Tensor categories

- 4.1 Tensor and multitensor categories
- 4.2 Exactness of the tensor product
- 4.3 Semisimplicity of the unit object
- 4.4 Absence of the self-extensions of the unit object
- 4.5 Grothendieck ring and Frobenus-Perron dimension

Tensor categories

- 4.1 Tensor and multitensor categories
- 4.2 Exactness of the tensor product
- 4.3 Semisimplicity of the unit object
- 4.4 Absence of the self-extensions of the unit object
- 4.5 Grothendieck ring and Frobenus-Perron dimension
- 4.6 Deligne's tensor product
- 4.7 Quantum traces, pivotal and spherical categories
- 4.8 Semisimple multitensor categories
- 4.9 Grothendieck rings of semisimple tensor categories

Let $\mathcal C$ be a locally finite $\mathbb R$ -linear abelian rigid monoidal category.

Let $\mathcal C$ be a locally finite \Bbbk -linear abelian rigid monoidal category.

Definition

▶ C is a multitensor category over k if $\otimes : C \times C \to C$ is bilinear on morphisms.

Let $\mathcal C$ be a locally finite \Bbbk -linear abelian rigid monoidal category.

- ▶ C is a multitensor category over k if $\otimes : C \times C \to C$ is bilinear on morphisms.
- C is indecomposable if C is not equivalent to a direct sum of nonzero multitensor categories.

Let C be a locally finite k-linear abelian rigid monoidal category.

- ▶ C is a multitensor category over k if $\otimes : C \times C \to C$ is bilinear on morphisms.
- C is indecomposable if C is not equivalent to a direct sum of nonzero multitensor categories.
- $ightharpoonup {\cal C}$ is a tensor category if ${\cal C}$ is a multitensor category with $\operatorname{End}_{\cal C}(1)\cong {\Bbb k}.$

Let $\mathcal C$ be a locally finite \Bbbk -linear abelian rigid monoidal category.

- ▶ C is a multitensor category over k if $\otimes : C \times C \to C$ is bilinear on morphisms.
- C is indecomposable if C is not equivalent to a direct sum of nonzero multitensor categories.
- $ightharpoonup {\cal C}$ is a tensor category if ${\cal C}$ is a multitensor category with $\operatorname{End}_{\cal C}(1)\cong {\Bbb k}.$
- $ightharpoonup {\cal C}$ is a **multifusion category** if ${\cal C}$ is a finite semisimple multitensor category.

Let $\mathcal C$ be a locally finite \Bbbk -linear abelian rigid monoidal category.

- ▶ C is a multitensor category over k if $\otimes : C \times C \to C$ is bilinear on morphisms.
- C is indecomposable if C is not equivalent to a direct sum of nonzero multitensor categories.
- $ightharpoonup {\cal C}$ is a tensor category if ${\cal C}$ is a multitensor category with $\operatorname{End}_{\cal C}(1)\cong {\Bbb k}.$
- C is a multifusion category if C is a finite semisimple multitensor category.
- ho C is a **fusion category** if C is a multifusion category with $\operatorname{End}_{\mathcal{C}}(1) \cong \mathbb{k}$, i.e, if C is a finite semisimple tensor category.

 $ightharpoonup \mathbf{Vec} = \mathsf{category}$ of finite dimensional \Bbbk -vector spaces is a fusion category.

- ► Vec = category of finite dimensional k-vector spaces is a fusion category.
- ▶ $\mathbf{Rep}(G) = \mathsf{category}$ of finite dimensional \Bbbk -representations of a group G is a tensor category.

- ► Vec = category of finite dimensional k-vector spaces is a fusion category.
- ▶ $\mathbf{Rep}(G) = \mathsf{category}$ of finite dimensional \Bbbk -representations of a group G is a tensor category.
- ▶ If $char(\mathbb{k}) = 0$ or $char(\mathbb{k})$ is coprime to |G|, then $\mathbf{Rep}(G)$ is a fusion category.

- ► Vec = category of finite dimensional k-vector spaces is a fusion category.
- ▶ $\mathbf{Rep}(G) = \mathsf{category}$ of finite dimensional \Bbbk -representations of a group G is a tensor category.
- ▶ If $char(\mathbb{k}) = 0$ or $char(\mathbb{k})$ is coprime to |G|, then $\mathbf{Rep}(G)$ is a fusion category.
- ▶ $\mathbf{Rep}(\mathfrak{g}) = \mathsf{category}$ of finite dimensional representations of a Lie algebra \mathfrak{g} is a tensor category.

Suppose A is a finite dimensional semisimple algebra over $\Bbbk.$

Suppose A is a finite dimensional semisimple algebra over \Bbbk .

 $A - \mathbf{bimod} = \mathbf{category}$ of finite dimensional A-bimodules with bimodule tensor product over A:

$$(M,N)\mapsto M\otimes_A N,$$

is a multifusion category.

Suppose A is a finite dimensional semisimple algebra over \Bbbk .

 $A - \mathbf{bimod} = \mathbf{category}$ of finite dimensional A-bimodules with bimodule tensor product over A:

$$(M,N)\mapsto M\otimes_A N,$$

is a multifusion category.

 $A-\mathbf{bimod}$ is a fusion category if and only if A is simple. \gg

Suppose A is a finite dimensional semisimple algebra over \Bbbk .

 $A - \mathbf{bimod} = \mathbf{category}$ of finite dimensional A-bimodules with bimodule tensor product over A:

$$(M,N)\mapsto M\otimes_A N,$$

is a multifusion category.

