# Translation functors 

Sigiswald Barbier

Ghent University

Category $\mathcal{O}$ is decomposable:

$$
\mathcal{O}=\bigoplus_{\chi} \mathcal{O}_{\chi}
$$

Translation functor $T_{\lambda}^{\mu}$

$$
M \mapsto \operatorname{pr}_{\mu}\left(L(\bar{\nu}) \otimes \operatorname{pr}_{\lambda}(M)\right)
$$

for $\mu, \lambda$ compatible.

## Overview

- Basic properties of $T_{\lambda}^{\mu}$ (7.1-7.2)
- Weyl group geometry
- Facets (7.3)
- Non-integral weights (7.4)
- Key-lemma (7.5)
- Easy: translation from facet to facet closure
- Verma modules (7.6)
- Simple modules (7.7)
- Categorical equivalences (7.8)
- Simple modules again (7.9)
- Characters (7.10)
- Hard: translations from facet closure to facet
- Projective modules (7.11)
- Translation from a wall (7.12-7.14)
- Translation across a wall (7.15)
- Self-dual projectives (7.16)


## Facets

## Definition

a facet $F$ is a nonempty subset of $E$ determined by a partition of $\phi^{+}$into disjoint subsets $\phi_{F}^{0}, \phi_{F}^{+}, \phi_{F}^{-}$:

$$
\lambda \in F \Leftrightarrow \begin{cases}\left\langle\lambda+\rho, \alpha^{\vee}\right\rangle=0 & \text { when } \alpha \in \phi_{F}^{0}, \\ \left\langle\lambda+\rho, \alpha^{\vee}\right\rangle>0 & \text { when } \alpha \in \phi_{F}^{+}, \\ \left\langle\lambda+\rho, \alpha^{\vee}\right\rangle<0 & \text { when } \alpha \in \phi_{F}^{-},\end{cases}
$$

Clearly the closure $\bar{F}$ is obtained by replacing $>$ by $\geq$ and $<$ by $\leq$.

## Upper closure

## Definition

The upper closure $\widehat{F}$ of the facet $F$ is defined by the conditions

$$
\lambda \in \widehat{F} \Leftrightarrow \begin{cases}\left\langle\lambda+\rho, \alpha^{\vee}\right\rangle=0 & \text { when } \alpha \in \phi_{F}^{0}, \\ \left\langle\lambda+\rho, \alpha^{\vee}\right\rangle>0 & \text { when } \alpha \in \phi_{F}^{+}, \\ \left\langle\lambda+\rho, \alpha^{\vee}\right\rangle \leq 0 & \text { when } \alpha \in \phi_{F}^{-},\end{cases}
$$

## Theorem

Upper closures of facets have the following properties:

- Each facet lies in the upper closure of a unique chamber.
- If the facet $F$ lies in the upper closure of the chamber $C$, then $\bar{F} \subset \bar{C}$.


## Proposition

Let $\lambda \in \mathfrak{h}^{*}$, with stabilizer $W_{\lambda}^{\circ}$ in $W_{[\lambda]}$

- For all $w \in W_{[\lambda]}$, we have $\lambda-w \cdot \lambda=\lambda^{\sharp}-w \cdot \lambda^{\sharp}$, while $(w \cdot \lambda)^{\sharp}=w \cdot \lambda^{\sharp}$.
- The stabilizer of $\lambda^{\sharp}$ in $W_{[\lambda]}$ is $W_{\lambda}^{\circ}$.
- Suppose $\phi_{[\lambda]}=\phi_{[\mu]}=\phi_{[\lambda+\mu]}$. Then $(\lambda+\mu)^{\sharp}=\lambda^{\sharp}+\mu^{\sharp}$.


## Exercise

Show that $W_{\lambda}^{\circ}$ is the group which fixes pointwise the facet $F \subset E(\lambda)$ to which $\lambda^{\sharp}$ belongs; in turn, $W_{\lambda}^{\circ}$ is the group fixing $\bar{F}$ pointwise.

