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4.1. Tensor and multitensor categories

Let C be a locally finite k-linear abelian rigid monoidal category.
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» C is a multitensor category overk if @ :C xC —C is
bilinear on morphisms.



4.1. Tensor and multitensor categories

Let C be a locally finite k-linear abelian rigid monoidal category.
Definition
» C is a multitensor category overk if @ :C xC —C is
bilinear on morphisms.

» C is indecomposable if C is not equivalent to a direct sum of
nonzero multitensor categories.



4.1. Tensor and multitensor categories

Let C be a locally finite k-linear abelian rigid monoidal category.
Definition
» C is a multitensor category overk if @ :C xC —C is
bilinear on morphisms.

» C is indecomposable if C is not equivalent to a direct sum of
nonzero multitensor categories.

» C is a tensor category if C is a multitensor category with
Endq(1) = k.



4.1. Tensor and multitensor categories

Let C be a locally finite k-linear abelian rigid monoidal category.
Definition
» C is a multitensor category overk if @ :C xC —C is
bilinear on morphisms.

» C is indecomposable if C is not equivalent to a direct sum of
nonzero multitensor categories.

» C is a tensor category if C is a multitensor category with
Endq(1) = k.

» C is a multifusion category if C is a finite semisimple
multitensor category.



4.1. Tensor and multitensor categories

Let C be a locally finite k-linear abelian rigid monoidal category.
Definition
» C is a multitensor category overk if @ :C xC —C is
bilinear on morphisms.

» C is indecomposable if C is not equivalent to a direct sum of
nonzero multitensor categories.

» C is a tensor category if C is a multitensor category with
Endq(1) = k.

» C is a multifusion category if C is a finite semisimple
multitensor category.

» C is a fusion category if C is a multifusion category with
Endq(1) =k, ie,
if C is a finite semisimple tensor category.
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Examples of tensor categories

> Vec = category of finite dimensional k-vector spaces is a
fusion category.

» Rep(G) = category of finite dimensional k-representations of
a group G is a tensor category.

» If char(k) = 0 or char(k) is coprime to |G|, then Rep(G) is
a fusion category.

» Rep(g) = category of finite dimensional representations of a
Lie algebra g is a tensor category.
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Suppose A is a finite dimensional semisimple algebra over k.

A — bimod = category of finite dimensional A-bimodules with
bimodule tensor product over A:

(M,N)— M ®y4 N,
is a multifusion category.

A — bimod is a fusion category if and only if A is simple. >
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Example of a multifusion category

Suppose A is a finite dimensional semisimple algebra over k.

A — bimod = category of finite dimensional A-bimodules with
bimodule tensor product over A:

(M,N)— M ®y4 N,
is a multifusion category.
A — bimod is a fusion category if and only if A is simple.

If A has n matrix blocks, then A —bimod = Mat,(Vec).
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Example of a multifusion category

Suppose A is a finite dimensional semisimple algebra over k.

A — bimod = category of finite dimensional A-bimodules with
bimodule tensor product over A:

(M,N)— M ®y4 N,
is a multifusion category.

A — bimod is a fusion category if and only if A is simple.

If A has n matrix blocks, then A —bimod = Mat (Vec)

Objects of Mat (Vec) aren xn matrlces of vector spaces (V )
and the tensor product is matrix multlpllcatlon. ¥

A~

\
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4.2. Exactness of the tensor product

Proposition
If C is a multitensor category, then the bifunctor ® is exact in both
factors (biexact).



4.2. Exactness of the tensor product

Proposition
If C is a multitensor category, then the bifunctor ® is exact in both
factors (biexact).

Proof.
Suppose V is an object in C.

Il
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Remark

The biadditivity of ® holds in any rigid monoidal abelian category.



Remark

The biadditivity of ® holds in any rigid monoidal abelian category.

However, the bilinearity of ® does not.



Remark

The biadditivity of ® holds in any rigid monoidal abelian category.

However, the bilinearity of ® does not.

Example

C = the category of finite dimensional C-bimodules in which the
left and right actions of R coincide.



Remark

The biadditivity of ® holds in any rigid monoidal abelian category.

However, the bilinearity of ® does not.

Example

C = the category of finite dimensional C-bimodules in which the
left and right actions of R coincide.

C is a rigid semisimple C-linear abelian monoidal category, with ®
being the tensor product of bimodules.



Remark

The biadditivity of ® holds in any rigid monoidal abelian category.

However, the bilinearity of ® does not.

Example

C = the category of finite dimensional C-bimodules in which the
left and right actions of R coincide.

