Translation functors

Sigiswald Barbier

Ghent University

Category \mathcal{O} is decomposable:

$$\mathcal{O} = \bigoplus_{\chi} \mathcal{O}_{\chi}$$

Translation functor T^{μ}_{λ}

$$M \mapsto \operatorname{pr}_{\mu}(L(\bar{\nu}) \otimes \operatorname{pr}_{\lambda}(M))$$

for μ, λ compatible.

Overview

- Basic properties of T^{μ}_{λ} (7.1-7.2)
- Weyl group geometry
 - Facets (7.3)
 - Non-integral weights (7.4)
 - Key-lemma (7.5)
- Easy: translation from facet to facet closure
 - Verma modules (7.6)
 - Simple modules (7.7)
 - Categorical equivalences (7.8)
 - Simple modules again (7.9)
 - Characters (7.10)
- Hard: translations from facet closure to facet
 - Projective modules (7.11)
 - Translation from a wall (7.12-7.14)
 - Translation across a wall (7.15)
 - Self-dual projectives (7.16)

Facets

Definition

a facet *F* is a nonempty subset of *E* determined by a partition of ϕ^+ into disjoint subsets ϕ_F^0 , ϕ_F^+ , ϕ_F^- :

$$\begin{split} \lambda \in \mathcal{F} \Leftrightarrow \begin{cases} \langle \lambda + \rho, \alpha^{\vee} \rangle = \mathbf{0} & \text{ when } \alpha \in \phi_{\mathcal{F}}^{\mathbf{0}}, \\ \langle \lambda + \rho, \alpha^{\vee} \rangle > \mathbf{0} & \text{ when } \alpha \in \phi_{\mathcal{F}}^{+}, \\ \langle \lambda + \rho, \alpha^{\vee} \rangle < \mathbf{0} & \text{ when } \alpha \in \phi_{\mathcal{F}}^{-}, \end{cases} \end{split}$$

Clearly the closure \overline{F} is obtained by replacing > by \ge and < by \le .

Upper closure

Definition

The upper closure \hat{F} of the facet F is defined by the conditions

$$\lambda \in \widehat{F} \Leftrightarrow \begin{cases} \langle \lambda + \rho, \alpha^{\vee} \rangle = \mathbf{0} & \text{ when } \alpha \in \phi_F^{\mathbf{0}}, \\ \langle \lambda + \rho, \alpha^{\vee} \rangle > \mathbf{0} & \text{ when } \alpha \in \phi_F^{+}, \\ \langle \lambda + \rho, \alpha^{\vee} \rangle \leq \mathbf{0} & \text{ when } \alpha \in \phi_F^{-}, \end{cases}$$

Theorem

Upper closures of facets have the following properties:

- Each facet lies in the upper closure of a unique chamber.
- If the facet F lies in the upper closure of the chamber C, then $\overline{F} \subset \overline{C}$.

Proposition

Let $\lambda\in\mathfrak{h}^*$, with stabilizer \textbf{W}°_λ in $\textbf{W}_{[\lambda]}$

For all w ∈ W_[λ], we have λ − w · λ = λ[#] − w · λ[#], while (w · λ)[#] = w · λ[#].

• The stabilizer of
$$\lambda^{\sharp}$$
 in $W_{[\lambda]}$ is W_{λ}° .

• Suppose $\phi_{[\lambda]} = \phi_{[\mu]} = \phi_{[\lambda+\mu]}$. Then $(\lambda+\mu)^{\sharp} = \lambda^{\sharp} + \mu^{\sharp}$.

Exercise

Show that W_{λ}° is the group which fixes pointwise the facet $F \subset E(\lambda)$ to which λ^{\sharp} belongs; in turn, W_{λ}° is the group fixing \overline{F} pointwise.

Verma modules

Theorem

Let $\lambda, \mu \in \mathfrak{h}^*$ be antidominant and compatible. Assume that λ^{\sharp} lies in a facet F of $E(\lambda)$ relative to the dot-action of $W_{[\lambda]}$, while μ^{\sharp} lies in \overline{F} . Then $T^{\mu}_{\lambda}(M(w \cdot \lambda)) \cong M(w \cdot \mu)$ for all $w \in W_{[\lambda]}$. Similarly for the dual.