## Verma modules

## Theorem

Let $\lambda, \mu \in \mathfrak{h}^{*}$ be antidominant and compatible. Assume that $\lambda^{\sharp}$ lies in a facet $F$ of $E(\lambda)$ relative to the dot-action of $W_{[\lambda]}$, while $\mu^{\sharp}$ lies in $\bar{F}$. Then $T_{\lambda}^{\mu}(M(w \cdot \lambda)) \cong M(w \cdot \mu)$ for all $w \in W_{[\lambda]}$. Similarly for the dual.

## Translation to upper closures: simples again

## Theorem

Let $\lambda, \mu \in \mathfrak{h}^{*}$ be antidominant and compatible. Assume that $\lambda^{\sharp}$ lies in a facet $F$ of $E(\lambda)$, while $\mu^{\sharp}$ lies in $\bar{F}$.

1. For all $w \in W_{[\lambda]}$, if $w \cdot \mu^{\sharp}$ lies in the upper closure of $w \cdot F$, then $T_{\lambda}^{\mu} L(w \cdot \lambda) \cong L(w \cdot \mu)$.
2. If $w \in W_{[\lambda]}$ but $w \cdot \mu^{\sharp} \notin w \cdot \widehat{F}$, then $T_{\lambda}^{\mu} L(w \cdot \lambda)=0$.

Projective modules
Theorem
Let $\lambda, \mu \in \mathfrak{h}^{*}$ be antidominant and compatible. Further assume that $\mu^{\sharp}$ lies in the closure of the facet $F$ to which $\lambda^{\sharp}$ belongs. If $w \cdot \mu^{\sharp}$ lies in $\widehat{w \cdot F}$ for some $w \in W_{[\lambda]}$, then $\overline{T_{\mu}^{\lambda}(P(w \cdot \mu)) \cong \underline{P}(w \cdot \lambda) .}$

We will use Theorem 3.9(b): When a projective module $P \in \mathcal{O}$ is written as a direct sum of indecomposables, the number of those isomorphic to $P(\lambda)$ is equal to $\operatorname{dim} \operatorname{Hom}_{\mathcal{O}}(P, L(\lambda))$.

$$
\begin{aligned}
& P=T_{\mu}^{\lambda}(P(x \sim \mu)) \\
& \operatorname{Hom}\left(P, L\left(w^{\prime} \cdot \lambda\right)\right) \cong \operatorname{Hom}\left(P(w \cdot \mu): T_{\lambda}^{\mu} L\left(w^{\prime} \cdot \nu\right)\right. \\
& w^{\prime} \cdot \mu^{A} \in n^{\prime} \cdot f \\
& 1^{1} w^{\prime}=w d \\
& 70 \text { only if } \\
& T_{\lambda}^{\mu} L\left(w^{\prime} \cdot \lambda\right)=L(w \cdot \mu)
\end{aligned}
$$

$$
\exists w^{\prime} \nexists w, w^{\prime} \cdot \mu=w \cdot \mu \in \widehat{w \cdot F}
$$

$\Rightarrow w!\lambda$, w. $\lambda$ in ch arijue chamber $\widehat{C}$

$$
\Rightarrow w^{\prime} \cdot \lambda=w \cdot \lambda \text {. }
$$

B

## Translation From a Facet Closure

## Theorem

Let $\lambda, \mu \in \mathfrak{h}^{*}$ be antidominant and compatible. Assume that $\mu^{\sharp}$ lies in the closure of the facet of $\lambda^{\sharp}$. Then for all

$$
w \in W_{[\lambda]}=W_{[\mu]},
$$

$$
T_{\mu}^{\lambda} \mu\left(w w^{\prime} \cdot \lambda\right)
$$

$$
\operatorname{ch} T_{\mu}^{\lambda} M(w \cdot \mu)=\operatorname{ch} \sum_{\substack{w^{\prime} \in W_{\mu}^{\circ} / W_{\lambda}^{\circ} \\(\mu \in H \in \alpha}} M\left(w w^{\prime} \cdot \lambda\right) . \quad=\mu\left(\mu n^{\prime} \cdot \mu\right)
$$

In particular, all Verma modules which occur as quotients in a standard filtration of $T_{\mu}^{\lambda}(M(w \cdot \mu)$ have filtration multiplicity 1.

