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4.1. Tensor and multitensor categories

Let C be a locally finite k-linear abelian rigid monoidal category.

Definition

I C is a multitensor category over k if ⊗ : C × C → C is
bilinear on morphisms.

I C is indecomposable if C is not equivalent to a direct sum of
nonzero multitensor categories.

I C is a tensor category if C is a multitensor category with
EndC(1) ∼= k.

I C is a multifusion category if C is a finite semisimple
multitensor category.

I C is a fusion category if C is a multifusion category with
EndC(1) ∼= k, i.e,
if C is a finite semisimple tensor category.
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Examples of tensor categories

I Vec = category of finite dimensional k-vector spaces is a
fusion category.

I Rep(G) = category of finite dimensional k-representations of
a group G is a tensor category.

I If char(k) = 0 or char(k) is coprime to |G|, then Rep(G) is
a fusion category.

I Rep(g) = category of finite dimensional representations of a
Lie algebra g is a tensor category.
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Example of a multifusion category

Suppose A is a finite dimensional semisimple algebra over k.

A− bimod = category of finite dimensional A-bimodules with
bimodule tensor product over A:

(M,N) 7→M ⊗A N,

is a multifusion category.

A− bimod is a fusion category if and only if A is simple.

If A has n matrix blocks, then A− bimod = Matn(Vec).

Objects of Matn(Vec) are n× n matrices of vector spaces (Vij)
and the tensor product is matrix multiplication.
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4.2. Exactness of the tensor product

Proposition

If C is a multitensor category, then the bifunctor ⊗ is exact in both
factors (biexact).

Proof.
Suppose V is an object in C.

I C rigid =⇒

I C monoidal =⇒

I C abelian =⇒
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Remark

The biadditivity of ⊗ holds in any rigid monoidal abelian category.

However, the bilinearity of ⊗ does not.

Example

C = the category of finite dimensional C-bimodules in which the
left and right actions of R coincide.
C is a rigid semisimple C-linear abelian monoidal category, with ⊗
being the tensor product of bimodules.
The simple objects are C+ = 1 and C−, with respective bimodule
structures given by

(a, b) · z = azb and (a, b) · z = azb̄

⊗ is R-bilinear, but not C-bilinear on morphisms.
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Ring and multiring categories

Let C be a locally finite k-linear abelian��
�HHHrigid monoidal category.

Definition

I C is a multiring category over k if ⊗ : C × C → C is bilinear
and biexact.

I C is a ring category if C is a multiring category with
EndC(1) ∼= k.

Compared to tensor categories, we require biexactness of ⊗ instead
the existance of duals.
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Examples of multiring and ring categories

I Every (multi)tensor category is a (multi)ring category.

⊂ ⊂

I VecG = category of finite dimensional k-vector spaces graded
by a monoid G is a ring category, with tensor product

(V ⊗W )g =
⊕

x,y∈G:xy=g

Vx ⊗Wy.
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Tensor functors

Let C, D be multiring categories over k, and let F : C → D be an
exact and faithful k-linear functor.

Definition

I F is a quasi-tensor functor if F (1) = 1 and it is equipped
with functorial isomorphism

J : F (−)⊗ F (−)→ F (−⊗−).

I F is a tensor functor if it is a monoidal quasi-tensor functor
(F, J).
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Proposition

For any pair of morphisms f1, f2 in a multiring category C we have

Im(f1 ⊗ f2) = Im(f1)⊗ Im(f2).
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Proposition

If C is a multiring category with left(right) duals, then the
left(right) dualization functor is exact.

Proof.
0→ X → Y → Z → 0 exact

=⇒ 0→ T ⊗X → T ⊗ Y → T ⊗ Z → 0

=⇒ 0→ HomC(T ⊗Z,1)→ HomC(T ⊗ Y,1)→ HomC(T ⊗X,1)

=⇒ 0→ HomC(T,Z
∗)→ HomC(T, Y

∗)→ HomC(T,X
∗)

=⇒ 0→ Z∗ → Y ∗ → X∗ exact

and similarly for Z∗ → Y ∗ → X∗ → 0 exact.
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Proposition

If C is a finite ring category with left(right) duals, then it is a
tensor category, i.e., it also has right(left) duals.