C is a rigid semisimple C-linear abelian monoidal category, with ®
being the tensor product of bimodules.

The simple objects are C; =1 and C_, with respective bimodule
structures given by

(a,b)-z=azb and (a,b)-z=azb



Remark

The biadditivity of ® holds in any rigid monoidal abelian category.

However, the bilinearity of ® does not.

Example

C = the category of finite dimensional C-bimodules in which the
left and right actions of R coincide.

C is a rigid semisimple C-linear abelian monoidal category, with ®
being the tensor product of bimodules.

The simple objects are C4 =1 and C_, with respective bimodule
structures given by

(a,b)-z=azb and (a,b)-z=azb

® is R-bilinear, but not C-bilinear on morphisms.
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Ring and multiring categories

Let C be a locally finite k-linear abelian pigid monoidal category.
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Ring and multiring categories
Let C be a locally finite k-linear abelian pigid monoidal category.
Definition
» C is a multiring category over k if ® : C x C — C is bilinear
and biexact.
» C is a ring category if C is a multiring category with
Endq(1) = k.

Compared to tensor categories, we require biexactness of ® instead
the existance of duals.



Examples of multiring and ring categories



Examples of multiring and ring categories

» Every (multi)tensor category is a (multi)ring category.
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Examples of multiring and ring categories

» Every (multi)tensor category is a (multi)ring category.

» Vecg = category of finite dimensional k-vector spaces graded
by a monoid G is a ring category, with tensor product

VeW),= @ V.ow,

z,y€G:xy=g



Tensor functors

Let C, D be multiring categories over Kk, and let F': C — D be an
exact and faithful k-linear functor.



Tensor functors

Let C, D be multiring categories over Kk, and let F': C — D be an
exact and faithful k-linear functor.

Definition

» F is a quasi-tensor functor if F(1) = 1 and it is equipped
with functorial isomorphism

J:F(=)® F(=) = F(-® -).



Tensor functors

Let C, D be multiring categories over Kk, and let F': C — D be an
.exact and faithful k-linear functor.

— v

Defin\itio;liﬁ

» F is a quasi-tensor functor if F(1) = 1 and it is equipped
with functorial isomorphism

J:F(=)® F(=) = F(-® -).

> [ is a tensor functor if it is a monoidal quasi-tensor functor
(F,J).
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Proposition

For any pair of morphisms f1, fo in a multiring category C we have

Im(f1 ® f2) = Im(f1) ® Im(f2).

10



Proposition

If C is a multiring category with left(right) duals, then the
left(right) dualization functor is exact.
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Proposition

If C is a multiring category with left(right) duals, then the
left(right) dualization functor is exact.

Proof.
0—-X—Y —Z — 0 exact

Il

‘= ~ 0—> TOX 5TRY 5T ®Z—0 1757
:>0—> Home(T ® Z,1) — Home (T ® Y, 1) — Home(T ® X, 1)0r!
0 — Hom¢ (T, Z*) — Home(T,Y™*) — Home (T, X™*)
0—=2"—=Y* = X" exact

and similarly for Z* — Y* — X* — 0 exact. 0J

// /
/ o5 <)
( -3

'/
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Proposition

If C is a finite ring category with left(right) duals, then it is a
tensor category, i.e., it also has right(left) duals.

12
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Proposition
If C is a finite ring category with left(right) duals, then it is a

tensor category, i.e., it also has right(left) duals.

Proof.
(Skipped)

12



Proposition

Let P be a projective object in a multiring category C.
If X € C has a left(right) dual, then P ® X (X ® P) is projective.
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Proposition

Let P be a projective object in a multiring category C.
If X € C has a left(right) dual, then P ® X (X ® P) is projective.

Proof.
(—® X*) and Hom¢ (P, —) exact

210y )

= Hom¢(P ® X,Y) = Hom¢(P,Y ® X™) exact.

13


sam
Pencil


Proposition

Let P be a projective object in a multiring category C.
If X € C has a left(right) dual, then P ® X (X ® P) is projective.

Proof.
(— ® X*) and Hom¢(P, —) exact

= Hom¢(P ® X,Y) = Hom¢(P,Y ® X™) exact.

Corollary

Let C be a multiring category with left duals.
1 € C is projective if and only if C is semisimple.

. . ~
Vo J

/

N
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4.3. Semisimplicty of the unit object

Let C be a multiring category.
End¢(1) is a semisimple algebra, i.e., we have

Ende(1)2ka...0k
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End¢(1) is a commutative algebra. So we just need to prove:
For all @ € Endc¢(1) we have a? = 0 implies a = 0.
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4.3. Semisimplicty of the unit object

Let C be a multiring category.
End¢(1) is a semisimple algebra, i.e., we have

Ende(1)2ka...0k

Proof.