Use Theorem 3.7: If $M$ has a standard filtration, then for all $\lambda \in \mathfrak{h}^{*}$ we have

$$
(\underline{M: M(\lambda)})=\operatorname{dim} \operatorname{Hom}_{\mathcal{O}}\left(M, M(\lambda)^{\vee}\right) .
$$

$$
\begin{aligned}
& H_{0} m_{0}\left(T_{\mu}^{\lambda}(M(n \mu)), M\left(\eta^{\prime} \cdot \lambda\right)^{V}\right) \\
& \approx \operatorname{Hom}_{0}\left(\mu(x \cdot \mu), \operatorname{cq}_{\lambda}^{\mu} M\left(x w^{\prime} \cdot \lambda\right)^{\nu}\right) \\
& =\operatorname{lom}_{0}\left(M(w \cdot \mu), M\left(w w^{\prime} \cdot \mu\right)^{V}\right) \\
& \text { if } x \cdot \mu=w w^{\prime} \text {. } \\
& w^{\prime} \cdot \lambda=\lambda
\end{aligned}
$$

## Translation From a Facet Closure

## Corollary

Let $\lambda, \mu$ be as in the theorem. For arbitrary $M \in \mathcal{O}_{\mu}$ we have $\operatorname{ch} T_{\lambda}^{\mu} T_{\mu}^{\lambda} M=\left|W_{\mu}^{\circ} / W_{\lambda}^{\circ}\right| \operatorname{ch} M$.

## Example

## Theorem (Theorem 4.10)

Let $\lambda$ be antidominant and integral. Then a standard filtration of $P(\lambda)$ involves all of the distinct $M(w \cdot \lambda)$ exactly once. Thus $[M(w \cdot \lambda): L(\lambda)]=1$ for all $w \in W$.

## Proposition

Let $\lambda, \mu \in \mathfrak{h}^{*}$ be antidominant and compatible, with $\mu^{\sharp}$ in the closure of the chamber containing $\lambda^{\sharp}$. Denote by $w_{\lambda}$ the longest element in $W_{[\lambda]}=W_{[\mu]}$ and by $w_{\mu}^{\circ}$ the longest element in $W_{\mu}^{\circ}$. Then $T_{\mu}^{\lambda} M\left(w_{\lambda} \cdot \mu\right) \cong P\left(w_{\lambda} w_{\mu}^{\circ} \cdot \lambda\right)$. Moreover, the Verma modules occurring as quotients in a standard filtration of $\mid P\left(w_{\lambda} w_{\mu}^{\circ} \cdot \lambda\right)$ are the $M\left(w_{\lambda} w \cdot \lambda\right)$ with $w \in W_{\mu}^{\circ}$; each has multiplicity 1.

```
\mu=-\rho }\quad\mp@subsup{\omega}{~}{0}=
\lambda imjel
```

oroff $\lambda$ reguler, $\left|W_{\lambda}^{0}\right|=1$
$w_{\lambda} \cdot \mu$ is-cominat $\mu\left(w_{\lambda}-\mu\right)$ is pregicíe.
$P=T_{\mu}^{\lambda} M(w, \mu)$ is progecure
( $\left.w_{\lambda} w \cdot \lambda\right)$ nive $n \in W_{\mu}^{0}$

$$
\begin{align*}
& \text { - } w_{\mu}^{j} \cdot \lambda \geqslant w^{\prime} \text { foc all } w \in w_{\mu}^{0} \\
& w_{\lambda} w_{\mu} \cdot \lambda \leqslant w_{\lambda} w \cdot \lambda  \tag{3.6}\\
& M\left(w_{\lambda} w_{\mu}^{0} \lambda\right) \text { is a quenotient of } P \text {. } \\
& \Rightarrow P\left(w_{\lambda} w_{i}^{0} \cdot \lambda\right) \text { is a summond of } P \text {. } \\
& \text { - } n\left(w_{\lambda} w^{0} \cdot \lambda\right) \hookrightarrow m\left(w_{\lambda} w^{\prime} \cdot \lambda\right) \\
& 0 \neq\left[n\left(w_{\lambda} w \cdot \lambda\right): L\left(w_{\lambda} w^{0} \cdot \lambda\right)\right]=\left(P\left(w_{\lambda} w_{i}^{0} \cdot \lambda\right): n\left(w_{\lambda} w_{j} \cdot \lambda\right\rangle\right.
\end{align*}
$$