 $A - \mathbf{bimod}$ is a fusion category if and only if A is simple.

If A has n matrix blocks, then $A - \mathbf{bimod} = \mathbf{Mat}_n(\mathbf{Vec})$.

Suppose A is a finite dimensional semisimple algebra over \mathbb{R} .

 $A - \mathbf{bimod} = \mathbf{category}$ of finite dimensional A-bimodules with bimodule tensor product over A:

$$(M,N)\mapsto M\otimes_A N,$$

is a multifusion category.

 $A - \mathbf{bimod}$ is a fusion category if and only if A is simple.

If A has n matrix blocks, then $A-\mathbf{bimod}=\mathbf{Mat}_n(\mathbf{\underline{Vec}})$, confidence of $\mathbf{Mat}_n(\mathbf{\underline{Vec}})$ are $n\times n$ matrices of vector spaces (V_{ij}) and the tensor product is matrix multiplication.

(VWW)il = DVy & Wyl

4.2. Exactness of the tensor product

Proposition

If C is a multitensor category, then the bifunctor \otimes is exact in both factors (biexact).

4.2. Exactness of the tensor product

Proposition

If C is a multitensor category, then the bifunctor \otimes is exact in both factors (biexact).

Proof.

Suppose V is an object in \mathcal{C} .

- ► C monoidal \Longrightarrow $(V \otimes -)$, $(- \otimes V)$ have left/right asyombly (1.6.4) C abelian \Longrightarrow $(V \otimes -)$, $(- \otimes V)$

The biadditivity of \otimes holds in any rigid monoidal abelian category.

The biadditivity of \otimes holds in any rigid monoidal abelian category.

However, the bilinearity of \otimes does not.

The biadditivity of \otimes holds in any rigid monoidal abelian category.

However, the bilinearity of \otimes does not.

Example

 $\mathcal{C}=$ the category of finite dimensional $\mathbb{C}\text{-bimodules}$ in which the left and right actions of \mathbb{R} coincide.

The biadditivity of \otimes holds in any rigid monoidal abelian category.

However, the bilinearity of \otimes does not.

Example

 $\mathcal{C}=$ the category of finite dimensional $\mathbb{C}\text{-bimodules}$ in which the left and right actions of \mathbb{R} coincide.

 ${\cal C}$ is a rigid semisimple ${\Bbb C}$ -linear abelian monoidal category, with \otimes being the tensor product of bimodules.

The biadditivity of \otimes holds in any rigid monoidal abelian category.

However, the bilinearity of \otimes does not.

Example

 $\mathcal{C}=$ the category of finite dimensional $\mathbb{C}\text{-bimodules}$ in which the left and right actions of \mathbb{R} coincide.

 ${\cal C}$ is a rigid semisimple ${\Bbb C}$ -linear abelian monoidal category, with \otimes being the tensor product of bimodules.

The simple objects are $\mathbb{C}_+ = \mathbf{1}$ and \mathbb{C}_- , with respective bimodule structures given by

$$(a,b)\cdot z=azb$$
 and $(a,b)\cdot z=azar{b}$

The biadditivity of \otimes holds in any rigid monoidal abelian category.

However, the bilinearity of \otimes does not.

Example

 $\mathcal{C}=$ the category of finite dimensional $\mathbb{C}\text{-bimodules}$ in which the left and right actions of \mathbb{R} coincide.

 ${\cal C}$ is a rigid semisimple ${\Bbb C}$ -linear abelian monoidal category, with \otimes being the tensor product of bimodules.

The simple objects are $\mathbb{C}_+ = \mathbf{1}$ and \mathbb{C}_- , with respective bimodule structures given by

$$(a,b) \cdot z = azb$$
 and $(a,b) \cdot z = az\bar{b}$

 \otimes is \mathbb{R} -bilinear, but not \mathbb{C} -bilinear on morphisms.

Let $\mathcal C$ be a locally finite \Bbbk -linear abelian rigid monoidal category.

Let $\mathcal C$ be a locally finite \Bbbk -linear abelian rigid monoidal category.

Definition

 $ightharpoonup \mathcal{C}$ is a multiring category over \mathbb{k} if $\otimes : \mathcal{C} \times \mathcal{C} \to \mathcal{C}$ is bilinear and biexact.

Let $\mathcal C$ be a locally finite \Bbbk -linear abelian rigid monoidal category.

- ▶ C is a multiring category over k if $\otimes : C \times C \rightarrow C$ is bilinear and biexact.
- $ightharpoonup {\cal C}$ is a ring category if ${\cal C}$ is a multiring category with $\operatorname{End}_{\cal C}(1)\cong {\Bbb k}.$

Let $\mathcal C$ be a locally finite \Bbbk -linear abelian rigid monoidal category.

Definition

- ▶ C is a multiring category over k if $\otimes : C \times C \rightarrow C$ is bilinear and biexact.
- $ightharpoonup {\cal C}$ is a ring category if ${\cal C}$ is a multiring category with ${\sf End}_{\cal C}(1)\cong {\Bbb k}.$

Compared to tensor categories, we require biexactness of \otimes instead the existence of duals.

Examples of multiring and ring categories

Examples of multiring and ring categories

► Every (multi)tensor category is a (multi)ring category.

Sinth reminiple town right ming cate

Examples of multiring and ring categories

Every (multi)tensor category is a (multi)ring category.

▶ \mathbf{Vec}_G = category of finite dimensional \mathbbm{k} -vector spaces graded by a monoid G is a ring category, with tensor product

$$(V \otimes W)_g = \bigoplus_{x,y \in G: xy=q} V_x \otimes W_y.$$

Tensor functors

Let \mathcal{C} , \mathcal{D} be multiring categories over \Bbbk , and let $F:\mathcal{C}\to\mathcal{D}$ be an exact and faithful \Bbbk -linear functor.