Proof.
(Skipped)
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Proposition

Let P be a projective object in a multiring category C.
If X ∈ C has a left(right) dual, then P ⊗X(X ⊗ P ) is projective.

Proof.
(−⊗X∗) and HomC(P,−) exact

=⇒ HomC(P ⊗X,Y ) = HomC(P, Y ⊗X∗) exact.

Corollary

Let C be a multiring category with left duals.
1 ∈ C is projective if and only if C is semisimple.
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4.3. Semisimplicty of the unit object

Let C be a multiring category.
EndC(1) is a semisimple algebra, i.e., we have

EndC(1) ∼= k⊕ . . .⊕ k

Proof.
EndC(1) is a commutative algebra. So we just need to prove:
For all a ∈ EndC(1) we have a2 = 0 implies a = 0.
Set J = Im(a), K = Ker(a) for a ∈ EndC(1) with a2 = 0.

J ⊗ J = Im(a⊗ a) = Im(a2 ⊗ 1) = 0

K ⊗ J = ImK⊗1(1⊗ a) = ImK⊗1(a⊗ 1) = 0

0→ K → 1→ J → 0 exact

=⇒ 0→ 0→ J → 0→ 0 exact

=⇒ J = 0 =⇒ a = 0.
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Component subcategories

Let {pi}i∈I be the primitve idempotents of End(1) and 1i the
image of pi, then

1 =
⊕
i∈I

1i.

Corollary

If C is a multiring category, then 1 is isomorphic to a direct sum of
pairwise non-isomorphic indecomposable objects.

Definition
Let C be a multiring category. The component subcategories Cij
are defined as

Cij := 1i ⊗ C ⊗ 1j .
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Exercises

Let C be a multiring category.

I 1i ⊗ 1j = δij1i and each 1i has left and right duals such that
1∗i
∼= ∗1i ∼= 1i.

I We have a decomposition (≈ Pierce decomposition)

C =
⊕
i,j∈I
Cij .

I The tensor product maps Cij ⊗ Ckl to δjkCil.

I Cii is a ring category with unit 1i for all i ∈ I.

I If X ∈ Cij has a left/right dual, then the dual belongs to Cji.
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Properties

Suppose C is a ring category with left duals.

Theorem

I The unit object 1 is simple.

I The evaluations are monomorphisms and the coevaluations
are epimorphisms.

I If F : C → D is an exact k-linear monoidal functor into a
multiring category D, then F is a tensor functor.

Corollary

If C is a multiring category with left duals, then 1 is semisimple and

1 =
⊕
i∈I

1i,

with 1i pairwise non-isomorphic simple objects.
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Unit object 1 is simple in ring category with left duals
Proof

Suppose X is a simple subobject of 1.

=⇒ 0→ X → 1→ Y → 0 exact

=⇒ 0→ Y ∗ → 1→ X∗ → 0 exact

=⇒ 0→ X ⊗ Y ∗ → X → X ⊗X∗ → 0 exact

=⇒ X ⊗X∗ ∼= X

=⇒ 1→ X ⊗X∗ → X surjective composition morphism

=⇒ 1� X ↪→ 1 nonzero composition morphism

=⇒ X = 1
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Exercises

Let C be a ring category with left duals and X ∈ Cij , Y ∈ Cjk
nonzero objects.

I X ⊗ Y 6= 0.

I length(X ⊗ Y ) ≥ length(X)length(Y ).

I If C is a ring category, then invertible objects are simple.

I If X ⊗X∗ ∼= 1, then X is invertible.
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4.4. Absence of self-extensions of the unit object

Theorem
Let C be a finite ring category over k with simple object 1.
If char(k) = 0, then Ext1(1,1) = 0.

Corollary

Let C be a finite ring category over k with unique simple object 1.
If char(k) = 0, then C is equivalent to Vec.
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If char(k) = 0, then Ext1(1,1) = 0
Proof

Proof by contradiction.

Assume there exists a V such that

0→ 1→ V → 1→ 0

is a non-trivial exact sequence (V 6∼= 1⊕ 1).