Translation from a wall
Theorem
Let $\lambda, \mu$ be antidominant and compatible．Assume that $\lambda$ is regular，so $\lambda^{\sharp}$ lies in a chamber $C$ ，while $\mu^{\sharp}$ lies in a single wall of $C$ corresponding to $\alpha>0$ ．Suppose $w \in W_{[\lambda]}$ satisfies w $\alpha>0$ so $\ell(w s)>\ell(w)$ with $s=s_{\alpha}$ ．


$$
\begin{aligned}
& w \cdot \alpha\rangle 0 \Leftarrow) \ell(w \supset) \nexists l(w) \\
& \left\langle v \cdot \lambda+\rho,(u \cdot \alpha)^{v}\right\rangle \quad u+\Phi^{-} \\
& =\left\langle\lambda+S, \alpha^{v}\right\rangle<0 \\
& \left\langle w \cdot \mu+S,(u \alpha)^{v}\right\rangle \\
& =\left\langle\mu+S, \alpha^{v}\right\rangle=0
\end{aligned}
$$

mフ・入 フw• $\lambda$

Translation from a wall

$$
w_{\mu}^{0}=\left\{i d, \partial_{\alpha}\right\}
$$

$$
\begin{aligned}
& T_{\lambda}^{\mu} L(w \cdot \lambda)=L(w \cdot \mu) \\
& T_{\lambda}^{\mu} L(m \rho-\lambda)=0 \\
& \left.\left[T_{\lambda}^{\mu} T_{\mu}^{\lambda} L(\omega \cdot \mu): L(\omega / \mu)\right]=2 L L(\omega \cdot \mu)\right] \\
& T_{\lambda}^{\mu} T^{\lambda} L(w \cdot \mu)=L(w-\mu) \oplus L\left(w^{\prime} \mu\right) \cdot \theta= \\
& T_{\mu}^{\lambda}(\mu(w \cdot \mu)): \\
& m(x \cdot \lambda) \\
& \operatorname{m(wo-\lambda )} \\
& T_{\mu}(L(w \cdot \mu))= \\
& \begin{array}{c}
T_{\lambda}^{\mu}\left(L\left(n^{\prime}, \lambda\right)\right. \\
=0
\end{array} \\
& n^{\prime} \partial \cdot \lambda \\
& \left\langle x^{\prime} \cdot \lambda\right.
\end{aligned}
$$

1. There is a short exact sequence

$$
0 \rightarrow M(w s \cdot \lambda) \rightarrow T_{\mu}^{\lambda} M(w \cdot \mu) \rightarrow M(w \cdot \lambda) \rightarrow 0 .
$$