Tensor functors

Let \mathcal{C} , \mathcal{D} be multiring categories over \mathbb{k} , and let $F:\mathcal{C}\to\mathcal{D}$ be an exact and faithful \mathbb{k} -linear functor.

Definition

ightharpoonup F is a quasi-tensor functor if $F(\mathbf{1}) = \mathbf{1}$ and it is equipped with functorial isomorphism

$$J: F(-) \otimes F(-) \to F(-\otimes -).$$

Tensor functors

Let \mathcal{C} , \mathcal{D} be multiring categories over \Bbbk , and let $F:\mathcal{C}\to\mathcal{D}$ be an exact and faithful \Bbbk -linear functor.

Definition

▶ F is a quasi-tensor functor if $F(\mathbf{1}) = \mathbf{1}$ and it is equipped with functorial isomorphism

$$J: F(-) \otimes F(-) \to F(- \otimes -).$$

F is a **tensor functor** if it is a monoidal quasi-tensor functor (F, J).

Proposition

For any pair of morphisms f_1 , f_2 in a multiring category ${\mathcal C}$ we have

$$\operatorname{Im}(f_1 \otimes f_2) = \operatorname{Im}(f_1) \otimes \operatorname{Im}(f_2).$$

If $\mathcal C$ is a multiring category with left(right) duals, then the left(right) dualization functor is exact.

If $\mathcal C$ is a multiring category with left(right) duals, then the left(right) dualization functor is exact.

$$\begin{array}{l} 0 \to X \to Y \to Z \to 0 \text{ exact} \\ \hline (\nearrow -) \\ & \Rightarrow 0 \to T \otimes X \to T \otimes Y \to T \otimes Z \to 0 \\ & \Rightarrow 0 \to \operatorname{Hom}_{\mathcal{C}}(T \otimes Z, \mathbf{1}) \to \operatorname{Hom}_{\mathcal{C}}(T \otimes Y, \mathbf{1}) \to \operatorname{Hom}_{\mathcal{C}}(T \otimes X, \mathbf{1}) \\ & \Rightarrow 0 \to \operatorname{Hom}_{\mathcal{C}}(T, Z^*) \to \operatorname{Hom}_{\mathcal{C}}(T, Y^*) \to \operatorname{Hom}_{\mathcal{C}}(T, X^*) \\ & \Rightarrow 0 \to Z^* \to Y^* \to X^* \text{ exact} \end{array}$$

and similarly for $Z^* \to Y^* \to X^* \to 0$ exact.

If $\mathcal C$ is a finite ring category with left(right) duals, then it is a tensor category, i.e., it also has right(left) duals.

If $\mathcal C$ is a finite ring category with left(right) duals, then it is a tensor category, i.e., it also has right(left) duals.

Proof. (Skipped)

12

Let P be a projective object in a multiring category \mathcal{C} . If $X \in \mathcal{C}$ has a left(right) dual, then $P \otimes X(X \otimes P)$ is projective.

Let P be a projective object in a multiring category \mathcal{C} . If $X \in \mathcal{C}$ has a left(right) dual, then $P \otimes X(X \otimes P)$ is projective.

Proof.

$$\begin{array}{c} (-\otimes X^*) \text{ and } \mathbf{Hom}_{\mathcal{C}}(P,-) \text{ exact} \\ & \underbrace{\text{(2.10.§)}} \\ & \Longrightarrow \mathbf{Hom}_{\mathcal{C}}(P\otimes X,Y) = \mathbf{Hom}_{\mathcal{C}}(P,Y\otimes X^*) \text{ exact}. \end{array}$$

13

Let P be a projective object in a multiring category \mathcal{C} . If $X \in \mathcal{C}$ has a left(right) dual, then $P \otimes X(X \otimes P)$ is projective.

Proof.

$$(-\otimes X^*)$$
 and $\mathbf{Hom}_{\mathcal{C}}(P,-)$ exact

$$\implies$$
 $\mathbf{Hom}_{\mathcal{C}}(P \otimes X, Y) = \mathbf{Hom}_{\mathcal{C}}(P, Y \otimes X^*)$ exact.

Corollary

Let C be a multiring category with left duals.

 $\mathbf{1} \in \mathcal{C}$ is projective if and only if \mathcal{C} is semisimple.

Let C be a multiring category.

 $\mathbf{End}_{\mathcal{C}}(\mathbf{1})$ is a semisimple algebra, i.e., we have

$$\mathbf{End}_{\mathcal{C}}(\mathbf{1})\cong \Bbbk\oplus\ldots\oplus \Bbbk$$

Let C be a multiring category.

 $\mathbf{End}_{\mathcal{C}}(\mathbf{1})$ is a semisimple algebra, i.e., we have

$$\mathbf{End}_{\mathcal{C}}(\mathbf{1})\cong \Bbbk\oplus\ldots\oplus \Bbbk$$

Proof.

 $\mathbf{End}_{\mathcal{C}}(\mathbf{1})$ is a commutative algebra. So we just need to prove:

For all $a \in \mathbf{End}_{\mathcal{C}}(\mathbf{1})$ we have $a^2 = 0$ implies a = 0.

Let C be a multiring category.

 $\mathbf{End}_{\mathcal{C}}(\mathbf{1})$ is a semisimple algebra, i.e., we have

$$\mathbf{End}_{\mathcal{C}}(\mathbf{1})\cong \Bbbk \oplus \ldots \oplus \Bbbk$$

Proof.

