# Translation functors 

Sigiswald Barbier

Ghent University

Category $\mathcal{O}$ is decomposable:

$$
\mathcal{O}=\bigoplus_{\chi} \underline{\mathcal{O}_{\chi}}
$$

Translation functor $T_{\lambda}^{\mu}$

$$
M \mapsto \operatorname{pr}_{\mu}\left(L(\bar{\nu}) \otimes \operatorname{pr}_{\lambda}(M)\right)
$$

for $\mu, \lambda$ compatible.

## Overview

- Basic properties of $T_{\lambda}^{\mu}$ (7.1-7.2)
- Weyl group geometry
- Facets (7.3)
- Non-integral weights (7.4)
- Key-lemma (7.5)
- Easy: translation from facet to facet closure
- Verma modules (7.6)
- Simple modules (7.7)
- Categorical equivalences (7.8)
- Simple modules again (7.9)
- Characters (7.10)
- Hard: translations from facet closure to facet
- Projective modules (7.11)
- Translation from a wall (7.12-7.14)
- Translation across a wall (7.15)
- Self-dual projectives (7.16)


## Facets

## Definition

a facet $F$ is a nonempty subset of $E$ determined by a partition of $\phi^{+}$into disjoint subsets $\phi_{F}^{0}, \phi_{F}^{+}, \phi_{F}^{-}$:

$$
\lambda \in F \Leftrightarrow \begin{cases}\left\langle\lambda+\rho, \alpha^{\vee}\right\rangle=0 & \text { when } \alpha \in \phi_{F}^{0}, \\ \left\langle\lambda+\rho, \alpha^{\vee}\right\rangle>0 & \text { when } \alpha \in \phi_{F}^{+}, \\ \left\langle\lambda+\rho, \alpha^{\vee}\right\rangle<0 & \text { when } \alpha \in \phi_{F}^{-},\end{cases}
$$

Clearly the closure $\bar{F}$ is obtained by replacing $>$ by $\geq$ and $<$ by $\leq$.

## Upper closure

## Definition

The upper closure $\widehat{F}$ of the facet $F$ is defined by the conditions

$$
\lambda \in \widehat{F} \Leftrightarrow \begin{cases}\left\langle\lambda+\rho, \alpha^{\vee}\right\rangle=0 & \text { when } \alpha \in \phi_{F}^{0}, \\ \left\langle\lambda+\rho, \alpha^{\vee}\right\rangle>0 & \text { when } \alpha \in \phi_{F}^{+}, \\ \left\langle\lambda+\rho, \alpha^{\vee}\right\rangle \leq 0 & \text { when } \alpha \in \phi_{F}^{-},\end{cases}
$$

## Theorem

Upper closures of facets have the following properties:

- Each facet lies in the upper closure of a unique chamber.
- If the facet $F$ lies in the upper closure of the chamber $C$, then $\bar{F} \subset \bar{C}$.


## Proposition

Let $\lambda \in h^{*}$, with stabilizer $W_{\lambda}^{\circ}$ in $W_{[\lambda]}$

- For all $w \in W_{[\lambda]}$, we have $\lambda-w \cdot \lambda=\lambda^{\sharp}-w \cdot \lambda^{\sharp}$, while $(w \cdot \lambda)^{\sharp}=w \cdot \lambda^{\sharp}$.
- The stabilizer of $\lambda^{\sharp}$ in $W_{[\lambda]}$ is $W_{\lambda}^{\circ}$.
- Suppose $\phi_{[\lambda]}=\phi_{[\mu]}=\phi_{[\lambda+\mu]}$. Then $(\lambda+\mu)^{\sharp}=\lambda^{\sharp}+\mu^{\sharp}$.


## Exercise

Show that $W_{\lambda}^{\circ}$ is the group which fixes pointwise the facet $F \subset E(\lambda)$ to which $\lambda^{\sharp}$ belongs; in turn, $W_{\lambda}^{\circ}$ is the group fixing $\bar{F}$ pointwise.

## Lemma

Let $\lambda, \mu \in h^{*}$ be compatible, with $\nu:=\mu-\lambda \in \bar{\Lambda}$ and $\bar{\nu}$ the unique $W$-conjugate of $\nu$ lying in $\Lambda^{+}$. Assume that $\lambda^{\sharp}$ lies in a facet $F$ of $E(\lambda)$, while $\mu^{\sharp}$ lies in the closure $\bar{F}$. Then for all weights $\nu^{\prime} \neq \nu$ of $L(\bar{\nu})$, the weight $\lambda+\nu^{\prime}$ is not linked by $W_{[\lambda]}=W_{[\mu]}$ to $\lambda+\nu=\underline{\mu}$.