2. $\operatorname{hd} T_{\mu}^{\lambda} M(w \cdot \mu) \cong L(w \cdot \lambda)$. In particular, $T_{\mu}^{\lambda} M(w \cdot \mu)$ is indecomposable and the above exact sequence nonsplit.
3. The module $T_{\mu}^{\lambda} L(w \cdot \mu)$ is self-dual, with head and socle both isomorphic to $L(w \cdot \lambda)$; thus $T_{\mu}^{\lambda} L(w \cdot \mu)$ is indecomposable.
4. $\left[T_{\mu}^{\lambda} L(w \cdot \mu): L(w \cdot \lambda)\right]=2$.
5. $\left[T_{\mu}^{\lambda} L(w \cdot \mu): L(w s \cdot \lambda)\right]=1$.
6. Let $w^{\prime} \in W_{[\lambda]}$ with $w^{\prime} \cdot \lambda \neq w \cdot \lambda$. If $\left[T_{\mu}^{\lambda} L(w \cdot \mu): L\left(w^{\prime} \cdot \lambda\right)\right]>0$, then $w^{\prime} s \cdot \lambda<w^{\prime} \cdot \lambda$. Moreover, $T_{\lambda}^{\mu} L\left(w^{\prime} \cdot \lambda\right)=0$.
7. If $w^{\prime} \in W_{[\lambda]}$ satisfies $w^{\prime} s \cdot \lambda<w^{\prime} \cdot \lambda$, then $\operatorname{Ext}_{\mathcal{O}}\left(L(w \cdot \lambda), L\left(w^{\prime} \cdot \lambda\right)\right) \cong \operatorname{Hom}_{\mathcal{O}}\left(\operatorname{Rad} T_{\mu}^{\lambda} L(w \cdot \mu), L\left(w^{\prime} \cdot \lambda\right)\right)$.

Goof

1) $\left[T_{\mu}^{\lambda} n(w ; \mu]=[n(w \cdot \lambda)]+[\eta(w \rho \cdot \lambda)]\right.$
wo.入〉 $\tau \cdot \lambda$
$M(w ग \lambda)$ is a sulmoocule

$$
0 \rightarrow \mu(w 0 \cdot \lambda) \rightarrow T_{\mu}^{\lambda}(\mu(w \cdot \mu)) \rightarrow \mu(x \cdot \lambda) \rightarrow 0 .
$$

$\sqrt{2} \operatorname{Hom}\left(T_{\mu}^{\lambda}\left(\mu\left(w^{\prime} \mu\right)\right), L\left(\mu^{\prime} \cdot \lambda\right)\right)$

$$
\cong \operatorname{Hom}\left(\mu(w \cdot \mu), T_{\lambda}^{\mu}\left(L\left(w^{\prime} \cdot \lambda\right)\right)\right.
$$

to only if $w^{\prime} \cdot \mu=w \cdot \mu, w^{\prime} \cdot \mu \in w^{\prime \prime} \cdot C$

$$
\left\{\begin{array}{l}
w^{\prime}=w \\
\left.w^{\prime}>0\right\rangle, H o\left(T_{\mu}^{\lambda}(\mu(w \cdot \mu))=L(w \cdot \lambda)\right.
\end{array}\right.
$$

3) $L(x \cdot \mu)$ is orlf-dual.

$$
\begin{aligned}
& \left.T_{\mu}^{\lambda}(\mu(n \cdot \mu)) \rightarrow T_{\mu}^{\lambda} L L(u \cdot \mu)\right) \\
& H H_{0}\left(F_{h}^{\prime} L^{\prime}(\omega \cdot \mu)\right)=L(\omega \cdot \lambda)=\operatorname{SoC}\left(T^{\lambda} \mu(L(w \cdot \mu))\right. \\
& 4]\left[7 \lambda_{\mu}(w \cdot \mu): \overline{|(x \cdot \lambda)|}\right] \geqslant 2 \\
& \left.{ }^{G}\left[T_{\lambda}^{\mu} T_{\mu}^{x} \cdot(\omega \cdot \mu): T_{\mu}^{\lambda} L(w \cdot \lambda)\right)\right]=2 \\
& \text { s] }\left[T_{\mu}^{\lambda} L(w \cdot \mu): L(w 0 \cdot \lambda)\right]=1
\end{aligned}
$$

$$
\begin{aligned}
& 4
\end{aligned}
$$

$6]\left[T_{\mu}^{\lambda} L(w \cdot \mu): L\left(u^{\prime} \cdot \lambda\right)\right]>0$ $w^{\prime} \Rightarrow w$

$$
\begin{aligned}
=1 & T_{\lambda}^{m} L\left(w^{\prime} \cdot \lambda\right)=0 \\
& w^{\prime} \rho \cdot \lambda<w^{\prime} \cdot \lambda \\
-w^{\prime}= & w \rho \\
\cdot w \cdot \lambda= & w 00-\lambda<w 0 \cdot \lambda
\end{aligned}
$$

