor structure.

-> F(x) @(Flylorz)

Let *C* be a ring category over  $\Bbbk$ .

#### Definition

A quasi-fiber functor on *C* is an exact faithful functor

$$F: C \to \operatorname{Vec}, \qquad F(1) = \Bbbk,$$

with a natural isomorphism  $J : F(X) \otimes F(Y) \rightarrow F(X \otimes Y), X, Y \in C$ . It is called a fiber functor if J is a tensor structure.



(FX FY) FZ -> FX (FYFZ) FXYFZ S FXFYZ FX(YZ)

# **Examples and Nonxamples**

#### An example to remember

The forgetful functors  $\operatorname{Vec}_G \to \operatorname{Vec}$  and  $\operatorname{Rep}(G) \to \operatorname{Vec}$  are fiber functor.

#### A non-example

If  $\omega \in Z^3(G, \Bbbk^{\times})$  is a cohomologically non-trivial 3-cocycle, then the forgetful functor  $\operatorname{Vec}_G^{\omega} \to \operatorname{Vec}$  is a quasi-fiber functor but  $\operatorname{Vec}_G^{\omega}$  does not admit a fiber functor.

# Bialgebras

# Deligne's tensor product

- D-is right exact bifunctor in both variables, uninversal CXD B CBD F G F F C F F F Fbifuch righterast in buth var.

Prop I. II. 2 iii) C. D. Loalyebras C-Lomod & D-Lomod = (C&D)-Land iV) Hom (X, N) & Hom (X, N) ~ Hom (X, X).

#### Structures on endomorphism

# $\begin{array}{c} \overbrace{c_{c}} \overbrace{U} \overbrace{U} \overbrace{V} \\ F = \operatorname{End}(F). \operatorname{Recall} \alpha : \operatorname{End}(F) \otimes \operatorname{End}(F) \xrightarrow{\sim} \operatorname{End}(F \boxtimes F). \end{array}$

#### **Coproduct and counit**

Let  $\Delta : H \to H \otimes H$  and  $\varepsilon : H \to \Bbbk$  defined by

$$\Delta(a) = \alpha^{-1}(\tilde{\Delta}(a)) = \alpha^{-1}(J^{-1}aJ)$$
$$\varepsilon(a) = a_1 \in \Bbbk$$

#### Theorem 5.2.1

i) The algebra *H* is a coalgebra with coproduct Δ and counit ε.
ii) The maps Δ and ε are unital algebra homomorphisms.

i) J is a tensor shucture -> convictinity ii) J(a) J(b) ~> J'(J'a) a'(J'b) ~> K J'a] j'j J(ab) ~> J'(J'ab) ~> 5

# What is a bialgebra

#### **Bialgebra**

An algebra H is a bialgebra if it has a coproduct  $\Delta$  and counit  $\varepsilon$  respecting

- 1. *H* is a coalgebra with coproduct  $\Delta$  and counit  $\varepsilon$ .
- 2. The maps  $\Delta$  and  $\varepsilon$  are unital algebra homomorphisms.

H= End (F) for T- lybe functor 75 is a bralyebra

#### **Module categories**

Let *H* be a bialgebra. Then its left modules  $\operatorname{Rep}(H)$  and its finite-dimensional left-modules  $\operatorname{Rep}(H)$  are monoidal categories. The action of *H* is

$$\rho_{X\otimes Y} \stackrel{(a)}{=} \rho_X \otimes \rho_Y(\Delta(a)), \quad \rho_X : H \to \operatorname{End}(X), \ \rho_Y : H \to \operatorname{End}(Y)$$

and the unit object is  $\Bbbk$  upon which *H* acts by  $a \to \varepsilon(a)$ .

#### Forget it not

The forgetful functor Forget :  $\operatorname{Rep}(H) \rightarrow \operatorname{Vec}$  is a fiber functor.

# Monoidal categories from bialgebras

#### **Right module categories**

Let *H* be a bialgebra. Then its right modules H -**comod** and its finite-dimensional right-modules H -comod are monoidal categories. The coaction of *H* is

$$\pi_{X\otimes Y}(x\otimes y) = \sum x_i \otimes y_j \otimes a_j b_j, \qquad \pi_X(x) = \sum x_i \otimes a_i, \ \pi_Y(y) y_i \otimes b_j.$$

# Theorems

Theorem 5.2.3 The reconstruction theorem for fin-dim biaglebras

The assignments

```
(C, F) \mapsto H = \operatorname{End}_{C}(F) \quad H \mapsto (\operatorname{Rep}(H), \operatorname{Forget})
```

are mutually inverse bijections between

1. finite ring categories C with fiber functor F (up to tensor equivalence and iso of tensor functors)

RepH

2. isomorphism classes of finite dimensional k-bialgebras H



-> FRCF

### Exercices

#### 5.2.5

Show that the axioms of a bialgebra are self-dual in the following sense: if *H* is a finite dimensional bialgebra with multiplication  $\mu : H \otimes H \to H$ , unit  $i : \Bbbk \to H$ , comultiplication  $\Delta : H \to H \otimes H$  and counit  $\varepsilon : H \to \Bbbk$ , then  $H^*$  is also a bialgebra, with the multiplication  $\Delta^*$ , unit  $\varepsilon^*$ , comultiplication  $\mu^*$ , and counit  $i^*$ .

Hopf algebras

Prove that the bialgebra H = End(F) has a Hopf algebra structure before defining what a Hopf algebra is.

# What is a Hopf algebra

#### Antipode

Let *H* be a bialgebra. An antipode  $S : H \rightarrow H$  is a linear map respecting

$$a_{n} t_{T_{v}v} d$$
 rel.  $\mu \circ (\mathrm{id} \otimes S) \circ \Delta = \underline{i} \circ \varepsilon = \mu \circ (S \otimes \mathrm{id}) \circ \Delta.$ 

A bialgebra with invertible antipode *S* is a Hopf algebra.