 $\mathbf{End}_{\mathcal{C}}(\mathbf{1})$ is a commutative algebra. So we just need to prove:

For all $a \in \mathbf{End}_{\mathcal{C}}(\mathbf{1})$ we have $a^2 = 0$ implies a = 0.

Set $J = \mathbf{Im}(a)$, $K = \mathbf{Ker}(a)$ for $a \in \mathbf{End}_{\mathcal{C}}(1)$ with $a^2 = 0$.

Let C be a multiring category.

 $\mathbf{End}_{\mathcal{C}}(\mathbf{1})$ is a semisimple algebra, i.e., we have

$$\mathbf{End}_{\mathcal{C}}(\mathbf{1})\cong \Bbbk \oplus \ldots \oplus \Bbbk$$

Proof.

 $\mathbf{End}_{\mathcal{C}}(\mathbf{1})$ is a commutative algebra. So we just need to prove:

For all $a \in \mathbf{End}_{\mathcal{C}}(\mathbf{1})$ we have $a^2 = 0$ implies a = 0.

Set $J = \mathbf{Im}(a)$, $K = \mathbf{Ker}(a)$ for $a \in \mathbf{End}_{\mathcal{C}}(1)$ with $a^2 = 0$.

$$J \otimes J = \mathbf{Im}(a \otimes a) = \mathbf{Im}(a^2 \otimes \mathbf{1}) = 0$$

$$K \otimes J = \mathbf{Im}_{K \otimes \mathbf{1}}(\mathbf{1} \otimes a) = \mathbf{Im}_{K \otimes \mathbf{1}}(a \otimes \mathbf{1}) = 0$$

Let $\mathcal C$ be a multiring category.

 $\mathbf{End}_{\mathcal{C}}(\mathbf{1})$ is a semisimple algebra, i.e., we have

$$\mathbf{End}_{\mathcal{C}}(\mathbf{1}) \cong \mathbb{k} \oplus \ldots \oplus \mathbb{k}$$

Proof.

 $\mathbf{End}_{\mathcal{C}}(\mathbf{1})$ is a commutative algebra. So we just need to prove:

For all $a \in \mathbf{End}_{\mathcal{C}}(\mathbf{1})$ we have $a^2 = 0$ implies a = 0.

Set $J = \mathbf{Im}(a)$, $K = \mathbf{Ker}(a)$ for $a \in \mathbf{End}_{\mathcal{C}}(1)$ with $a^2 = 0$.

$$J \otimes J = \mathbf{Im}(a \otimes a) = \mathbf{Im}(a^2 \otimes \mathbf{1}) = 0$$

$$K \otimes J = \mathbf{Im}_{K \otimes \mathbf{1}}(\mathbf{1} \otimes a) = \mathbf{Im}_{K \otimes \mathbf{1}}(a \otimes \mathbf{1}) = 0$$

$$\begin{array}{ccc} 0 \to K \to \mathbf{1} \to J \to 0 \text{ exact} \\ \stackrel{\text{(- \textcircled{O})}}{\Longrightarrow} & 0 \to 0 \to J \to 0 \to 0 \text{ exact} \\ & \Longrightarrow & J = 0 & \Longrightarrow & a = 0. \end{array}$$

Component subcategories

Let $\{p_i\}_{i\in I}$ be the primitve idempotents of $\mathbf{End}(\mathbf{1})$ and $\mathbf{1}_i$ the image of p_i , then

$$\mathbf{1} = \bigoplus_{i \in I} \mathbf{1}_i$$
.

Component subcategories

Let $\{p_i\}_{i\in I}$ be the primitve idempotents of $\mathbf{End}(\mathbf{1})$ and $\mathbf{1}_i$ the image of p_i , then

$$\mathbf{1} = \bigoplus_{i \in I} \mathbf{1}_i.$$

Corollary

If C is a multiring category, then $\mathbf 1$ is isomorphic to a direct sum of pairwise non-isomorphic indecomposable objects.

Component subcategories

Let $\{p_i\}_{i\in I}$ be the primitve idempotents of $\mathbf{End}(\mathbf{1})$ and $\mathbf{1}_i$ the image of p_i , then

$$\mathbf{1} = \bigoplus_{i \in I} \mathbf{1}_i.$$

Corollary

If C is a multiring category, then $\mathbf 1$ is isomorphic to a direct sum of pairwise non-isomorphic indecomposable objects.

Definition

Let C be a multiring category. The component subcategories C_{ij} are defined as

$$C_{ij} := \mathbf{1}_i \otimes C \otimes \mathbf{1}_j$$
.

Let ${\mathcal C}$ be a multiring category.

Let C be a multiring category.

▶ $\mathbf{1}_i \otimes \mathbf{1}_j = \delta_{ij} \mathbf{1}_i$ and each $\mathbf{1}_i$ has left and right duals such that $\mathbf{1}_i^* \cong *\mathbf{1}_i \cong \mathbf{1}_i$.

Let $\mathcal C$ be a multiring category.

- ▶ $\mathbf{1}_i \otimes \mathbf{1}_j = \delta_{ij} \mathbf{1}_i$ and each $\mathbf{1}_i$ has left and right duals such that $\mathbf{1}_i^* \cong *\mathbf{1}_i \cong \mathbf{1}_i$.
- ightharpoonup We have a decomposition (pprox Pierce decomposition)

$$\mathcal{C} = \bigoplus_{i,j \in I} \mathcal{C}_{ij}.$$

Let C be a multiring category.