- ${ }^{T}{ }_{\lambda}^{\mu}(L(w, \lambda))=0$ since $n 0 \cdot \mu$ in mot-uprescesme
- $x^{\prime} \neq w, x_{0} \Rightarrow L\left(w^{\prime} \cdot \mu\right) \nRightarrow L(w \cdot \mu)$
$\left[T_{\lambda}^{\mu} T_{\mu}^{\lambda}\left\langle\left(w^{\prime} \mu\right): T_{\lambda}^{\mu} L\left(w^{\prime} \cdot \lambda\right)\right]>0\right.$ if $T_{\lambda}^{\mu} L\left(w^{\prime} \lambda\right) \neq 0$

Than $T_{\lambda}^{\mu} L\left(w^{\prime} \cdot \lambda\right)=0 \quad w^{\prime} n \cdot \lambda<w^{\prime} \cdot \lambda$ $7 w^{\prime} 9 \cdot \lambda<w^{\prime} \cdot \lambda \Rightarrow T^{m} L\left(w^{\prime} \cdot \lambda\right) 1=0$.
$0 \rightarrow$ Rocol $T_{\mu}^{\lambda} L(w . \mu) \rightarrow T_{\mu}^{\lambda} L(\psi \mu) \rightarrow L(w, \lambda) \rightarrow 0$


## Exercise

Keep the hypotheses of the theorem. For all $w^{\prime} \in W_{[\lambda]}$, prove that

$$
\left[T_{\mu}^{\lambda} L(w \cdot \mu): L\left(w^{\prime} \cdot \lambda\right)\right] \leq 2\left[M(w s \cdot \lambda): L\left(w^{\prime} \cdot \lambda\right)\right] .
$$

Wall-crossingfunctors $\mu$ is containal io cre s-udll

$$
\begin{aligned}
& \theta_{0}=\theta_{\rho}^{\lambda}=T_{\mu}^{\lambda} T_{\lambda}^{\mu} \\
& 0_{0} L(w \cdot \lambda)=\frac{L(\text { m. } 1 \text { ) }}{1}
\end{aligned}
$$

$$
\begin{aligned}
& \underset{y,}{\operatorname{Ham}\left(n, T_{\mu}^{x} T_{\lambda}^{\mu}(n)\right) \xrightarrow{\mathcal{H o m}}\left(T_{\lambda}^{\mu}(n), T_{\lambda}^{\mu}(n) \mid\right)}
\end{aligned}
$$

Self-dual projectives
Theorem
Let $\lambda \in \mathfrak{h}^{*}$ be antidominant. Then:

- $P(\lambda) \cong P(\lambda)^{\vee}$.
- Any standard filtration of $P(\lambda)$ involves each $M(w \cdot \lambda)$ with $w \in W_{[\lambda]}$ precisely once as a quotient. Equivalently, BGG Reciprocity implies that $[M(w \cdot \lambda): L(\lambda)]=1$ for all $w \in W_{[\lambda]}$.
' $\lambda$ ontrolomint' - regular

$$
\rightarrow \lambda_{0}=w_{\lambda} \cdot \lambda \text { is -comiman } \quad M\left(\lambda_{0}\right)=P\left(\lambda_{0}\right)
$$

- $m(\lambda)=L(\lambda)$ our so de of each $n(w, \lambda)$
- $w_{\lambda}=w_{01} \ldots w_{01}$
$\theta=0_{11} \ldots \theta_{1 n}$

$$
\begin{aligned}
& Q(\lambda) \leftrightarrow \theta(L(\lambda)) \leftrightarrow O(P(\lambda) \\
& P(\lambda)^{V}=a(\lambda) \cong P(\lambda)
\end{aligned}
$$

ontícorvinici, non regular.
$\lambda=\mu-\rho m$ is regulan.

$$
T_{\lambda}^{n} P(\lambda)=P(\mu)^{\sigma 2}
$$