Verna modules

Theorem
Let $\lambda, \mu \in h^{*}$ be antidominant and compatible. Assume that $\lambda^{\sharp}$ lies in a facet $F$ of $E(\lambda)$ relative to the dot-action of $W_{[\lambda]}$, while $\mu^{\sharp}$ lies in $\bar{F}$. Then $T_{\lambda}^{\mu}(M(\underline{w \cdot \lambda})) \cong M(w \cdot \mu)$ for all $w \in W_{[\lambda]}$. Similarly for the dual.

$$
\begin{aligned}
& w \cdot \mu-w \cdot \lambda=w \mu-w \lambda \rightarrow \text { some Wozlil } \\
& \text { oc v }=\mu-\lambda \\
& w \cdot \lambda^{A} \in w \cdot \mathcal{E}, w \cdot \mu^{A} \in \overline{w \cdot F}
\end{aligned}
$$

$\Rightarrow$ Serg lemnos: $w-\lambda+V^{\prime}$ is not linked $\tau$
$L(\bar{V}) \oplus M(w \cdot \lambda)$ has a filtrate whose quolaits ore $M\left(w \cdot \lambda+v^{\prime}\right)$

So after projedy only $M$ (wM) survies.

$$
T_{\lambda}^{\mu}(n(w \cdot \lambda))=n(w-\mu)
$$

Simple modules
Proposition
Let $\lambda, \mu \in h^{*}$ be antidominant and compatible. Assume that $\lambda^{\sharp}$ lies in a facet $F$ of $E(\lambda)$ relative to the dot-action of $W_{[\lambda]}$, while $\mu^{\sharp}$ lies in $\bar{F}$. If $w \in W_{[\lambda]}$, then $T_{\lambda}^{\mu} L(w \cdot \lambda)$ is either 0 or else isomorphic to $L(w \cdot \mu)$.

Use Theorem 3.3(c): Any nonzero homomorphism $M(\mu) \rightarrow M(\lambda)^{\vee}$ has the simple submodule $L(\lambda)$ as its image.

$$
\begin{aligned}
& -1 M(w \cdot \lambda) \rightarrow L(w \cdot \lambda) \\
& T_{\lambda}^{\mu}\left(\mu(w \cdot \mu) \rightarrow T_{\lambda}^{\mu}(L(w \cdot \lambda))\right. \\
& \begin{array}{l}
-\zeta(w \cdot \lambda) \longleftrightarrow M(w \cdot \lambda)^{V} \\
T_{\lambda}^{\mu}\left(\Gamma_{\lambda}^{\mu}(L(w \cdot \lambda)) \longleftrightarrow \mu(w \cdot \mu)^{V}\right.
\end{array} \\
& \Rightarrow T_{\lambda}^{\mu}(L(w \cdot \lambda)) \\
& \equiv L(\omega \cdot \mu) \text {. } \\
& \text { if theme is }
\end{aligned}
$$

Exercise
In the proposition, assume that $T_{\lambda}^{\mu} L(w \cdot \lambda) \cong L(w \cdot \mu)$. For arbitrary $M \in \mathcal{O}$, prove that $[M: \Lambda(w \cdot \lambda)]=\left[T_{\lambda}^{\mu}(M): L(w \cdot \mu)\right]$.

Compositor suris of $M$

$$
\begin{gathered}
M_{1}=\mu_{0} \supseteq M_{1} \supset \cdots \quad M_{r} \\
M_{i / M_{i+1}} \cong L\left(\lambda_{i}\right)
\end{gathered}
$$

cyply scorch fenclir. Stain sompointionseries

$$
\text { of } \begin{aligned}
T_{\lambda}^{\mu}\left(\mu_{0}\right) \geq t_{\lambda}^{\mu}\left(\mu_{1}\right) \supseteq \cdots & \geq T_{\lambda}^{\mu}\left(\mu_{\lambda}\right) \\
T_{\lambda}^{\mu}\left(\mu_{i}\right) / t_{\lambda}^{\mu}\left(\mu_{i+1}\right) & =\left\{\begin{array}{l}
L\left(\mu_{i}\right) \\
0
\end{array}\right.
\end{aligned}
$$

$$
[n: L(w \cdot \lambda)] \leqslant\left[T_{\lambda}^{\mu}(n): L(w \cdot \mu)\right] .
$$