- ▶ $\mathbf{1}_i \otimes \mathbf{1}_j = \delta_{ij} \mathbf{1}_i$ and each $\mathbf{1}_i$ has left and right duals such that $\mathbf{1}_i^* \cong {}^*\mathbf{1}_i \cong \mathbf{1}_i$.
- lacktriangle We have a decomposition (pprox Pierce decomposition)

$$\mathcal{C} = \bigoplus_{i,j \in I} \mathcal{C}_{ij}.$$

▶ The tensor product maps $C_{ij} \otimes C_{kl}$ to $\delta_{jk}C_{il}$.

Let C be a multiring category.

- ▶ $\mathbf{1}_i \otimes \mathbf{1}_j = \delta_{ij} \mathbf{1}_i$ and each $\mathbf{1}_i$ has left and right duals such that $\mathbf{1}_i^* \cong {}^*\mathbf{1}_i \cong \mathbf{1}_i$.
- lacktriangle We have a decomposition (pprox Pierce decomposition)

$$\mathcal{C} = \bigoplus_{i,j \in I} \mathcal{C}_{ij}.$$

- ▶ The tensor product maps $C_{ij} \otimes C_{kl}$ to $\delta_{jk}C_{il}$.
- $ightharpoonup \mathcal{C}_{ii}$ is a ring category with unit $\mathbf{1}_i$ for all $i \in I$.

Let C be a multiring category.

- ▶ $\mathbf{1}_i \otimes \mathbf{1}_j = \delta_{ij} \mathbf{1}_i$ and each $\mathbf{1}_i$ has left and right duals such that $\mathbf{1}_i^* \cong {}^*\mathbf{1}_i \cong \mathbf{1}_i$.
- lacktriangle We have a decomposition (pprox Pierce decomposition)

$$\mathcal{C} = \bigoplus_{i,j \in I} \mathcal{C}_{ij}.$$

- ▶ The tensor product maps $C_{ij} \otimes C_{kl}$ to $\delta_{jk}C_{il}$.
- $ightharpoonup \mathcal{C}_{ii}$ is a ring category with unit $\mathbf{1}_i$ for all $i \in I$.
- ▶ If $X \in \mathcal{C}_{ij}$ has a left/right dual, then the dual belongs to \mathcal{C}_{ji} .

Suppose $\ensuremath{\mathcal{C}}$ is a ring category with left duals.

Suppose $\ensuremath{\mathcal{C}}$ is a ring category with left duals.

Theorem

► The unit object 1 is simple.

Suppose $\ensuremath{\mathcal{C}}$ is a ring category with left duals.

Theorem

- ► The unit object 1 is simple.
- ► The evaluations are monomorphisms and the coevaluations are epimorphisms.

Suppose $\mathcal C$ is a ring category with left duals.

Theorem

- The unit object 1 is simple.
- ► The evaluations are monomorphisms and the coevaluations are epimorphisms.
- ▶ If $F: \mathcal{C} \to \mathcal{D}$ is an exact k-linear monoidal functor into a multiring category \mathcal{D} , then F is a tensor functor. (further f)

Suppose $\mathcal C$ is a ring category with left duals.

Theorem

- ► The unit object 1 is simple.
- ► The evaluations are monomorphisms and the coevaluations are epimorphisms.
- ▶ If $F: C \to D$ is an exact \mathbb{R} -linear monoidal functor into a multiring category D, then F is a tensor functor.

Corollary

If ${\mathcal C}$ is a multiring category with left duals, then ${\mathbf 1}$ is semisimple and

$$\mathbf{1} = \bigoplus_{i \in I} \mathbf{1}_i,$$

with $\mathbf{1}_i$ pairwise non-isomorphic simple objects.

Unit object ${\bf 1}$ is simple in ring category with left duals ${\sf Proof}$

Suppose X is a simple subobject of $\mathbf{1}$.

Unit object ${f 1}$ is simple in ring category with left duals ${f Proof}$

Suppose X is a simple subobject of 1.

$$\begin{array}{c} \Longrightarrow 0 \to X \xrightarrow{\beta} \mathbf{1} \to Y \to 0 \text{ exact} \\ (\text{Multiphic in crost}) \\ \Longrightarrow 0 \to Y^* \to \mathbf{1} \xrightarrow{\rightarrow} X^* \to 0 \text{ exact} \\ (\times (\otimes -) \times \text{out} \\ \Longrightarrow 0 \to X \otimes Y^* \to X \to X \otimes X^* \to 0 \text{ exact} \\ \times \text{with} \\ \Longrightarrow X \otimes X^* \cong X = -\int \varphi^{-1} \times \otimes \times^* \\ \Longrightarrow X \otimes X^* \xrightarrow{\rightarrow} X \text{ surjective composition morphism} \\ \Longrightarrow \mathbf{1} \xrightarrow{\rightarrow} X \otimes X^* \xrightarrow{\rightarrow} \mathbf{1} \text{ nonzero composition morphism} \\ \Longrightarrow X = \mathbf{1} \end{array}$$

Let $\mathcal C$ be a ring category with left duals and $X\in\mathcal C_{ij}$, $Y\in\mathcal C_{jk}$ nonzero objects.

Let $\mathcal C$ be a ring category with left duals and $X\in\mathcal C_{ij}$, $Y\in\mathcal C_{jk}$ nonzero objects.

 $ightharpoonup X \otimes Y \neq 0.$

Let C be a ring category with left duals and $X \in C_{ij}$, $Y \in C_{jk}$ nonzero objects.