Translation to upper closures: simples again

Theorem

Let $\lambda, \mu \in \mathfrak{h}^*$ be antidominant and compatible. Assume that λ^{\sharp} lies in a facet F of $E(\lambda)$, while μ^{\sharp} lies in \overline{F} .

1. For all $w \in W_{[\lambda]}$, if $w \cdot \mu^{\sharp}$ lies in the upper closure of $w \cdot F$, then $T^{\mu}_{\lambda}L(w \cdot \lambda) \cong L(w \cdot \mu)$.

2. If
$$w \in W_{[\lambda]}$$
 but $w \cdot \mu^{\sharp} \not\in w \cdot \widehat{F}$, then $T^{\mu}_{\lambda}L(w \cdot \lambda) = 0$.

Projective modules

Theorem

Let $\lambda, \mu \in \mathfrak{h}^*$ be antidominant and compatible. Further assume that μ^{\sharp} lies in the closure of the facet F to which λ^{\sharp} belongs. If $w \cdot \mu^{\sharp}$ lies in $\widehat{w \cdot F}$ for some $w \in W_{[\lambda]}$, then $T_{\mu}^{\lambda}(P(w \cdot \mu)) \cong P(w \cdot \lambda)$.

We will use Theorem 3.9(b): When a projective module $P \in \mathcal{O}$ is written as a direct sum of indecomposables, the number of those isomorphic to $P(\lambda)$ is equal to dim $\operatorname{Hom}_{\mathcal{O}}(P, L(\lambda))$.

$$P = T_{\mu}^{\lambda} (P(w;\mu))$$

$$Hom (P, L(w'\cdot\lambda)) \stackrel{\simeq}{=} Hom (P(w;\mu) : T_{\lambda}^{\mu} L(w;\lambda))$$

$$\pi' \cdot \pi^{\dagger} \in \pi' \cdot f$$

$$T_{\mu}^{\mu} L(w'\cdot\lambda) = L(w;\mu)$$

$$\pi' = w \int_{0}^{\infty} L(w'\cdot\lambda) = L(w;\mu)$$

gw'zw, w'en e wer => wind, with in the compute charles ? $= \rangle w', \lambda : w \cdot \lambda,$ Ц

Translation From a Facet Closure

Theorem

Let $\lambda, \mu \in \mathfrak{h}^*$ be antidominant and compatible. Assume that μ^{\sharp} $\operatorname{ch} T_{\mu}^{\lambda} M(w \cdot \mu) = \operatorname{ch} \sum_{\substack{w' \in W_{\mu}^{\circ} / W_{\lambda}^{\circ} \\ (w \in H \alpha)}} M(ww' \cdot \lambda). = m(ww', \mu)$ all Verma modules with lies in the closure of the facet of λ^{\sharp} . Then for all $W \in W_{[\lambda]} = W_{[\mu]},$ In particular, all Verma modules which occur as quotients in a

standard filtration of $T^{\lambda}_{\mu}(M(w \cdot \mu))$ have filtration multiplicity 1.

Use Theorem 3.7: If *M* has a standard filtration, then for all $\lambda \in \mathfrak{h}^*$ we have

$$(M: M(\lambda)) = \dim \operatorname{Hom}_{\mathcal{O}}(M, M(\lambda)^{\vee}).$$

 $H_{\sigma}(T_{\mu}^{\lambda}(m(m))), m(mm',\lambda)^{V})$ = Hom (M(n·M), M M(n·n·-X)) - 110m (M(W.M), M(WM'.M))

if n.n= ww. . n

 $m' \cdot \lambda = \lambda$

Translation From a Facet Closure

Corollary

Let λ, μ be as in the theorem. For arbitrary $M \in \mathcal{O}_{\mu\nu}$ we have $\operatorname{ch} T^{\mu}_{\lambda} T^{\lambda}_{\mu} M = |W^{\circ}_{\mu}/W^{\circ}_{\lambda}| \operatorname{ch} M$.