End¢(1) is a commutative algebra. So we just need to prove:
For all @ € Endc¢(1) we have a? = 0 implies a = 0.
Set J = Im(a), K = Ker(a) for a € End¢(1) with a? = 0.

J@J=Im(a®a)=Im(a®®1) =0
K®J:Im\[(/®l(1®a) =Imggi(a®1) =0

I 4

14
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4.3. Semisimplicty of the unit object

Let C be a multiring category.
End¢(1) is a semisimple algebra, i.e., we have

Ende(1)2ka...0k

Proof.

End¢(1) is a commutative algebra. So we just need to prove:
For all @ € Endc¢(1) we have a? = 0 implies a = 0.
Set J = Im(a), K = Ker(a) for a € End¢(1) with a? = 0.

J@J=Im(a®a)=Im(a®®1) =0
K®J=Imgg1(1®a) =Imggi(a®@1) =0

/ 0\—>K—>1—>J—>Oexact
’\:> 0—0—J—0—0 exact
— J=0 = a=0.

14
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Component subcategories

Let {p;}icr be the primitve idempotents of End(1) and 1; the

image of p;, then
1=P1.

il
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Component subcategories
Let {p;}icr be the primitve idempotents of End(1) and 1; the
image of p;, then
1=P1.

il

Corollary
If C is a multiring category, then 1 is isomorphic to a direct sum of
pairwise non-isomorphic indecomposable objects.

15



Component subcategories
Let {p;}icr be the primitve idempotents of End(1) and 1; the

image of p;, then
1=P1.

il

Corollary

If C is a multiring category, then 1 is isomorphic to a direct sum of
pairwise non-isomorphic indecomposable objects.

Definition
Let C be a multiring category. The component subcategories C;;
are defined as

Cij =1, CQ® 1j-

15



Exercises

Let C be a multiring category.
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Exercises

Let C be a multiring category.

> 1, ®1; = 0;;1; and each 1; has left and right duals such that

1F~*1; 21,

» We have a decomposition (= Pierce decomposition)

c=Ecy

1,5€l
» The tensor product maps C;; ® Cy; to 0;%Ci.
» C;; is a ring category with unit 1; for all ¢ € I.

» If X € Cj; has a left/right dual, then the dual belongs to Cj;.

16



Properties

Suppose C is a ring category with left duals.
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Properties
Suppose C is a ring category with left duals.
Theorem

» The unit object 1 is simple.
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Properties
Suppose C is a ring category with left duals.

Theorem

» The unit object 1 is simple.

» The evaluations are monomorphisms and the coevaluations
are epimorphisms.

» [f F:C — D is an exact k-linear monoidal functor into a
multiring category D, then I is a tensor functor.( ‘

17
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Properties
Suppose C is a ring category with left duals.

Theorem

» The unit object 1 is simple.

» The evaluations are monomorphisms and the coevaluations
are epimorphisms.

» [f F':C — D is an exact k-linear monoidal functor into a
multiring category D, then F' is a tensor functor.

Corollary
If C is a multiring category with left duals, then 1 is semisimple and

1=P1,
el

with 1; pairwise non-isomorphic simple objects.

17
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Unit object 1 is simple in ring category with left duals
Proof

Suppose X is a simple subobject of 1.

18



Unit object 1 is simple in ring category with left duals
Proof

Suppose X is a simple subobject of 1.

— 0—>X“—>1—>Y—>0exact

«/ﬂ(W//// /vzj// WVV‘
:> 0—>Y*—>1—>X*%Oexact

( %(% ) ) etk ~nF O Lt camnt ///)M &w%y =0
== 0—>X®Y*—>X—>X®X*—>Oexact ‘
/(}fﬂ\/
— Xeoxrzx = - (ﬁ X @y figy
/,4\\27(/\ (//
— 1= X ® X* ‘—>}’ surjective composition morphism
e I
—> 1 —» X <> 1 nonzero composition morphism
c /,”r Hr

DAUASe

— X =1

18
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Exercises

Let C be a ring category with left duals and X € C;;, Y € Cji,
nonzero objects.
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Exercises

Let C be a ring category with left duals and X € C;;, Y € Cji,
nonzero objects.

> X®Y #£0.
» length(X ® Y) > length(X)length(Y").