# What is a Hopf algebra

#### Antipode

Let *H* be a bialgebra. An antipode  $S : H \rightarrow H$  is a linear map respecting

$$\mu \circ (\mathsf{id} \otimes S) \circ \Delta = i \circ \varepsilon = \mu \circ (S \otimes \mathsf{id}) \circ \Delta.$$

A bialgebra with invertible antipode *S* is a Hopf algebra.

For H = End(F)

If *C* has left duals, then  $S : H \to H$  is defined by  $S(a)_X = a_{X^*}^*$ .

# <sup>"</sup>Fun<sup>"</sup>with diagrams

)01(6) = (02(6)  $\mathcal{J}$   $\mathcal{O}(id OS)$ be End FOF. 6= 7822 F(x) Courty (F(x) &F(x) &F(x) F(x) &F(x) & Jer Low  $F(x) \otimes F(x) \otimes F(x)$ F(Y) 104 F Court FLXQX  $F(\chi)$ S ( hì nd F-loevx)\_ F(XR); F(K) id F-(X)  $F(x) \otimes F(x) \otimes F(x)$ 13

#### **Proposition 5.3.6**

If *S* is an antipode on a bialgebra *H*, then *S* is an anti-homomorphism of (co)algebras with (co)unit. S(ab) = S(b) = S(b)

Coro. 5.3.7

1. If *H* is a bialgebra with antipode *S*, then C = Rep(H) has left duals. For  $X^*$  the usual dual, the *H*-action

$$\rho_{X^*}(a) = \rho_X(S(a))^*.$$

2. If *S* is invertible, then *C* also admits right duals, so it is a tensor category. The right dual \**X* with *H*-action

$$\rho_{*X}(a) = \rho_X(S^{-1}(a))^*.$$

# Cofun

$$p_{x}(ab) = p_{x}(S(ab))$$

$$= p_{x}(S(b) + S(ab))$$

$$= p_{x}(S(b) + S(ab))$$

$$= p_{x}(S(b) + S(a))$$

$$= p_{x}(S(b) + S(b))$$

$$= p_{x}(S(b) + S(b))$$

$$= p_{x}(S(b) + S(b))$$

Hence if I is a figh cly. The Repting tensor to tegory

# More results

#### 5.3.5 Antipodes are unique

If an antipode exists on a bialgebra, it is unique.



## Assignments

#### Theorem 5.3.12

 $(C, F) \mapsto H = \operatorname{End}_{C}(F), \quad H \mapsto (\operatorname{Rep}(H), \operatorname{Forget})$ 

are mutually inverse bijections between

- isomorphism classes of finite tensor categories *C* with fiber functor *F* (up to tensor equivalence and iso of tensor functors)
- 2. isomorphism classes of finite dimensional Hopf  $\Bbbk$ -algebras.

Temor Cat



Hopf alg

# Proposition 5.3.15 Finite bialgebra with antipode are Hopf

## Exercices

$$\mu^{\circ}(x \otimes y) = \mu(y \otimes x)$$

#### 5.3.17

Let  $(H, \mu, i, \Delta, \varepsilon, S)$  be a Hopf algebra. Let  $\mu^{op}$  and  $\Delta^{op}$  be obtained by permutation of components. The following are Hopf algebra

$$H_{op} := (H, \mu^{op}, i, \Delta, \varepsilon, S^{-1})$$
(1)

$$H^{cop} := (H, \mu, i, \Delta^{op}, \varepsilon, S^{-1})$$
(2)

$$H_{op}^{cop} := (H, \mu^{op}, i, \Delta^{op}, \varepsilon, S)$$
(3)

Furthermore,  $H \simeq H_{op}^{cop}$  and  $H_{op} \simeq H^{cop}$ , so  $\operatorname{Rep}(H)^{op} \simeq \operatorname{Rep}(H_{op})$ . And if H is (co)commutative,  $\mu = \mu^{op} (\delta = \delta^{op})$ , then  $S = S^{-1}$ .

# Results

# Reconstruction theory in the infinite setting

# What happens in the infinite-dimensional setting

- C ring category over  $\Bbbk$  not finite
- Then End(F ⊗ F) ≃ End(F) ⊗End(F) (completion for inverse limit topology)
- coalgebra Coend(*F*) (Sect. 1.10)

$$Coend(F) = (\bigoplus_{X \in C} F(X)^* \otimes F(X)) / E \qquad E = \langle y_* \otimes F(f) x - F(f)^* y_* \otimes x \langle \rangle$$

· The same antipode works

$$S(a)_{t} = q_{x}$$

# **Big theorem**

#### **Theorem 5.4.1 Assignments**

The assignments

 $(C, F) \mapsto H = \text{Coend}(F), \quad H \mapsto (H - \text{comod}, \text{Forget})$ 

are mutually inverse bijections for pairs of:

- · ring cat with fiber functor and bialgebras
- ring cat with left duals with fiber functor and bialgebra with antipode
  - · tensor cat with fiber functor and Hopf algebras

#### Non-coro

Bialgebra with antipode are not necessarly Hopf algebras (thus *S* is not necessarily invertible).

# Examples (5.4.4)

- 1. *C* category of algebraic representation of an affine algebraic group over  $\Bbbk$  with forgetful functor. Then Coend(*F*) = *O*(*G*) is the Hopf algebra of regular functions on *G*
- 2. *C* category of finite-dimensional *G*-rep over  $\Bbbk$  with forgetful functor Coend(*F*) is a commutative Hopf algebra.