Example: $\mathfrak{s l}_{2}(\mathbb{C})$.

$$
\begin{aligned}
& \rho=-1 \\
& \lambda \geqslant 0 \text { hies in } F=\geqslant^{+} \\
& \mu=-1 \\
& 0 \rightarrow n\left(-\lambda_{-2}\right) \rightarrow M(\lambda) \rightarrow L(\lambda) \rightarrow 0 \\
& T_{\lambda}^{\mu} 6 \quad L(-\lambda-2) \\
& 11^{\circ} \\
& 0 \rightarrow \mu(\mu) \rightarrow \mu(\mu) \rightarrow T_{\lambda}^{\mu}(L(\lambda)) \rightarrow 0 \\
& T_{\lambda}^{\mu}(L(-\lambda-2))=\mu(\mu)=2|\mu|
\end{aligned}
$$

Equivalence of categories
Proposition
Let $\lambda, \mu \in h^{*}$ be antidominant and compatible. Assume that $\lambda^{\sharp}$ and $\mu^{\sharp}$ lies in the same facet $F$ of $E(\lambda)=E(\mu)$ relative to $W_{[\lambda]}=W_{[\mu]}$. Then $T_{\lambda}^{\mu}$ induces an isomorphism between the Grothendieck groups $K\left(\mathcal{O}_{\lambda}\right)$ and $K\left(\mathcal{O}_{\mu}\right)$ of the associated blocks, sending $[M(w \cdot \lambda)]$ to $[M(w \cdot \mu)]$ and $[L(w \cdot \lambda)]$ to $[L(w \cdot \mu)]$ for all $w \in W_{[\lambda]}$.

- $[M(w \cdot \lambda)]$ give $\mathbb{Z}$-lass of $\mathbb{R}\left(U_{\lambda}\right)$.
- $\left.T_{\mu}^{\lambda} T_{\lambda}^{\mu}(\mu \mid \omega-\lambda)\right)=T_{\mu}^{\lambda}(\mu(\omega \cdot \mu))=\mu(\omega \cdot \lambda)$
$=T_{\mu}^{\lambda} T_{\lambda}^{\mu}(L(w \cdot \lambda))=\left\{\begin{array}{l} \\ L(w \cdot \lambda)\end{array}\right.$


## Equivalence of categories

## Theorem

Let $\lambda, \mu \in h^{*}$ be antidominant and compatible. Assume that $\lambda^{\sharp}$ and $\mu^{\sharp}$ lies in the same facet lie in the same facet for the action of $W_{[\lambda]}=W_{[\mu]}$ on $E(\lambda)=E(\mu)$, the functors $T_{\lambda}^{\mu}$ and $T_{\mu}^{\lambda}$ define inverse equivalences of categories between $\mathcal{O}_{\lambda}$ and $\mathcal{O}_{\mu}$. In particular, $T_{\lambda}^{\mu}$ sends simple modules to simple modules.

Use adjointness

$$
\begin{aligned}
& \operatorname{Hom}_{\mathcal{O}}\left(T_{\lambda}^{\mu}(M), N\right) \cong \operatorname{Hom}_{\mathcal{O}}\left(M, T_{\mu}^{\lambda}(N)\right) \\
& T_{\mu}^{\lambda} T_{\lambda}^{\mu} \cong i o c_{o_{\lambda}} \\
& \operatorname{Hom}_{0}\left(T_{\mu}^{\lambda} T_{\lambda}^{\mu}(\mu), \mu\right) \equiv \operatorname{Hom}{ }_{\nu}\left(T_{\lambda}^{\mu}(\mu) \Gamma_{\lambda}^{\mu}(\mu)\right. \\
& \varphi_{M} \\
& \Leftarrow) \quad \operatorname{ioc}_{T_{x}^{\mu}}^{\mu}(\mu)
\end{aligned}
$$

$$
\begin{aligned}
& 0 \rightarrow T_{\mu}^{\lambda} T_{\lambda}^{\mu}(\mu) \rightarrow T_{\mu}^{\lambda} T_{\lambda}^{\mu}(N) \rightarrow T_{\mu}^{\lambda} T_{\lambda}^{\mu}(L) \rightarrow 0 \\
& H \| \varphi_{\mu} P \varphi_{N} P \varphi_{N} \varphi_{L} \\
& 0 \rightarrow N \rightarrow 0
\end{aligned}
$$

Vse inductin on leyger $\varphi$
II

Translation to upper closures: simples again
Theorem
Let $\lambda, \mu \in h^{*}$ be antidominant and compatible. Assume that $\lambda^{\sharp}$ lies in a facet $F$ of $E(\lambda)$, while $\mu^{\sharp}$ lies in $\bar{F}$.