> If C is a ring category, then invertible objects are simple.
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Exercises

Let C be a ring category with left duals and X € C;;, Y € Cji,
nonzero objects.

> XY #£0.
» length(X ® Y) > length(X)length(Y").
> If C is a ring category, then invertible objects are simple.

> If X @ X*=1, then X is invertible.

19



4.4, Absence of self-extensions of the unit object

Theorem
Let C be a finite ring category over k with simple object 1.
If char(k) = 0, then Ext'(1,1) = 0.

20



4.4, Absence of self-extensions of the unit object

Theorem
Let C be a finite ring category over k with simple object 1.

If char(k) = 0, then Ext'(1,1) = 0.
Corollary

Let C be a finite ring category over k with unique simple object 1.
If char(k) = 0, then C is equivalent to Vec.

20



If char(k) = 0, then Ext'(1,1) =0

Proof

Proof by contradiction.

21



If char(k) = 0, then Ext'(1,1) =0

Proof

Proof by contradiction.
Assume there exists a V' such that
0=-1—-V—-1-=0

is a non-trivial exact sequence (V 21 1).

21



If char(k) = 0, then Ext'(1,1) =0

Proof

Proof by contradiction.

Assume there exists a V' such that
0=-1—-V—=>1-0

is a non-trivial exact sequence (V 21 1).

We have a filtration 0 C X C V, with X =1 =V/X.
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If char(k) = 0, then Ext'(1,1) =0

Proof

Proof by contradiction.
Assume there exists a V' such that
0=-1—-V—-1-=0

is a non-trivial exact sequence (V 21 1).

We have a filtration 0 C X C V, with X =1 =V/X.

Let P be a projective cover of 1 and E := Hom(P,1).
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If char(k) = 0, then Ext'(1,1) =0

Proof

Proof by contradiction.
Assume there exists a V' such that
0=-1—-V—-1-=0

is a non-trivial exact sequence (V 21 1).

We have a filtration 0 C X C V, with X =1 =V/X.

Let P be a projective cover of 1 and E := Hom(P,1).

— 0 C Hom(P, X) C Hom(P, V), with
Hom(P, X) = E = Hom(P,V)/Hom(P, X)

Let {vp} be a basis of Hom(P, X) and
let {vo,v1} be a basis of Hom(P, V).

21



If char(k) = 0, then Ext'(1,1) =0

Proof part 2

A := End(P) is a finite dimensional algebra.

22



If char(k) = 0, then Ext'(1,1) =0

Proof part 2

A := End(P) is a finite dimensional algebra.
Let xo : A — k be the character defined by the action of A on E.

An element a € A in the basis {vg, v1} has the form

_ (xo(a) xi(a) N
[(1]1 - < 0 XO(a)> X1 € A
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If char(k) = 0, then Ext'(1,1) =0

Proof part 2

A := End(P) is a finite dimensional algebra.
Let xo : A — k be the character defined by the action of A on E.

An element a € A in the basis {vg, v1} has the form

_ (xo(a) xi(a) N
[(1]1 - < 0 XO(a)> X1 € A

Since a — [a]y is a homomorphism we have

x1(ab) = x1(a)xo(b) + xo(a)x1(b).

22



If char(k) = 0, then Ext'(1,1) =0

Proof part 3
Now consider V @ V.
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If char(k) = 0, then Ext'(1,1) =0
Proof part 3
Now consider V ® V.
— 0CXeXCcXeV)e(VeX)cVeV

— 0CHom(P,X ® X) C Hom(P, (X @V)® (Ve X)) C
Hom(P,V ®@ V)

= 0 C (voo) C (voo,v01,v10) C (V00, Vo1, V10, V11)
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If char(k) = 0, then Ext'(1,1) =0
Proof part 3
Now consider V @ V.
— 0CXeXCcXaoV)a(VeaX)cVeV
— 0CHom(P,X ® X) C Hom(P, (X @V)® (Ve X)) C
Hom(P,V @ V)
= 0 C (voo) C (v00,v01,v10) C (Voo, Vo1, V10, V11)
An element a € A in the basis {vgo, vo1, v10,v11} has the form

=
=)
—
S
~—
=
=
—~
S
~—
=<
=
—
S
~—
=<
[\
—
SIS

)
; , X2 € A"
)

—~
=)

S
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If char(k) = 0, then Ext'(1,1) =0
Proof part 3
Now consider V @ V.
— 0CXeXCcXaoV)a(VeaX)cVeV
— 0CHom(P,X ® X) C Hom(P, (X @V)® (Ve X)) C
Hom(P,V @ V)
= 0 C (voo) C (v00,v01,v10) C (Voo, Vo1, V10, V11)
An element a € A in the basis {vgo, vo1, v10,v11} has the form

=
=)
—
S
~—
=
=
—~
S
~—
=<
=
—
S
~—
=<
[\
—
SIS

)
; , X2 € A"
)

—~
=)

S

Since a — [al]2 is a homomorphism we have

x2(ab) = xo(a)x2(b) + x2(a)xo(b) + 2x1(a)x1(b).