Example

Theorem (Theorem 4.10)

Let λ be antidominant and integral. Then a standard filtration of $P(\lambda)$ involves all of the distinct $M(w \cdot \lambda)$ exactly once. Thus $[M(w \cdot \lambda) : L(\lambda)] = 1$ for all $w \in W$.

Proposition

Let $\lambda, \mu \in \mathfrak{h}^*$ be antidominant and compatible, with μ^{\sharp} in the closure of the chamber containing λ^{\sharp} . Denote by w_{λ} the longest element in $W_{[\lambda]} = W_{[\mu]}$ and by w_{μ}° the longest element in W_{μ}° . Then $T_{\mu}^{\lambda}M(w_{\lambda} \cdot \mu) \cong P(w_{\lambda}w_{\mu}^{\circ} \cdot \lambda)$. Moreover, the Verma modules occurring as quotients in a standard filtration of $P(w_{\lambda}w_{\mu}^{\circ} \cdot \lambda)$ are the $M(w_{\lambda}w \cdot \lambda)$ with $w \in W_{\mu}^{\circ}$; each has multiplicity 1.

& integral

Short & regular, |W,0|=1 w. M & commant M(W_M) is projective. P=T' M(won) is projective (m(m, m. d) mich mellon · min · J J w.) for all w Elin $w_{\lambda} w_{\mu} \cdot \lambda \leq w_{\lambda} w \cdot \lambda \qquad (3.6)$ M(W, W, i) is a grustent of f. =) P(W, W, i) is a summon (of f. · M(W, W, A) (S, M(W, W, A) $o \neq [M(w, w, \lambda)] : L(w, w, \lambda)] = (P(w, w, \lambda)) : M(w, w)$

Translation from a wall

Theorem

Let λ, μ be antidominant and compatible. Assume that λ is regular, so λ^{\sharp} lies in a chamber *C*, while μ^{\sharp} lies in a single wall of *C* corresponding to $\alpha > 0$. Suppose $w \in W_{[\lambda]}$ satisfies $w\alpha > 0$, so $\ell(ws) > \ell(w)$ with $s = s_{\alpha}$.

Translation from a wall

Wn = 5 il, 23

 T^{n}_{λ} $L(m;\lambda) = L(m;m)$ $T^{\mathcal{M}}_{\lambda} L(w \circ \lambda) = 0$ [Th Th L(win): L(win)]= 2 L L(win)] $T_{\lambda}^{n}T_{\lambda}^{n}L(w,m) = L(w,m) \otimes L(w,m) \otimes \dots =$ _M(w・ 入) $T_{\mu}^{\lambda}(m(w,m))$ A(WS-21 T, (L(m'x) $T_{\mu}(L(w,\mu)) =$ Will LIW' A) n's.) 2 n'.)

Theorem

1. There is a short exact sequence

$$0 \rightarrow \underbrace{M(ws \cdot \lambda)}_{\mu} \rightarrow T^{\lambda}_{\mu}M(w \cdot \mu) \rightarrow M(w \cdot \lambda) \rightarrow 0.$$

wo.1 > ~.)

- 2. $\operatorname{hd} T^{\lambda}_{\mu} M(w \cdot \mu) \cong L(w \cdot \lambda)$. In particular, $T^{\lambda}_{\mu} M(w \cdot \mu)$ is indecomposable and the above exact sequence nonsplit.
- The module T^λ_μL(w · μ) is self-dual, with head and socle both isomorphic to L(w · λ); thus T^λ_μL(w · μ) is indecomposable.
- 4. $[T^{\lambda}_{\mu}L(w \cdot \mu) : L(w \cdot \lambda)] = 2.$
- 5. $[T^{\lambda}_{\mu}L(w \cdot \mu) : L(ws \cdot \lambda)] = 1.$
- 6. Let $w' \in W_{[\lambda]}$ with $w' \cdot \lambda \neq w \cdot \lambda$. If $[T^{\lambda}_{\mu}L(w \cdot \mu) : L(w' \cdot \lambda)] > 0$, then $w's \cdot \lambda < w' \cdot \lambda$. Moreover, $T^{\mu}_{\lambda}L(w' \cdot \lambda) = 0$.
- 7. If $w' \in W_{[\lambda]}$ satisfies $w's \cdot \lambda < w' \cdot \lambda$, then