- $ightharpoonup X \otimes Y \neq 0.$
- ▶ $length(X \otimes Y) \ge length(X) length(Y)$.

Let C be a ring category with left duals and $X \in C_{ij}$, $Y \in C_{jk}$ nonzero objects.

- $ightharpoonup X \otimes Y \neq 0.$
- ▶ $length(X \otimes Y) \ge length(X) length(Y)$.
- ▶ If C is a ring category, then invertible objects are simple.

Let \mathcal{C} be a ring category with left duals and $X \in \mathcal{C}_{ij}$, $Y \in \mathcal{C}_{jk}$ nonzero objects.

- $ightharpoonup X \otimes Y \neq 0.$
- ▶ $length(X \otimes Y) \ge length(X) length(Y)$.
- ightharpoonup If $\mathcal C$ is a ring category, then invertible objects are simple.
- ▶ If $X \otimes X^* \cong \mathbf{1}$, then X is invertible.

4.4. Absence of self-extensions of the unit object

Theorem

Let $\mathcal C$ be a finite ring category over \Bbbk with simple object 1. If $\operatorname{char}(\Bbbk)=0$, then $\operatorname{Ext}^1(1,1)=0$.

4.4. Absence of self-extensions of the unit object

Theorem

Let C be a finite ring category over k with simple object 1. If char(k) = 0, then $\mathbf{Ext}^1(\mathbf{1}, \mathbf{1}) = 0$.

Corollary

Let $\mathcal C$ be a finite ring category over \Bbbk with unique simple object 1. If $\operatorname{char}(\Bbbk) = 0$, then $\mathcal C$ is equivalent to $\operatorname{\mathbf{Vec}}$.

If $\mathrm{char}(\mathbb{k})=0$, then $\mathbf{Ext}^1(\mathbf{1},\mathbf{1})=0$ Proof

Proof by contradiction.

If
$$char(\mathbb{k}) = 0$$
, then $\mathbf{Ext}^1(\mathbf{1}, \mathbf{1}) = 0$

Assume there exists a V such that

$$0 \rightarrow \mathbf{1} \rightarrow V \rightarrow \mathbf{1} \rightarrow 0$$

is a non-trivial exact sequence $(V \not\cong 1 \oplus 1)$.

If
$$char(\mathbb{k}) = 0$$
, then $\mathbf{Ext}^1(\mathbf{1}, \mathbf{1}) = 0$

Assume there exists a V such that

$$0 \rightarrow \mathbf{1} \rightarrow V \rightarrow \mathbf{1} \rightarrow 0$$

is a non-trivial exact sequence $(V \not\cong 1 \oplus 1)$.

We have a filtration $0 \subset X \subset V$, with $X \cong \mathbf{1} \cong V/X$.

If
$$char(\mathbb{k}) = 0$$
, then $\mathbf{Ext}^1(\mathbf{1}, \mathbf{1}) = 0$

Assume there exists a V such that

$$0 \rightarrow \mathbf{1} \rightarrow V \rightarrow \mathbf{1} \rightarrow 0$$

is a non-trivial exact sequence $(V \not\cong 1 \oplus 1)$.

We have a filtration $0 \subset X \subset V$, with $X \cong \mathbf{1} \cong V/X$.

Let P be a projective cover of $\mathbf{1}$ and $E := \operatorname{Hom}(P, \mathbf{1})$.

If
$$char(\mathbb{k}) = 0$$
, then $\mathbf{Ext}^1(\mathbf{1}, \mathbf{1}) = 0$

Assume there exists a V such that

$$0 \rightarrow \mathbf{1} \rightarrow V \rightarrow \mathbf{1} \rightarrow 0$$

is a non-trivial exact sequence $(V \not\cong 1 \oplus 1)$.

We have a filtration $0 \subset X \subset V$, with $X \cong \mathbf{1} \cong V/X$.

Let P be a projective cover of 1 and $E := \operatorname{Hom}(P, 1)$.

$$\Longrightarrow 0 \subset \operatorname{Hom}(P,X) \subset \operatorname{Hom}(P,V)$$
, with $\operatorname{Hom}(P,X) \cong E \cong \operatorname{Hom}(P,V) / \operatorname{Hom}(P,X)$

Let $\{v_0\}$ be a basis of $\operatorname{Hom}(P, X)$ and let $\{v_0, v_1\}$ be a basis of $\operatorname{Hom}(P, V)$.

If $\mathrm{char}(\Bbbk)=0$, then $\mathbf{Ext}^1(\mathbf{1},\mathbf{1})=0$ Proof part 2

 $A := \operatorname{End}(P)$ is a finite dimensional algebra.

If
$$char(k) = 0$$
, then $Ext^1(1, 1) = 0$
Proof part 2

 $A := \operatorname{End}(P)$ is a finite dimensional algebra.

Let $\chi_0:A\to \mathbb{k}$ be the character defined by the action of A on E.

An element $a \in A$ in the basis $\{v_0, v_1\}$ has the form

$$[a]_1 = \begin{pmatrix} \chi_0(a) & \chi_1(a) \\ 0 & \chi_0(a) \end{pmatrix}, \quad \chi_1 \in A^*$$

If $\mathrm{char}(\Bbbk)=0$, then $\mathbf{Ext}^1(\mathbf{1},\mathbf{1})=0$ Proof part 2

 $A := \operatorname{End}(P)$ is a finite dimensional algebra.

Let $\chi_0:A\to \mathbb{k}$ be the character defined by the action of A on E.

