Translation functors

Sigiswald Barbier

Ghent University

Category \mathcal{O} is decomposable:

$$\mathcal{O} = \bigoplus_{\chi} \mathcal{O}_{\chi}$$

Theorem (Theorem 4.6)

The blocks of \mathcal{O} are precisely the subcategories consisting of modules whose composition factors all have highest weights linked by $W_{[\lambda]}$ to an antidominant weight λ . Thus the blocks are in natural bijection with antidominant (or alternatively, dominant) weights.

Denote the block associated to an antidominant weight λ by \mathcal{O}_{λ} .

$$T: \mathcal{Q} \rightarrow \mathcal{Q}$$

Translation functor T^{μ}_{λ}

1: simple - simple Verma - Verma projection -s projection. Equivalence Return colarge . · projecting on Dy is exact . Cassaring will a finite . Can matule is estact. 0 - 0 $T(m) = P_{2n} \left(\left(L \otimes P_{2}^{2}(m) \right) \right)$ Dy - Dm

Translation functor T^{μ}_{λ} $L = L(\overline{V})$ \overline{V} as the commute meight in the w-orbit of $V = \mu - \lambda \in \Lambda$ $T^{M}_{\lambda} = P^{2}_{\mu}(L(\overline{V}) \otimes P^{2}_{\lambda}(\cdot))$

Overview

- Basic properties of T^{μ}_{λ} (7.1-7.2)
- Weyl group geometry
 - Facets (7.3)
 - Non-integral weights (7.4)
 - Key-lemma (7.5)
- Easy: translation from facet to facet closure
 - Verma modules (7.6)
 - Simple modules (7.7)
 - Categorical equivalences (7.8)
 - Simple modules again (7.9)
 - Characters (7.10)
- Hard: translations from facet closure to facet
 - Projective modules (7.11)
 - Translation from a wall (7.12-7.14)
 - Translation across a wall (7.15)
 - Self-dual projectives (7.16)

Basic properties

 $L(\overline{\nu})$

Theorem

If $\lambda, \mu \in h^*$, with $\mu - \lambda \in \Lambda$, the exact functor $\mathcal{T}^{\mu}_{\lambda}$

- commutes with the duality functor
 - takes projective modules to projective modules.
- \subseteq $T^{\mu}_{\lambda}(M(\lambda))$ has a standard filtration with $M(\mu)$ as a subquotient.

$$\begin{cases} P_{\lambda}^{2}(M^{V}) = (P_{\lambda}^{2}(M))^{V} \quad (32 \ (e)(d)) \\ (L \otimes M)^{V} \quad L^{V} \otimes M^{V} \quad if \ dim \ L^{2} \otimes (excercise) \\ 32 \\ \cdot \ L^{V} = L \quad if \ L is simple \\ (T_{\lambda}^{m}(M))^{V} = T_{\lambda}^{m}(M^{V}) \\ \lambda \end{cases}$$

> Lop is projectie for P projectie L finale din.

< L(V) & M(X) has a standard filletin will how will v'a neight of L(V) $\operatorname{dim} (L(\overline{\nu})_{\nu'} = (L(\overline{\nu}) \otimes M(\lambda); M(\lambda + \nu'))$

 $l' = wV = jolin L(V)_{v} = 1$ (1, 6)

= > M(1+V) will le a subgrocheit

 $\lambda + \nu = \lambda + \mu - \lambda = \mu$

Theorem (Adjoint functor property)

Let $\lambda, \mu \in h^*$ be compatible. Then T^{μ}_{λ} is left and right adjoint to T^{λ}_{μ} :

 $\operatorname{Hom}_{\mathcal{O}}(T^{\mu}_{\lambda}(M), N) \cong \operatorname{Hom}_{\mathcal{O}}(M, T^{\lambda}_{\mu}(N))$

for all $M, N \in \mathcal{O}$.

Use a Remmoe: Hom (LGM, N) = Hom (M, L* ON) Goof MED, EUM Homor (L(V)ON,N) = Homor (M, L(-V)ON) Hom, (M, L(V) & N) Weed to show is that L(D) = L()-M) $L(\overline{V})^* = L(-w_0\overline{V})$ 1,6. the domint weight in worlit of

V= WV - NOV = - NOWV = NOW(-1)

 $\overline{-V} = w_{O}w(-V)$

Let $\mathfrak{g} = \mathfrak{sl}(2, \mathbb{C})$. Show that T_{λ}^{μ} need not take Verma modules to Verma modules. For example, let $\lambda = 1$ and $\mu = -3$.