 $\operatorname{Ext}_{\mathcal{O}}(L(\boldsymbol{w}\cdot\boldsymbol{\lambda}),L(\boldsymbol{w}'\cdot\boldsymbol{\lambda}))\cong\operatorname{Hom}_{\mathcal{O}}(\operatorname{Rad} T^{\boldsymbol{\lambda}}_{\boldsymbol{\mu}}L(\boldsymbol{w}\cdot\boldsymbol{\mu}),L(\boldsymbol{w}'\cdot\boldsymbol{\lambda})).$

$$\begin{aligned} \underbrace{\operatorname{Troop}}_{A} \int \left[\left[\overline{T}_{A}^{\lambda} & n(w, w) \right] = \left[n(w, \lambda) \right] + \left[n(w, \lambda \cdot d) \right] \\ w > \lambda > v \cdot \lambda & (3, 7) \\ n(w > \lambda) & \Rightarrow \alpha = \operatorname{submachele} \\ o \Rightarrow & n(w > \lambda) \Rightarrow \left[\overline{T}_{A}^{\lambda} & (n(w, m)) - n(w, \lambda) \right] \Rightarrow o \\ \stackrel{\mathcal{L}}{=} & \operatorname{Hom} \left(\overline{T}_{A}^{\lambda} & (n(w, m)), \quad L(w', \lambda) \right) \\ \stackrel{\mathcal{L}}{=} & \operatorname{Hom} \left(n(w, m) - \overline{T}_{A}^{\lambda} \left(L(w', \lambda) \right) \right) \\ \stackrel{\mathcal{L}}{=} & \operatorname{Hom} \left(n(w, m) - \overline{T}_{A}^{\lambda} \left(L(w', \lambda) \right) \right) \\ \stackrel{\mathcal{L}}{=} & \operatorname{Hom} \left(n(w, m) - \overline{T}_{A}^{\lambda} \left(L(w', \lambda) \right) \right) \\ \stackrel{\mathcal{L}}{=} & \operatorname{Hom} \left(n(w, m) - \overline{T}_{A}^{\lambda} \left(L(w', \lambda) \right) \right) \\ \stackrel{\mathcal{L}}{=} & \operatorname{Hom} \left(n(w, m) - \overline{T}_{A}^{\lambda} \left(L(w', \lambda) \right) \right) \\ \stackrel{\mathcal{L}}{=} & \operatorname{Hom} \left(n(w, m) - \overline{T}_{A}^{\lambda} \left(L(w', \lambda) \right) \right) \\ \stackrel{\mathcal{L}}{=} & \operatorname{Hom} \left(n(w, m) - \overline{T}_{A}^{\lambda} \left(L(w', \lambda) \right) \right) \\ \stackrel{\mathcal{L}}{=} & \operatorname{Hom} \left(n(w, m) - \overline{T}_{A}^{\lambda} \left(L(w', \lambda) \right) \right) \\ \stackrel{\mathcal{L}}{=} & \operatorname{Hom} \left(n(w, m) - \overline{T}_{A}^{\lambda} \left(n(w, m) - \overline{T}_{A}^{\lambda} \left(n(w, \lambda) \right) \right) \\ \stackrel{\mathcal{L}}{=} & \operatorname{Hom} \left(n(w, m) - \overline{T}_{A}^{\lambda} \left(n(w, m) - \overline{T}_{A}^{\lambda} \left(n(w, \lambda) \right) \right) \\ \stackrel{\mathcal{L}}{=} & \operatorname{Hom} \left(n(w, m) - \overline{T}_{A}^{\lambda} \left(n(w, m) - \overline{T}_{A}^{\lambda} \left(n(w, \lambda) \right) \right) \\ \stackrel{\mathcal{L}}{=} & \operatorname{Hom} \left(n(w, m) - \overline{T}_{A}^{\lambda} \left(n(w, m) - \overline{T}_{A}^{\lambda} \left(n(w, \lambda) \right) \right) \\ \stackrel{\mathcal{L}}{=} & \operatorname{Hom} \left(n(w, m) - \overline{T}_{A}^{\lambda} \left(n(w, m) - \overline{T}_{A}^{\lambda} \left(n(w, \lambda) \right) \right) \\ \stackrel{\mathcal{L}}{=} & \operatorname{Hom} \left(n(w, m) - \overline{T}_{A}^{\lambda} \left(n(w, m) - \overline{T}_{A}^{\lambda} \left(n(w, \lambda) \right) \right) \\ \stackrel{\mathcal{L}}{=} & \operatorname{Hom} \left(n(w, m) - \overline{T}_{A}^{\lambda} \left(n(w, m) - \overline{T}_{A}^{\lambda} \left(n(w, \lambda) \right) \right) \\ \stackrel{\mathcal{L}}{=} & \operatorname{Hom} \left(n(w, m) - \overline{T}_{A}^{\lambda} \left(n(w, \lambda) \right) \right) \\ \stackrel{\mathcal{L}}{=} & \operatorname{Hom} \left(n(w, \lambda) - \overline{T}_{A}^{\lambda} \left(n(w, \lambda) \right) \right) \\ \stackrel{\mathcal{L}}{=} & \operatorname{Hom} \left(n(w, \lambda) - \overline{T}_{A}^{\lambda} \left(n(w, \lambda) \right) \right) \\ \stackrel{\mathcal{L}}{=} & \operatorname{Hom} \left(n(w, \lambda) - \overline{T}_{A}^{\lambda} \left(n(w, \lambda) \right) \right) \\ \stackrel{\mathcal{L}}{=} & \operatorname{Hom} \left(n(w, \lambda) - \overline{T}_{A}^{\lambda} \left(n(w, \lambda) \right) \right) \\ \stackrel{\mathcal{L}}{=} & \operatorname{Hom} \left(n(w, \lambda) - \overline{T}_{A}^{\lambda} \left(n(w, \lambda) \right) \right) \\ \stackrel{\mathcal{L}}{=} & \operatorname{Hom} \left(n(w, \lambda) - \overline{T}_{A}^{\lambda} \left(n(w, \lambda) \right) \right) \\ \stackrel{\mathcal{L}}{=} & \operatorname{Hom} \left(n(w, \lambda) - \overline{T}_{A}^{\lambda} \left(n(w, \lambda) \right) \right) \\ \stackrel{\mathcal{L}}{=} & \operatorname{Hom} \left(n(w, \lambda) - \overline{T}_{A}^{\lambda} \left(n(w, \lambda) \right) \right)$$

3] LIN M) is sulf-dual. $T_{\mu}^{\lambda}(M(m,\mu)) \longrightarrow T_{\mu}^{\lambda}(L(m,\mu))$ $H(d(f(m, m)) = L(m, \lambda) = S=C(T^{\lambda}_{\mu}(L(m, m)))$ 4) [7] (m.m) : F(m >1] >2 $\int \left[T_{\lambda} T_{\mu}^{\lambda} (w, n) : T_{\mu} L(w, \lambda) \right] = 2$ 5] [T^L(w:n); [L(wo.1]]=1 $m(wo.\lambda) \subset T_{m}(m(w.m)) \rightarrow T_{n}(\lambda(w.m))$