1. For all $w \in W_{[\lambda]}$, if $w \cdot \mu^{\sharp}$ lies in the upper closure of $w \cdot F$, then $T_{\lambda}^{\mu} L(w \cdot \lambda) \cong L(w \cdot \mu)$.
2. If $w \in W_{[\lambda]}$ but $w \cdot \mu^{\sharp} \notin w \cdot \widehat{F}$, then $T_{\lambda}^{\mu} L(w \cdot \lambda)=0$.

- M(u, $\lambda)$ hus composition series.
$i^{\mu}(\mu(w \cdot \lambda))$ eves composite series
$\dagger_{\lambda}^{\prime}(\mu(w \cdot \lambda)) T^{\mu}\left(M\left(n^{\prime} \sim \cdot \lambda\right)\right.$
$\mu\left(w_{1} \mu\right.$, quite $T_{\lambda}^{\mu}\left(M\left(\mu^{\prime} w \cdot \lambda\right)\right)$
$2^{\prime} w \lambda \leqslant w_{-} \lambda$

$$
\begin{aligned}
& \exists w^{\prime} n \cdot \lambda \leqslant w \cdot \lambda \\
& T_{\lambda}^{\mu}\left(L\left(w^{\prime} w-\lambda\right)\right)=L(w \cdot \mu) \\
& 115 \\
& L\left(u^{\prime} \omega 0 \mu\right) \\
& \Rightarrow w^{\prime} w \cdot \mu=w \cdot \mu \\
& \varepsilon^{\prime} \in W_{w \cdot \mu}^{0}=\text { groupp rineratès by }_{\text {reflection whic }} \\
& \text { firces the focceet tw. F' which } \\
& \text { cutions wor } \\
& \alpha \in \Phi_{w . F^{\prime}}^{0}=w \Phi_{f^{\prime}}^{0} .
\end{aligned}
$$

$$
\begin{aligned}
& w \cdot \mu^{\#} \in \tilde{w \cdot F} \\
& \left\langle w \cdot \lambda^{A}+\rho, \alpha^{v} \leqslant 0 \quad \forall \alpha \in \Phi_{w \cdot F^{\prime}}^{0}\right. \\
& \Leftrightarrow 2\left(w \cdot \lambda^{\#}\right) \geqslant w \cdot \lambda^{A} \leq \Phi_{w \cdot F}^{0} \cup \Phi_{w \cdot F}^{-} \\
& 0.6 \\
& \Leftrightarrow w^{\prime}\left(w \cdot \lambda^{\#}\right) \geqslant w \cdot \lambda^{A} \quad w^{\prime} \in w_{w \cdot \mu}^{0} \\
& =w^{\prime} w \cdot \lambda \geqslant w \cdot \lambda \geqslant w^{\prime} w \cdot \lambda . \\
& =w^{\prime} w \cdot \lambda=w \cdot \lambda \\
& \\
& \operatorname{T}^{\prime}(L(w \cdot \lambda))=L(w \cdot \mu)
\end{aligned}
$$

$$
\begin{aligned}
& -w \cdot \mu^{A} \notin \widehat{w \cdot F} \\
& \exists \alpha \in \Phi_{F}^{+} \\
& \left\langle w \cdot \lambda^{7}+\rho, \alpha^{\nu}\right\rangle>0 \\
& \text { and }\left\langle\omega \cdot \mu^{\pi}+\rho, \alpha^{\nu}\right\rangle=0 \text {. } \\
& \Leftrightarrow ラ_{\alpha}\left(w \cdot \lambda^{*}\right)<w \cdot \lambda^{*} \text { on } J_{\alpha} \cdot\left(w \mu^{*}\right)= \\
& \text { wン } \mu^{\star} \text {. } \\
& 0 \rightarrow M\left(\eta_{\alpha}(w \cdot \lambda)\right) \rightarrow M(w \cdot \lambda) \rightarrow q \rightarrow 0 \\
& \text { Aprly }_{1}^{M} \\
& \text { L(w.入) } \\
& \text { is a } q \text { artant of } Q \\
& 0 \rightarrow M\left(\partial_{\alpha}(w \cdot \mu)\right) \rightarrow M\left(w_{1} \mu\right) \rightarrow T_{\lambda}^{M}(q) \rightarrow 0
\end{aligned}
$$