$$v = -4$$
 , $v = 4$

L(V) is 5-ccim V4 - V2 - V0 - V-2 - V-4

$$\int z_{oj} e(t \circ n) = \partial_{-3}$$

$$-3, 1 = m(-3), m(1) \in -3$$

$$(-) \mathcal{M}(-) \rightarrow T^{\mathcal{M}}_{\lambda}(A(1)) \rightarrow \mathcal{M}(-) \rightarrow 0$$

Facets

Definition

a facet *F* is a nonempty subset of *E* determined by a partition of ϕ^+ into disjoint subsets ϕ_F^0 , ϕ_F^+ , ϕ_F^- :

$$\begin{split} \lambda \in \pmb{F} \Leftrightarrow \begin{cases} \langle \lambda + \rho, \alpha^{\vee} \rangle = \pmb{0} & \text{ when } \alpha \in \phi_{\pmb{F}}^{\pmb{0}}, \\ \langle \lambda + \rho, \alpha^{\vee} \rangle > \pmb{0} & \text{ when } \alpha \in \phi_{\pmb{F}}^{+}, \\ \langle \lambda + \rho, \alpha^{\vee} \rangle < \pmb{0} & \text{ when } \alpha \in \phi_{\pmb{F}}^{-}, \end{cases} \end{split}$$

Clearly the closure \overline{F} is obtained by replacing > by \geq and < by \leq . $\swarrow \rightarrow H_{-}$

y Wall I I I ₽₽ = 1

Upper closure

Definition

The upper closure \hat{F} of the facet *F* is defined by the conditions

$$\lambda \in \widehat{F} \Leftrightarrow \begin{cases} \langle \lambda + \rho, \alpha^{\vee} \rangle = \mathbf{0} & \text{when } \alpha \in \phi_F^0, \\ \langle \lambda + \rho, \alpha^{\vee} \rangle > \mathbf{0} & \text{when } \alpha \in \phi_F^+, \\ \langle \lambda + \rho, \alpha^{\vee} \rangle \leq \mathbf{0} & \text{when } \alpha \in \phi_F^-, \end{cases}$$

Let F be a facet in E.

- Prove that \overline{F} is the union of the facets F' for which $\phi_{F'}^+ \subset \phi_F^+$ and $\phi_{F'}^- \subset \phi_F^-$.
- Prove that F̂ is the union of the facets F' ⊂ F̄ satisfying for every α > 0 the condition:

 $\langle \lambda + \rho, \alpha^{\vee} \rangle \leq \mathbf{0} \text{ for all } \lambda \in \mathbf{F}' \Leftrightarrow \langle \lambda + \rho, \alpha^{\vee} \rangle \leq \mathbf{0} \text{ for all } \lambda \in \mathbf{F}.$

Theorem

· Trinol

Upper closures of facets have the following properties:

- Each facet lies in the upper closure of a unique chamber.
- If the facet F lies in the upper closure of the chamber C, then $\overline{F} \subset \overline{C}$.

• Define
$$C$$
 by
 $\overline{\Phi}_{C}^{\dagger} = \overline{\Phi}_{F}^{\dagger}, \quad \overline{\Phi}_{C}^{\circ} = \overline{\Phi}_{F}^{\circ} \cup \overline{\Phi}_{F}^{\circ}$

Non-integral weights

 $\overline{\Phi}_{[1]} = \{ \alpha \in \overline{\Phi} \mid \langle \lambda + \beta, \alpha^{\vee} \rangle \in \mathbb{Z} \}$ WERS = { we wind - & enzg =< 21 2 E 2 7 E(A) generalid by Zonts of @[A]. Restrict à 5 E(X) $\lambda^{\mathcal{F}} \stackrel{\sim}{\rightarrow} \mathcal{E}(\lambda)$

Proposition

Let $\lambda \in h^*$, with stabilizer W°_{λ} in $W_{[\lambda]}$

For all $w \in W_{[\lambda]}$, we have $\lambda - w \cdot \lambda = \lambda^{\sharp} - w \cdot \lambda^{\sharp}$, while $(w \cdot \lambda)^{\sharp} = w \cdot \lambda^{\sharp}$.

• The stabilizer of
$$\lambda^{\sharp}$$
 in $W_{[\lambda]}$ is W_{λ}° .