6 []n L(m.m): L(m'.x) }>0 $\begin{array}{c} u' \neq w \\ = 1 \end{array} \int_{\lambda}^{m} L(u' \cdot \lambda) = 0 \end{array}$ かっ、入く ひ・ ノ • w'= n) ·w.>=w.20·2 < wo.2 V · T^M(L(ms, \lambda))=0 since ms. p is not upper come d (L(ms, \lambda))=0 since ms. p is not upper come $w' \neq w, w o =) L(w', u) \neq L(w, u)$ $\begin{bmatrix} T_{\lambda}^{n} T_{\lambda}^{\lambda} L(n;n) : T_{\lambda}^{n} L(n';\lambda) \end{bmatrix} > 0 \quad if \quad T_{\lambda}^{n} L(n';\lambda) \neq 0$

w' n.) ~ w'.) Than TM L(m',)=0 71 ~ ' 9 · X < ~ ' · X =) $T^{M} L(w', \lambda) = 0.$ $Poor(T^{\lambda}_{\mu}L(w, m) \rightarrow T^{\lambda}_{\mu}L(w, m) \rightarrow T^{\lambda}_$ L(w.) 10 $\exists Hom (T) \land L(w, \lambda) \land L(w', \lambda)) \Rightarrow Hom (Roo(..., L(w', \lambda)) \\ \exists E > Ct (L(w, \lambda), L(w', \lambda)) \exists E > t (T) (L(w, \lambda)) \\ \land L(w', \lambda) \\ \exists \\ \end{cases}$

Exercise

Keep the hypotheses of the theorem. For all $\textit{w}' \in \textit{W}_{[\lambda]}$, prove that

$$[T^{\lambda}_{\mu}L(w \cdot \mu) : L(w' \cdot \lambda)] \leq 2[M(ws \cdot \lambda) : L(w' \cdot \lambda)].$$

Wall-crossing functors μ is contained in the small $\theta_{\overline{r}} \theta_{\overline{r}}^{\lambda} = T_{\lambda}^{\lambda} T_{\lambda}^{\mu}$

 $D_{\mathcal{T}} L(m, \lambda) =$

(m(->)0, (m) -> (3, (m)) >0 $Hom(M, T^{*}_{M}, T^{M}_{M}(M)) \stackrel{?}{=} Hom(T^{M}_{M}(M), T^{M}_{M}(M))$

Self-dual projectives

Theorem

Let $\lambda \in \mathfrak{h}^*$ be antidominant. Then:

$$\blacktriangleright P(\lambda) \cong P(\lambda)^{\vee}.$$

Any standard filtration of P(λ) involves each M(w · λ) with w ∈ W_[λ] precisely once as a quotient. Equivalently, BGG Reciprocity implies that [M(w · λ) : L(λ)] = 1 for all w ∈ W_[λ].

$$M_{\lambda} = w_{\lambda} \cdot \lambda \quad \text{is commut} \quad m(\lambda_0) = P(\lambda_0)$$

$$M(\lambda) = L(\lambda) \quad m(\lambda_0) = content \quad m(w, \lambda)$$

$$w_{\lambda} = w_{0} \cdots w_{0}$$

$$D = D_{0} \cdots D_{0}$$

 $= T^{\lambda}_{\mu} \left(m(w, \lambda) \right)$ $L(\lambda) \subset P(\lambda)$ refracual O J $O(\mathbf{L}(\lambda)) \hookrightarrow (P(\lambda_0))$ M(w·X) L(~~~) 00:(L(w-2)) = 0, (m (w. 1)) = (M (M)) - M (M) X 1 socle L() MIND 250 March 1 $\left[O(P(\lambda)) : M(\lambda) \right] = \mathcal{I}$ Oj (M(w.)) $O(L(\lambda)) \rightarrow O(P(\lambda_0)) \rightarrow O(\lambda) \rightarrow O(\lambda)$ MIN.XI O(L(A) - D) P(A) La

 $Q(\lambda) \rightarrow b(L(\lambda)) \rightarrow b(P(\lambda))$ $P(\lambda) = Q(\lambda) = P(\lambda)$

- ontracommit, non-cegular.

 $\lambda = \mu - \beta - n$ is regular.

 $\prod_{j=1}^{m} P(j) = P(m)^{\sigma_2}$