Translation functors

Sigiswald Barbier

Ghent University

Category \mathcal{O} is decomposable:

$$\mathcal{O} = \bigoplus_{\chi} \underbrace{\mathcal{O}_{\chi}}_{\chi}$$
Translation functor T^{μ}_{λ}
 $M \mapsto \operatorname{pr}_{\mu}(L(\bar{\nu}) \otimes \operatorname{pr}_{\lambda}(M))$

for μ, λ compatible.

Overview

- Basic properties of T^{μ}_{λ} (7.1-7.2)
- Weyl group geometry
 - Facets (7.3)
 - Non-integral weights (7.4)
 - Key-lemma (7.5)
- Easy: translation from facet to facet closure
 - Verma modules (7.6)
 - Simple modules (7.7)
 - Categorical equivalences (7.8)
 - Simple modules again (7.9)
 - Characters (7.10)
- Hard: translations from facet closure to facet
 - Projective modules (7.11)
 - Translation from a wall (7.12-7.14)
 - Translation across a wall (7.15)
 - Self-dual projectives (7.16)

Facets

Definition

a facet *F* is a nonempty subset of *E* determined by a partition of ϕ^+ into disjoint subsets ϕ_F^0 , ϕ_F^+ , ϕ_F^- :

$$\begin{split} \lambda \in \mathcal{F} \Leftrightarrow \begin{cases} \langle \lambda + \rho, \alpha^{\vee} \rangle = \mathbf{0} & \text{ when } \alpha \in \phi_{\mathcal{F}}^{\mathbf{0}}, \\ \langle \lambda + \rho, \alpha^{\vee} \rangle > \mathbf{0} & \text{ when } \alpha \in \phi_{\mathcal{F}}^{+}, \\ \langle \lambda + \rho, \alpha^{\vee} \rangle < \mathbf{0} & \text{ when } \alpha \in \phi_{\mathcal{F}}^{-}, \end{cases} \end{split}$$

Clearly the closure \overline{F} is obtained by replacing > by \ge and < by \le .

Upper closure

Definition

The upper closure \hat{F} of the facet F is defined by the conditions

$$\lambda \in \widehat{F} \Leftrightarrow \begin{cases} \langle \lambda + \rho, \alpha^{\vee} \rangle = \mathbf{0} & \text{ when } \alpha \in \phi_F^{\mathbf{0}}, \\ \langle \lambda + \rho, \alpha^{\vee} \rangle > \mathbf{0} & \text{ when } \alpha \in \phi_F^{+}, \\ \langle \lambda + \rho, \alpha^{\vee} \rangle \leq \mathbf{0} & \text{ when } \alpha \in \phi_F^{-}, \end{cases}$$

Theorem

Upper closures of facets have the following properties:

- Each facet lies in the upper closure of a unique chamber.
- If the facet F lies in the upper closure of the chamber C, then $\overline{F} \subset \overline{C}$.

Proposition

Let $\lambda \in h^*$, with stabilizer W°_λ in $W_{[\lambda]}$

For all w ∈ W_[λ], we have λ − w · λ = λ[#] − w · λ[#], while (w · λ)[#] = w · λ[#].

• The stabilizer of
$$\lambda^{\sharp}$$
 in $W_{[\lambda]}$ is W_{λ}° .

• Suppose $\phi_{[\lambda]} = \phi_{[\mu]} = \phi_{[\lambda+\mu]}$. Then $(\lambda + \mu)^{\sharp} = \lambda^{\sharp} + \mu^{\sharp}$.

Exercise

Show that W_{λ}° is the group which fixes pointwise the facet $F \subset E(\lambda)$ to which λ^{\sharp} belongs; in turn, W_{λ}° is the group fixing \overline{F} pointwise.

Key lemma

Lemma

Let $\lambda, \mu \in h^*$ be compatible, with $\nu := \mu - \lambda \in \Lambda$ and $\overline{\nu}$ the unique W-conjugate of ν lying in Λ^+ . Assume that $\underline{\lambda}^{\sharp}$ lies in a facet F of $E(\lambda)$, while μ^{\sharp} lies in the closure \overline{F} . Then for all weights $\nu' \neq \nu$ of $\underline{L}(\overline{\nu})$, the weight $\underline{\lambda + \nu'}$ is not linked by $W_{[\lambda]} = W_{[\mu]}$ to $\lambda + \nu = \mu$.

Verma modules

Theorem

Let $\lambda, \mu \in h^*$ be antidominant and compatible. Assume that λ^{\sharp} lies in a facet F of $E(\lambda)$ relative to the dot-action of $W_{[\lambda]}$, while μ^{\sharp} lies in \overline{F} . Then $T^{\mu}_{\lambda}(M(\underline{w} \cdot \lambda)) \cong M(w \cdot \mu)$ for all $w \in W_{[\lambda]}$. Similarly for the dual.

$$w \cdot \lambda^{\#} \in w \cdot E, w \cdot \mu^{\#} \in w \cdot F$$

L(V) @ M(w.) hus a filte aten whose quotoils are M(w.)+V')

30 after projecting only M(w.m)

Ū.

suries.

