In this chapter we will answer the following questions:
1) What are the simple submodules of M(\)?
2) When is M(X) simple?
3) When does an embedding M(u) — M(\) exist?
4) Can we construct such an embedding explicitly?
5) What are the blocks of O7

Today: (1), (2) for A € A and (3) for pu, A € A.
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Simple Submodules of Verma Modules

Lemma (4.1)

Any two nonzero left ideals of a left noetherian ring without zero
divisors must intersect nontrivially.

\

Proposition (4.1)

For any \ € b*, the module M(X) has a unique simple submodule,
which is therefore its socle.

Proof:
e M()) is artinian, so it has a simple submodule.

\

@ Suppose L, L’ are distinct simple submodule of M()), then
LNl = {o}.

@ As U(n~)-modules, M(X) =2 U(n~). So L and L' are left
ideals of U(n™).

e U(n™) is a left noetherian ring without zero divisors, so
LN L"# {0}. This is a contradiction. O
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Simple Submodules of Verma Modules

Note:

@ The simple submodule of M(X) is isomorphic to some L(1)
with 1 < A. Moreover, 1 = w - A for some w € W)y

Exercise:

@ Let M be a nonzero submodule of M(A). Then M has a
nondegenerate contravariant form if and only if it is the
unique simple submodule of M(X).
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Homomorphisms Between Verma Modules

Theorem (4.2)

Let X\, € b*.
a) Any nonzero homomorphism ¢ : M(u) — M(\) is injective.
b) In all cases, dim Hom(M(p), M(X)) < 1.

c) The unique simple submodule L() in M(X) is a Verma
module.

Proof:

a) As a U(n™)-module homomorphism ¢ : U(n™) — U(n™),
u' — u'u, for some fixed u # 0.
Since U(n™) has no zero-divisors, Ker ¢ = 0.

b) Consider nonzero 1,2 : M(u) — M(A) and unique simple
submodule L € M(p). Then p1(L) = p2(L) is simple.
Let o3 = 1 — cpa s.t. @3(L) = {0}. Then p3 =0 by (a).

c) By universal property of M(u), there exists ¢ : M(u) — M(X),
with o(M(p)) = L(p). Now ¢ is injective by (a). O
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Homomorphisms Between Verma Modules

Notes:

e Whenever Hom(M(u), M(\)) # 0 we can now unambiguously
write M(p) C M(X).
@ One major goal in this chapter is to study this embedding.

e When does it exist?
o How can we construct it?

@ The other goal is to determine when M(A) is simple.
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Special Case: A is a Dominant Integral Weight

Proposition (4.3)

Suppose A+ p € NT. Then M(w - X\) C M(X), for all w € W; thus
all [M(X) : L(w - A)] > 0.

More precisely, if w has reduced expression w = s, - - - s1, with s;
reflection relative to the simple root «;, then there is a sequence

M(w - A) = M(An) € M(Ap_1) C -+ € M(Xo) = M(N\),

where Ao := X and A\g := sk - Ak—1, for k € {1,...,n}.
In particular, A\, < Ap—1 < --- < Ao, with (\x + p, a)(/H) e Zt, for
k=0,...,n—1.

o’

Proof:
Use the reformulated Proposition 1.4 and Theorem 4.2(c):
o If (\x +p,a,,) € Z*, then there exists an embedding
M(Sk+1 . )\k) = M()\k+1) — M()\k) L]
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Special Case: A is a Dominant Integral Weight

Exercises: Assume A+ p € A™.
@ The unique simple submodule of M()) is isomorphic to
M(ws - N).
@ If A € AT, then all inclusions in the proposition are proper.
Notes:
@ This proposition will generalize as follow:

Let A € b*. Given a > 0, suppose 11 := s, - A < A. Then there
exists an embedding M(u) C M(X).
@ The failure of Proposition 1.4 to carry over to nonsimple
positive roots, means that a totally different strategy is
needed to generalize this result.
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Simplicity Criterion: Integral Case

Recall that A € b* is called antidominant if (A + p,a") ¢ Z>0 for
all € &,

Theorem (4.4, Simplicity Criterion)

Let A € h*. Then M(X\) = L(X) if and only if X is antidominant.