23



If char(k) = 0, then Ext'(1,1) =0

Proof part 4

Now consider V7.
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If char(k) = 0, then Ext'(1,1) =0

Proof part 4

Now consider V7.

We find a x,, € A* such that

n

i) =Y (") @0

Jj=0

24



If char(k) = 0, then Ext'(1,1) =0

Proof part 4

Now consider V7.

We find a x,, € A* such that

n

i) =Y (") @0

=0

For all s € k we can define ¢5 : A — k[t] by

bo(@) = 3 xoml@)

m>0

m)

24



If char(k) = 0, then Ext'(1,1) =0

Proof part 4

Now consider V&,
We find a x,, € A* such that
" /n
Xn(ab) = j X;(a)xn—j(b)
j=0

For all s € k we can define ¢5 : A — k[t] by

smtm

ps(a) = Z Xm(a)

m>0

m)

¢s is a family of pairwise distinct homomorphisms.



If char(k) = 0, then Ext'(1,1) = 0

Proof part 4

Now consider V7.

We find a x,, € A* such that

n

i) =Y (") @0

=0

For all s € k we can define ¢5 : A — k[t] by

=Y xmla)

m>0

mtm

N —

¢s is a family of pairwise distinct homomorphisms.

Contradiction: A can have only finitely many 1-dimensional
representations over any extension field.
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4.5. Grothendieck ring

Recall the Grothendieck group of a locally finite abelian category C,

Gr(C) = {[X] =) [X : X)X}, : X}, € C simple}.
el
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4.5. Grothendieck ring

Recall the Grothendieck group of a locally finite abelian category C,
Gr(C) = {[X] =) [X : X)X}, : X}, € C simple}.
iel
Now let C be a multiring category over k.
Definition

The Grothendiek ring of C is the group Gr(C) with multiplication

DX = X @ X = DX ® X X X,
. iel

called the fusion rule of C.

25


sam
Pencil


4.5. Frobenius-Perron dimension

Recall

Definition

Let A be a transitive unital Z., ring with basis I.

The Frobenius-Perron dimension FPdim : A — C is defined for
X € I as the maximal non-negative eigenvalue of the matrix of left
multiplication by X and extented to A by additivity.
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4.5. Frobenius-Perron dimension

Recall

Definition

Let A be a transitive unital Z., ring with basis I.

The Frobenius-Perron dimension FPdim : A — C is defined for
X € I as the maximal non-negative eigenvalue of the matrix of left
multiplication by X and extented to A by additivity.

Proposition
Let C be a ring category with left duals.
Gr(C) is a transitive unital Z ring.
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4.5. Frobenius-Perron dimension

Recall

Definition

Let A be a transitive unital Z., ring with basis I.

The Frobenius-Perron dimension FPdim : A — C is defined for
X € I as the maximal non-negative eigenvalue of the matrix of left
multiplication by X and extented to A by additivity.

Proposition
Let C be a ring category with left duals.
Gr(C) is a transitive unital Z ring.
In particular:
we can define the Frobenius-Perron dimension of objects.
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Quasi-tensor functor as unital ring hom. categorification

Suppose for C, D multiring categories over k

and F': C — D a quasi-tensor functor, i.e.,

Fis an exact and faithful k-linear functor such that F(1) =1
with a functorial isomorphism J : F(—) ® F'(—) — F(— ® —).

27



Quasi-tensor functor as unital ring hom. categorification

Suppose for C, D multiring categories over k
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F' defines a homomorphism of unital Z., rings

[F]: Gr(C) — Gr(D).
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Quasi-tensor functor as unital ring hom. categorification

Suppose for C, D multiring categories over k

and F': C — D a quasi-tensor functor, i.e.,

Fis an exact and faithful k-linear functor such that F(1) =1
with a functorial isomorphism J : F(—) ® F'(—) — F(— ® —).
Proposition

F' defines a homomorphism of unital Z. rings

[F] : Gr(C) — Gr(D).

Proposition

If C and D are tensor categories with finitely many classes of
simple objects, then for all X in C we have

FPdimp(F (X)) = FPdim¢(X).
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