We have a filtration 0 ⊂ X ⊂ V , with X ∼= 1 ∼= V/X.

Let P be a projective cover of 1 and E := Hom(P,1).

=⇒ 0 ⊂ Hom(P,X) ⊂ Hom(P, V ), with
Hom(P,X) ∼= E ∼= Hom(P, V )/Hom(P,X)

Let {v0} be a basis of Hom(P,X) and
let {v0, v1} be a basis of Hom(P, V ).
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If char(k) = 0, then Ext1(1,1) = 0
Proof part 2

A := End(P ) is a finite dimensional algebra.

Let χ0 : A→ k be the character defined by the action of A on E.

An element a ∈ A in the basis {v0, v1} has the form

[a]1 =

(
χ0(a) χ1(a)

0 χ0(a)

)
, χ1 ∈ A∗

Since a→ [a]1 is a homomorphism we have

χ1(ab) = χ1(a)χ0(b) + χ0(a)χ1(b).
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If char(k) = 0, then Ext1(1,1) = 0
Proof part 3

Now consider V ⊗ V .

=⇒ 0 ⊂ X ⊗X ⊂ (X ⊗ V )⊕ (V ⊗X) ⊂ V ⊗ V
=⇒ 0 ⊂ Hom(P,X ⊗X) ⊂ Hom(P, (X ⊗ V )⊕ (V ⊗X)) ⊂

Hom(P, V ⊗ V )

=⇒ 0 ⊂ 〈v00〉 ⊂ 〈v00, v01, v10〉 ⊂ 〈v00, v01, v10, v11〉
An element a ∈ A in the basis {v00, v01, v10, v11} has the form

[a]2 =


χ0(a) χ1(a) χ1(a) χ2(a)

0 χ0(a) 0 χ1(a)
0 0 χ0(a) χ1(a)
0 0 0 χ0(a)

 , χ2 ∈ A∗

Since a→ [a]2 is a homomorphism we have

χ2(ab) = χ0(a)χ2(b) + χ2(a)χ0(b) + 2χ1(a)χ1(b).
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If char(k) = 0, then Ext1(1,1) = 0
Proof part 4

Now consider V ⊗n.

We find a χn ∈ A∗ such that

χn(ab) =
n∑

j=0

(
n

j

)
χj(a)χn−j(b)

For all s ∈ k we can define φs : A→ k[t] by

φs(a) =
∑
m≥0

χm(a)
smtm

m!

φs is a family of pairwise distinct homomorphisms.

Contradiction: A can have only finitely many 1-dimensional
representations over any extension field.
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4.5. Grothendieck ring

Recall the Grothendieck group of a locally finite abelian category C,

Gr(C) = {[X] =
∑
i∈I

[X : Xk]Xk : Xk ∈ C simple}.

Now let C be a multiring category over k.

Definition
The Grothendiek ring of C is the group Gr(C) with multiplication

[Xi][Xj ] := [Xi ⊗Xj ] =
∑
i∈I

[Xi ⊗Xj : Xk]Xk,

called the fusion rule of C.
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4.5. Frobenius-Perron dimension

Recall

Definition
Let A be a transitive unital Z+ ring with basis I.
The Frobenius-Perron dimension FPdim : A→ C is defined for
X ∈ I as the maximal non-negative eigenvalue of the matrix of left
multiplication by X and extented to A by additivity.

Proposition

Let C be a ring category with left duals.
Gr(C) is a transitive unital Z+ ring.

In particular:
we can define the Frobenius-Perron dimension of objects.
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Quasi-tensor functor as unital ring hom. categorification

Suppose for C, D multiring categories over k
and F : C → D a quasi-tensor functor, i.e.,
F is an exact and faithful k-linear functor such that F (1) = 1
with a functorial isomorphism J : F (−)⊗ F (−)→ F (−⊗−).

Proposition

F defines a homomorphism of unital Z+ rings

[F ] : Gr(C)→ Gr(D).

Proposition

If C and D are tensor categories with finitely many classes of
simple objects, then for all X in C we have

FPdimD(F (X)) = FPdimC(X).
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