Proof (Integral case, A € A):
@ Suppose M(]) is simple and that X is not antidominant.
e Then, since A € A, we can find a simple root « such that
A+ p,a¥) > 0.
o Using the Proposition 1.4 and Theorem 4.2(c), we get a
proper embedding M(s, - A) — M(\).
o This contradicts the simplicity of M()).
@ Suppose A is antidominant.
o Then by (3.5), A< w- .
e But M()) only has composition factors L(w - \) with w- A < A
o Therefore L()\) is the only composition factor and it occurs
only once, so M(\) = L(}). O
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Simplicity Criterion: Integral Case

Exercise:

e If A € A'is antidominant, then the socle of P(w - A) with
w € W is a direct sum of copies of L(A).

@ The general version of this result is proven later.
Notes:
@ Only the second part of this proof can be generalized to
A€ br.
@ The first part does not generalize since Proposition 1.4 no
longer applies.

@ We therefore need more information on embeddings
M(sq - A) € M()), where « is not simple.
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Existence of Embeddings: Preliminaries

Proposition (4.5)
Let u, A € b* and o € A, with n:= (A + p,a") € Z and

M(sq - 1) € M(p) € M(X).

Then there are two possibilities for the position of M(s, - \):
a) Ifn <0, then M(\) C M(s, - ).
b) If n> 0, then M(sy - 1) C M(so - A) C M(N).

Lemma (4.5)

Let a be a nilpotent Lie algebra, with x € a and u € U(a). Given a
positive integer n, there exists an integer t depending on x and u
such that x*u € U(a)x".

\

We also note that for any « € A and t > 0,
[x, vl = tye H(ha — t+1).
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Existence of Embeddings: Preliminaries

Proof ( Proposition 4.5):
a) If n <0, then M(\) C M(s, - \) by Proposition 1.4, since
(S0 At ,0%) = (50 (A p),0Y) = At p, —a¥) = —n > 0.

b) If n > 0, then we want M(s, - 1) C M(s - ) C M()).
o Proposition 1.4 immediately gives M(s, - \) C M(u).
o Letting s := (u+ p,a") we get maximal vectors

vy € M(N),  yavy € M(saA), vy € M(u),  ya-v € M(saop).

o Since M(u) C M(X), there is u € U(n™) with v;F = u- vy
o Lemma 4.5 gives us t > s such that y.u € U(n™)y!. So

Vi v = yhus v € U )yavE © M(s, - ).
o If t > s, then we use [x,yl] = tyt 1(h, — t + 1) to get
(s — )ty vl = xaylh - vl € M(sq - A).
o This proves y; - v;f € M(s,-A) and M(sy - p1) C M(s-A). [
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Existence of Embeddings: Integral Case

Theorem (4.6, Verma)

Let A\ € h*. Given o > 0, suppose i1 := s, - A < \. Then there
exists an embedding M(p) C M(X).

Proof (Integral case, A € A):

@ Since A is integral, so is y. Therefore we can find w € W
such that ¢/ :=w=!- e AT —p.

@ Considering a reduced expression w = s, - - - 51, we define
weights o := ¢/ and py = sg - g1, for k=1,... n.

@ Proposition 4.3 tells us that pg > --- > up, and that

M(po) D M(pa1) O -+ D M(pn).

o Letting ' := w1 - X we define a parallel list of weights.
Xo:=MNand N\ =5k N1, for k=1,... n.
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Existence of Embeddings: Integral Case

Proof (continued):

@ A short calculation shows that if wy := sx11---s,, then
Mk = S8, - Ak, Bk is the root with sg = Wk_lsawk.