• Suppose $\phi_{[\lambda]} = \phi_{[\mu]} = \phi_{[\lambda+\mu]}$. Then $(\lambda+\mu)^{\sharp} = \lambda^{\sharp} + \mu^{\sharp}$.

$$\lambda - 2 \cdot \lambda = \langle \lambda + g , a^{\vee} \rangle a$$

$$= \langle \lambda^{\#} + g , a^{\vee} \rangle a$$

$$= \lambda^{\#} - m \cdot \lambda^{\#}$$

$$\langle 2_{a} \cdot \lambda + g , p^{\vee} \rangle = \langle 2_{a} \cdot \lambda^{\#} + g , p^{\vee} \rangle$$

$$\langle \langle \lambda + g \rangle, 2p^{\vee} \rangle = \langle (\lambda^{\#} + g), 2p^{\vee} \rangle.$$

· 2 is staliliser of 2# < x # - S, a > = 0 => < + (g, a" >= 0 => > is a stulilizer of). \cdot $\langle \lambda + \mu + \beta, \alpha \rangle$ = < + 5, 2 ") + < 1, 2") = < 1 + - g, 2 > + < 1+ g, 2 > + = < x " + p # + S, 2 >

Show that W_{λ}° is the group which fixes pointwise the facet $F \subset E(\lambda)$ to which λ^{\sharp} belongs; in turn, W_{λ}° is the group fixing \overline{F} pointwise.

Key lemma

Lemma

Let $\lambda, \mu \in h^*$ be compatible, with $\nu := \mu - \lambda \in \mathbb{A}$ and $\overline{\nu}$ the unique W-conjugate of ν lying in Λ^+ . Assume that λ^{\sharp} lies in a facet F of $E(\lambda)$, while μ^{\sharp} lies in the closure \overline{F} . Then for all weights $\nu' \neq \nu$ of $L(\overline{\nu})$, the weight $\lambda + \nu'$ is not linked by $W_{[\lambda]} = W_{[\mu]}$ to $\lambda + \nu = \mu$.

$$\begin{array}{l} \underbrace{\operatorname{Orouf}}_{\operatorname{Eng}} & n \in W_{\operatorname{Eng}} & 2. C. \\ & w.(\lambda + v') &= \lambda + v \\ \stackrel{(=)}{=} & w.\lambda + wv' = \lambda + v \\ \stackrel{(=)}{=} & \lambda - w.\lambda &= wv' + v \\ \stackrel{(=)}{=} & \lambda^{\#} - w.\lambda^{\#} = wv' + v \\ \stackrel{(=)}{=} & u.(\lambda^{\#} - u') = \lambda^{\#} + v \end{array}$$

Horane V' Z V $\nabla_{\cdot} t \cdot w \cdot (\lambda^{\mathcal{H}} + v') = \lambda^{\mathcal{H}} + v$ L(C,C) as number of 20-1hyperplanes between these chambers. (Ordere v' >. t o((C, C') is minimail, λ[#]uv eC 入ガーレ モモ I d ((, (')=0 mot- possible junce is function domain of WEW

2] d((,('))o, chen choosed 2.6 Hz separates con((' on (Manc' \$\$. ('is on positive side af HX C neg '' Hd.

=) <1 #-1 ~ (+S, a > > > 0 < 2# + V + S, a > < 0. 3 C'' = 2 C' = 4 (C'', C) < 4 (C', d)

5] < Ets, austo por all EEC 1 < xx , 2 > 50 $\int_{X} (\lambda^{*} + \nu') = \lambda^{*} - \langle \lambda^{*} + \beta, \alpha^{\nu} \rangle \alpha$ $\leq \lambda^{*} \downarrow \nu'$ 引 えレビ マレー イガ・ターマンマ - V" 8 2 1 = 1 = 1

 $2\cdot (\lambda^{\#} + \nu') = \lambda^{\#} + \nu''$ x#+11'- <x #+11+8,2">x 2 2 V', V'are neights of L(V) 26 v'' is also a neight of (10) $14 2(\lambda^{4} + v') = \lambda^{4} \perp v'' \in C''$ (16) d(c,c'') < o(c,c')and ht + V' is W- connected to h + + V => V= V"

71 コレビミレミレ V+a, V-a werlalt neights of L(V) 2 V = V = V ' 12) Da V'= Za V'- <1 #+8, av>a =) < 1 # 15, 2 > = 0 2 e ap - < E+g, 2 > = 0 VEEF \lambda \mathcal{X} + \mathcal{V} + \mathcal{S}_{\mathcal{J}} = 0
 \] => < V.d >=0.

14/2 1/= 1 ~ ~ (< 1, 2)=0 4

レイチレ

Exercise. How does the proof simplify if both λ^{\sharp} and μ^{\sharp} are assumed to lie in C?