Condence

$$
T_{\lambda}^{M}(Q)=0 \text { bn abo } T_{\lambda}^{M}(L(w \cdot \lambda))=0
$$

Exercise
Let $\lambda, \mu$ satisfy the hypotheses of the above theorem. Prove that for all $w \in W_{[\lambda]}$, the projective module $T_{\lambda}^{\mu} P(w \cdot \lambda)$ is nonzero.

$$
P(w \cdot \lambda) \rightarrow M(w \cdot \lambda)
$$

$\operatorname{apply}_{\lambda}^{\mu} \quad \downarrow$

$$
\begin{aligned}
& M \\
& 0
\end{aligned}
$$

Character formula

$$
e_{w n}^{\lambda}=1
$$

$$
[L(w \cdot \lambda)]=\left.\sum_{w^{\prime} \in w_{(\lambda,)}, w^{\prime} \cdot \lambda \uparrow w \cdot \lambda}\right|_{w^{\prime}, w} ^{\lambda}\left[M\left(w^{\prime} \cdot \lambda\right)\right]
$$

$$
x_{\lambda}^{\prime 2} \delta
$$

M, A"are ì là same forcet

$$
[L(\omega \cdot \mu)]=\sum_{w^{\prime} \in L_{[\mu]} w^{\prime} \cdot \lambda \rho^{\prime} w \cdot \lambda} e_{w^{\prime}, w}^{\lambda^{\prime}}\left[\mu\left(x^{\prime} \cdot \mu\right)\right]
$$

$\mu^{*}$ is or upper cosure of forcel corting $\lambda^{*}$.

$$
[L(w \cdot \mu)] \quad\left[\mu\left(w^{\prime} \cdot \mu\right)\right]
$$

$$
\begin{array}{ll}
\sum_{w^{\prime} 2 \leqslant w}^{\lambda} e_{w^{\prime} 2, w}^{\lambda} & \lambda \text { is cegular } \\
2 \in w_{\mu}^{0} & n^{\prime} 2 \cdot \mu=w^{\prime} \mu
\end{array}
$$

Example: $\mathfrak{s l}_{3}(\mathbb{C})$
(Section 5.4) $\lambda \in \Lambda$ regular and antidominant, $\mu \in \Lambda$, antidominant and lies in $\beta$-hyperplane. $\boldsymbol{w}=\boldsymbol{s}_{\alpha} \boldsymbol{s}_{\beta}$. Then

$$
[L(w \cdot \lambda)]=[M(w \cdot \lambda)]-\left[M\left(s_{\alpha} \cdot \lambda\right)\right]-\left[M\left(s_{\beta} \cdot \lambda\right)\right]+[M(\lambda)] .
$$



$$
\begin{gathered}
{[L(w \cdot \mu)]=[\mu(w-\mu)]-\left[\mu\left(\eta_{\alpha} \mu\right)\right]} \\
-\left[\mu\left(\eta_{p} \mu\right)\right]+[\mu(\mu)] . \\
\mu^{\prime \prime}(\mu)
\end{gathered}
$$

## Projective modules

## Theorem

Let $\lambda, \mu \in h^{*}$ be antidominant and compatible. Further assume that $\mu^{\sharp}$ lies in the closure of the facet $F$ to which $\lambda^{\sharp}$ belongs. If $w \cdot \mu^{\sharp}$ lies in $\widehat{w \cdot F}$ for some $w \in W_{[\lambda]}$, then
$T_{\mu}^{\lambda}(P(w \cdot \mu)) \cong P(w \cdot \lambda)$.
We will use Theorem 3.9(b): When a projective module $P \in \mathcal{O}$ is written as a direct sum of indecomposables, the number of those isomorphic to $P(\lambda)$ is equal to $\operatorname{dim}_{\operatorname{Hom}_{\mathcal{O}}}(P, L(\lambda))$.