An element $a \in A$ in the basis $\{v_0, v_1\}$ has the form

$$[a]_1 = \begin{pmatrix} \chi_0(a) & \chi_1(a) \\ 0 & \chi_0(a) \end{pmatrix}, \quad \chi_1 \in A^*$$

Since $a \rightarrow [a]_1$ is a homomorphism we have

$$\chi_1(ab) = \chi_1(a)\chi_0(b) + \chi_0(a)\chi_1(b).$$

If $\mathrm{char}(\mathbb{k})=0$, then $\mathbf{Ext}^1(\mathbf{1},\mathbf{1})=0$ Proof part 3

Now consider $V \otimes V$.

If
$$\mathrm{char}(\Bbbk)=0$$
, then $\mathbf{Ext}^1(\mathbf{1},\mathbf{1})=0$

Now consider $V \otimes V$.

$$\implies 0 \subset X \otimes X \subset (X \otimes V) \oplus (V \otimes X) \subset V \otimes V$$

$$\implies 0 \subset \operatorname{Hom}(P, X \otimes X) \subset \operatorname{Hom}(P, (X \otimes V) \oplus (V \otimes X)) \subset \operatorname{Hom}(P, V \otimes V)$$

$$\implies 0 \subset \langle v_{00} \rangle \subset \langle v_{00}, v_{01}, v_{10} \rangle \subset \langle v_{00}, v_{01}, v_{10}, v_{11} \rangle$$

If
$$\operatorname{char}(\Bbbk) = 0$$
, then $\operatorname{Ext}^1(\mathbf{1},\mathbf{1}) = 0$

Now consider $V \otimes V$.

$$\implies 0 \subset X \otimes X \subset (X \otimes V) \oplus (V \otimes X) \subset V \otimes V$$

$$\implies 0 \subset \operatorname{Hom}(P, X \otimes X) \subset \operatorname{Hom}(P, (X \otimes V) \oplus (V \otimes X)) \subset \operatorname{Hom}(P, V \otimes V)$$

$$\implies$$
 $0 \subset \langle v_{00} \rangle \subset \langle v_{00}, v_{01}, v_{10} \rangle \subset \langle v_{00}, v_{01}, v_{10}, v_{11} \rangle$

An element $a \in A$ in the basis $\{v_{00}, v_{01}, v_{10}, v_{11}\}$ has the form

$$[a]_2 = \begin{pmatrix} \chi_0(a) & \chi_1(a) & \chi_1(a) & \chi_2(a) \\ 0 & \chi_0(a) & 0 & \chi_1(a) \\ 0 & 0 & \chi_0(a) & \chi_1(a) \\ 0 & 0 & 0 & \chi_0(a) \end{pmatrix}, \quad \chi_2 \in A^*$$

If
$$\operatorname{char}(\Bbbk)=0$$
, then $\operatorname{Ext}^1(\mathbf{1},\mathbf{1})=0$

Now consider $V \otimes V$.

$$\implies 0 \subset X \otimes X \subset (X \otimes V) \oplus (V \otimes X) \subset V \otimes V$$

$$\implies 0 \subset \operatorname{Hom}(P, X \otimes X) \subset \operatorname{Hom}(P, (X \otimes V) \oplus (V \otimes X)) \subset \operatorname{Hom}(P, V \otimes V)$$

$$\implies$$
 $0 \subset \langle v_{00} \rangle \subset \langle v_{00}, v_{01}, v_{10} \rangle \subset \langle v_{00}, v_{01}, v_{10}, v_{11} \rangle$

An element $a \in A$ in the basis $\{v_{00}, v_{01}, v_{10}, v_{11}\}$ has the form

$$[a]_2 = \begin{pmatrix} \chi_0(a) & \chi_1(a) & \chi_1(a) & \chi_2(a) \\ 0 & \chi_0(a) & 0 & \chi_1(a) \\ 0 & 0 & \chi_0(a) & \chi_1(a) \\ 0 & 0 & 0 & \chi_0(a) \end{pmatrix}, \quad \chi_2 \in A^*$$

Since $a \rightarrow [a]_2$ is a homomorphism we have

$$\chi_2(ab) = \chi_0(a)\chi_2(b) + \chi_2(a)\chi_0(b) + 2\chi_1(a)\chi_1(b).$$

If $\mathrm{char}(\mathbb{k})=0$, then $\mathbf{Ext}^1(\mathbf{1},\mathbf{1})=0$ Proof part 4

Now consider $V^{\otimes n}$.

If
$$\mathrm{char}(\Bbbk)=0$$
, then $\mathbf{Ext}^1(\mathbf{1},\mathbf{1})=0$

We find a $\chi_n \in A^*$ such that

$$\chi_n(ab) = \sum_{j=0}^n \binom{n}{j} \chi_j(a) \chi_{n-j}(b)$$

If
$$\mathrm{char}(\Bbbk)=0$$
, then $\mathbf{Ext}^1(\mathbf{1},\mathbf{1})=0$ Proof part 4

We find a $\chi_n \in A^*$ such that

$$\chi_n(ab) = \sum_{j=0}^n \binom{n}{j} \chi_j(a) \chi_{n-j}(b)$$

For all $s \in \mathbb{k}$ we can define $\phi_s : A \to \mathbb{k}[t]$ by

$$\phi_s(a) = \sum_{m>0} \chi_m(a) \frac{s^m t^m}{m!}$$

If
$$\mathrm{char}(\Bbbk)=0$$
, then $\mathbf{Ext}^1(\mathbf{1},\mathbf{1})=0$ Proof part 4

We find a $\chi_n \in A^*$ such that

$$\chi_n(ab) = \sum_{j=0}^n \binom{n}{j} \chi_j(a) \chi_{n-j}(b)$$

For all $s \in \mathbb{k}$ we can define $\phi_s : A \to \mathbb{k}[t]$ by

$$\phi_s(a) = \sum_{m>0} \chi_m(a) \frac{s^m t^m}{m!}$$

 ϕ_s is a family of pairwise distinct homomorphisms.