 $T_{\lambda}^{(n(w,\lambda))} = M(w,\mu)$

Simple modules

Proposition

Let $\lambda, \mu \in h^*$ be antidominant and compatible. Assume that λ^{\sharp} lies in a facet F of $E(\lambda)$ relative to the dot-action of $W_{[\lambda]}$, while μ^{\sharp} lies in \overline{F} . If $w \in W_{[\lambda]}$, then $T^{\mu}_{\lambda}L(w \cdot \lambda)$ is either 0 or else isomorphic to $L(w \cdot \mu)$.

Use Theorem 3.3(c): Any nonzero homomorphism $M(\mu) \rightarrow M(\lambda)^{\vee}$ has the simple submodule $L(\lambda)$ as its image.

$$-1 \quad M(w,\lambda) \rightarrow T \quad L(w,\lambda) \qquad combing$$

Exercise

In the proposition, assume that $T^{\mu}_{\lambda}L(w \cdot \lambda) \cong L(w \cdot \mu)$. For arbitrary $M \in \mathcal{O}$, prove that $[M : L(w \cdot \lambda)] = [T^{\mu}_{\lambda}(M) : L(w \cdot \mu)]$.

Composition series of M

M= M0 2 M7 D - --Mg

Milmita = L(Ji)

apply escort function allow composition series

 $T^{n}_{\lambda}(m_{0}) \geq T^{n}_{\lambda}(m_{1}) \geq \dots \geq T^{n}_{\lambda}(m_{a})$

 $T^{\mathcal{M}}_{\lambda}(\mathcal{M}_{i})/T^{\mathcal{M}}_{\lambda}(\mathcal{M}_{i+1}) \stackrel{\simeq}{=} \begin{cases} \mathcal{L}(\mathcal{M}_{i}) \\ \mathcal{O} \end{cases}$

 $[m: L(m,\lambda)] \notin [T^{m}_{\lambda}(m): L(m,n)].$

Example: $\mathfrak{sl}_2(\mathbb{C})$.

 $T^{\mathcal{M}}_{\mathcal{L}}(L(-\lambda-2)) = m(\mu) = L(\mu)$

Equivalence of categories

Proposition

Let $\lambda, \mu \in h^*$ be antidominant and compatible. Assume that λ^{\sharp} and μ^{\sharp} lies in the same facet F of $E(\lambda) = E(\mu)$ relative to $W_{[\lambda]} = W_{[\mu]}$. Then T^{μ}_{λ} induces an isomorphism between the Grothendieck groups $K(\mathcal{O}_{\lambda})$ and $K(\mathcal{O}_{\mu})$ of the associated blocks, sending $[M(w \cdot \lambda)]$ to $[M(w \cdot \mu)]$ and $[L(w \cdot \lambda)]$ to $[L(w \cdot \mu)]$ for all $w \in W_{[\lambda]}$.

$$T_{M}^{\lambda} T_{\lambda}^{M} (M(M-\lambda)) = T_{M}^{\lambda} (M(M-\lambda)) = M(M-\lambda)$$

$$T_{M}^{\lambda} T_{\lambda}^{M} (L(M-\lambda)) = \sum_{l \in \mathcal{U}(M-\lambda)}^{\infty}$$

Equivalence of categories

Theorem

Let $\lambda, \mu \in h^*$ be antidominant and compatible. Assume that λ^{\sharp} and μ^{\sharp} lies in the same facet lie in the same facet for the action of $W_{[\lambda]} = W_{[\mu]}$ on $E(\lambda) = E(\mu)$, the functors T^{μ}_{λ} and T^{λ}_{μ} define inverse equivalences of categories between \mathcal{O}_{λ} and \mathcal{O}_{μ} . In particular, T^{μ}_{λ} sends simple modules to simple modules.

Use adjointness

 $\circ \neg T_{\mu}^{\lambda} T_{\lambda}^{\mu}(m) \neg T_{\mu}^{\lambda} T_{\lambda}^{\mu}(N) \neg T_{\mu}^{\lambda} T_{\lambda}(L) \rightarrow 0$ 14 59m 2 159 2 159 2 6- M- N- L->0

Vse induction on Reyth

 φ

Translation to upper closures: simples again

Theorem

Let $\lambda, \mu \in h^*$ be antidominant and compatible. Assume that λ^{\sharp} lies in a facet F of $E(\lambda)$, while μ^{\sharp} lies in \overline{F} .