If
$$\underline{\mathrm{char}(\Bbbk)} = 0$$
, then $\mathbf{Ext}^1(\mathbf{1},\mathbf{1}) = 0$

We find a $\chi_n \in A^*$ such that

$$\chi_n(ab) = \sum_{j=0}^n \binom{n}{j} \chi_j(a) \chi_{n-j}(b)$$

For all $s \in \mathbb{k}$ we can define $\phi_s : A \to \mathbb{k}[t]$ by

$$\phi_s(a) = \sum_{m>0} \chi_m(a) \frac{s^m t^m}{m!}$$

 ϕ_s is a family of pairwise distinct homomorphisms.

Contradiction: A can have only finitely many 1-dimensional representations over any extension field.

4.5. Grothendieck ring

Recall the Grothendieck group of a locally finite abelian category \mathcal{C} ,

$$\mathbf{Gr}(\mathcal{C}) = \{ [X] = \sum_{i \in I} [X : X_k] X_k : X_k \in \mathcal{C} \text{ simple} \}.$$

4.5. Grothendieck ring

Recall the Grothendieck group of a locally finite abelian category \mathcal{C} ,

$$\mathbf{Gr}(\mathcal{C}) = \{[X] = \sum_{i \in I} [X:X_k] X_k : X_k \in \mathcal{C} \text{ simple}\}.$$

Now let C be a multiring category over k.

Definition

The **Grothendiek ring** of $\mathcal C$ is the group $\mathbf{Gr}(\mathcal C)$ with multiplication

$$\qquad \qquad \Big\{ [X_i][X_j] := [X_i \otimes X_j] = \sum_{i \in I} [X_i \otimes X_j : X_k] X_k,$$

called the fusion rule of C.

4.5. Frobenius-Perron dimension

Recall

Definition

Let A be a transitive unital \mathbb{Z}_+ ring with basis I.

The Frobenius-Perron dimension $\mathbf{FPdim}:A\to\mathbb{C}$ is defined for $X\in I$ as the maximal non-negative eigenvalue of the matrix of left multiplication by X and extented to A by additivity.

4.5. Frobenius-Perron dimension

Recall

Definition

Let A be a transitive unital \mathbb{Z}_+ ring with basis I.

The Frobenius-Perron dimension $\mathbf{FPdim}:A\to\mathbb{C}$ is defined for $X\in I$ as the maximal non-negative eigenvalue of the matrix of left multiplication by X and extented to A by additivity.

Proposition

Let C be a ring category with left duals.

 $\mathbf{Gr}(\mathcal{C})$ is a transitive unital \mathbb{Z}_+ ring.

4.5. Frobenius-Perron dimension

Recall

Definition

Let A be a transitive unital \mathbb{Z}_+ ring with basis I.

The Frobenius-Perron dimension $\mathbf{FPdim}: A \to \mathbb{C}$ is defined for $X \in I$ as the maximal non-negative eigenvalue of the matrix of left multiplication by X and extented to A by additivity.

Proposition

Let C be a ring category with left duals.

 $\mathbf{Gr}(\mathcal{C})$ is a transitive unital \mathbb{Z}_+ ring.

In particular:

we can define the Frobenius-Perron dimension of objects.

Quasi-tensor functor as unital ring hom. categorification

Suppose for \mathcal{C} , \mathcal{D} multiring categories over \mathbbm{k} and $F:\mathcal{C}\to\mathcal{D}$ a quasi-tensor functor, i.e., F is an exact and faithful \mathbbm{k} -linear functor such that $F(\mathbf{1})=\mathbf{1}$ with a functorial isomorphism $J:F(-)\otimes F(-)\to F(-\otimes -)$.

Quasi-tensor functor as unital ring hom. categorification

Suppose for \mathcal{C} , \mathcal{D} multiring categories over \Bbbk and $F:\mathcal{C}\to\mathcal{D}$ a quasi-tensor functor, i.e., F is an exact and faithful \Bbbk -linear functor such that $F(\mathbf{1})=\mathbf{1}$ with a functorial isomorphism $J:F(-)\otimes F(-)\to F(-\otimes -)$.

Proposition

F defines a homomorphism of unital \mathbb{Z}_+ rings

$$[F]: \mathbf{Gr}(\mathcal{C}) \to \mathbf{Gr}(\mathcal{D}).$$

Quasi-tensor functor as unital ring hom. categorification

Suppose for \mathcal{C} , \mathcal{D} multiring categories over \Bbbk and $F:\mathcal{C}\to\mathcal{D}$ a quasi-tensor functor, i.e., F is an exact and faithful \Bbbk -linear functor such that $F(\mathbf{1})=\mathbf{1}$ with a functorial isomorphism $J:F(-)\otimes F(-)\to F(-\otimes -)$.

Proposition

F defines a homomorphism of unital \mathbb{Z}_+ rings

$$[F]: \mathbf{Gr}(\mathcal{C}) \to \mathbf{Gr}(\mathcal{D}).$$

Proposition

If C and D are tensor categories with finitely many classes of simple objects, then for all X in C we have

$$\mathbf{FPdim}_{\mathcal{D}}(F(X)) = \mathbf{FPdim}_{\mathcal{C}}(X).$$