- 1. For all $w \in W_{[\lambda]}$, if $w \cdot \mu^{\sharp}$ lies in the upper closure of $w \cdot F$, then $T^{\mu}_{\lambda}L(w \cdot \lambda) \cong L(w \cdot \mu)$.
- 2. If $w \in W_{[\lambda]}$ but $w \cdot \mu^{\sharp} \notin w \cdot \widehat{F}$, then $T_{\lambda}^{\mu}L(w \cdot \lambda) = 0$.

· M(w,) has composition series.

1) eves composition serves + ~ (M(w.) M(n. my granties TX (M(n. X)) w > < u - > I has migue occure ces of L(w·m)

 $\exists n'n \cdot \lambda \in n \cdot \lambda$ $T_{\lambda}^{\Lambda}(L(m'm\cdot\lambda)) = L(m\cdot\mu)$ L (n' nom) =) www.m=w.m n' E W = group giverated by v · m = zeflectum which fisces the forceet w. F' which cutions work $a \in \overline{b}_{w,p'}^{0} = w \overline{b}_{p'}^{0}$

. w. pt & w. of VKE D.F' < w ·) # +g , ~) < 0 $\leq \overline{\Phi}_{w,F} \cup \overline{\Phi}_{w,F}$ $= 2(w \cdot \lambda^{\#}) \not w \cdot \lambda^{\#}$ $\langle = \rangle m'(w,\lambda^{*}) \rangle w \lambda^{*}$ n'EWw.m =) $w'w\cdot \lambda = w\cdot \lambda$ $T^{(L(w,\lambda))} = L(w,\mu).$

$$w \cdot \mu^{4} \notin w \cdot F$$

$$\exists \alpha \in \overline{D}_{F}^{4}$$

$$< w \cdot \lambda^{7} + g \alpha^{V} > >0$$

$$= (< w \cdot \mu^{7} + g / \alpha^{V} > = 0.$$

$$\le | \underbrace{\Im_{\chi}(w \cdot \lambda^{4}) < w \cdot \lambda^{4}}_{\chi} = (\underbrace{\Im_{\chi}(w \cdot \mu^{4})}_{\chi} = \underbrace{W \cdot \lambda^{4}}_{\chi} = \underbrace{W \cdot \lambda^{4}}_{\chi$$

(m dun le

 $T^{M}(\alpha) = 0$ the also $T^{M}(L(w,\lambda)) = 0$

Δ.

Exercise

Let λ, μ satisfy the hypotheses of the above theorem. Prove that for all $w \in W_{[\lambda]}$, the projective module $T^{\mu}_{\lambda}P(w \cdot \lambda)$ is nonzero.

Character formula

Que = I

 $[L(\boldsymbol{w}\cdot\boldsymbol{\lambda})] = \sum_{\boldsymbol{w}'\in \boldsymbol{W}_{[\boldsymbol{\lambda}]}, \boldsymbol{w}'\cdot\boldsymbol{\lambda}\uparrow\boldsymbol{w}\cdot\boldsymbol{\lambda}} \left[\boldsymbol{b}_{\boldsymbol{w}',\boldsymbol{w}}^{\boldsymbol{\lambda}} [\boldsymbol{M}(\boldsymbol{w}'\cdot\boldsymbol{\lambda})] \right]$ 7,7 (1,2 are in the same forcet $\left[L(n,n)\right] = \sum_{n' \in log } \mathcal{C}_{n',n} \left[\mathcal{M}(n',n)\right]$ nt is the upper closure of facet contry 2* $\left[M(m',m) \right]$ [L(m'n)]

A is cegular

 $\Sigma \psi^{\lambda}$ w'^{2},w

 $2 \in W_{\mathcal{M}}^{\circ}$

n' 2 · µ= n'. µ

Example: $\mathfrak{sl}_3(\mathbb{C})$

(Section 5.4) $\lambda \in \Lambda$ regular and antidominant, $\mu \in \Lambda$, antidominant and lies in β -hyperplane. $w = s_{\alpha}s_{\beta}$. Then

$$[L(m,n)] = [m(m,n)] - [m(2,n)] - [m(2,n)] - [m(2,n)] + [m(n)] - [m(2,n)] + [m(n)].$$

Projective modules

Theorem

Let $\lambda, \mu \in h^*$ be antidominant and compatible. Further assume that μ^{\sharp} lies in the closure of the facet F to which λ^{\sharp} belongs. If $w \cdot \mu^{\sharp}$ lies in $\widehat{w \cdot F}$ for some $w \in W_{[\lambda]}$, then $T^{\lambda}_{\mu}(P(w \cdot \mu)) \cong P(w \cdot \lambda)$.

We will use Theorem 3.9(b): When a projective module $P \in \mathcal{O}$ is written as a direct sum of indecomposables, the number of those isomorphic to $P(\lambda)$ is equal to dim $\operatorname{Hom}_{\mathcal{O}}(P, L(\lambda))$.