It follows that pyx — Ak € Zfk.

We may assume that p < A. This implies px # Ax and in
particular ¢/ > X, since p’ is dominant.

There must thus be a least index k such that px > Ax and
Pl < Agy1. We fix this k.

We will prove M(pks1) C M(Ak+1), M(pik42) C M(Akr2),...
Culminating in M(un) C M(Ap).

By definition fix1 — Akg1 = Skg1 (e — Ak)-

By our choice of k, we get pixr1 — Akyr1 € Z~ Biy1 and
Skr1(pk — M) € ZF Br. So B = Brg1 = k1.

Prop 1.4 yields M(uk+1) = M(sks1 - A1) € M(Aks1)-
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Existence of Embeddings: Integral Case

Proof (continued):

@ Combined with the sequence of embeddings we get

M(pikr2) = M(sks2 - pky1) C M(pky1) C M(Ags)-

@ Proposition 4.5 then implies that

M(piki2) © M(ski2 - Akt) = M(Air2)-
@ lterating these last arguments we get

M(u) = M(us) C M(Aq) = M(A).
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Extra: Solution to problem we discussed at the end

Let A € b*, a >0 and M(s, - \) C M(X\). Then (A +p,aV) € Z7.

Proof: The embedding implies that s, - A < A.
In general we have

Sa  A=5a(A+p)—p=A—A+pa)a
So sy - A < Aif and only if
A=su-A=A+pa)aerl

if and only if
A +p,aY)y ezt
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Existence of Embeddings: General Case

Theorem (4.6, Verma)

Let A € h*. Given o > 0, suppose i := Sy - A < A. Then there
exists an embedding M(p) C M()).

Proof:
@ Note that v:= A —p €T and let

X:={Aebh": M(p)=MN-v)C M(N)}
H:={\eb*: (A+pa’)eZ’}

o Recall that s, - A < X if and only if (A\+p,aV) € ZT. Itis
enough to prove that X = H.

@ We know that X C H and that AN H C X.
@ By 1.9 we know that AN H is is Zariski dense in H.
@ Proving that X C h* is Zariski closed implies X = H.
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Existence of Embeddings: General Case

Proof(continued, X is Zariski closed):

X={xebh": M\ —-v)C M(\)}.
We need to construct a polynomial on h* whose set of
common zeros is X.
Write A = \iwy + - - + Ay and consider A1,..., Ay as
polynomial variables.
We construct a linear map g* : U(n™)_, — U(n™)’, such
that

@ its matrix is written in terms of the \;.

e rankg? < dimU(n™)_, if and only if A € X.
The matrix of g* then has a certain minor

o which depends polynomially on the A;'s.

e whose determinant is 0 if and only if A € X.
The construction of such a g* thus proves X to be Zariski
closed.

17/42



Existence of Embeddings: General Case

Proof(continued, construction of g*):

@ Let (h;, x;, y;) be standard bases for s; = s((2, C)
corresponding to simple roots, for i =1,... /.

@ For u e U(n™) we can find uj, ul € U(n™) depending linearly
on u such that [x;, u] = u; + u}h;.

o We define for i = 1,...,¢, the linear maps
A UM ), = Um™),  urs up+ Mh)ul = up + Nl

g U ) = U@ ), ue B u) @ @ fNu).
o Let vt € M(\) be a maximal vector of weight .

@ A short calculation shows that g*(u) = 0 if and only if u- v
is a maximal vector of weight A — v.

o So rankg? < dim U(n™)_, if and only if M(\ —v) C M()).
L]
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Existence of Embeddings: General Case

Notes:

@ Generalization of Proposition 1.4:
Let A€ bh* and a > 0. Then s, - A < Aif and only if
A+ p,a¥) € Z*T if and only if M(s, - A) C M()).

o Generalization of Proposition 4.3:

Let A € b* and ay,...,a, > 0 with
(S Say) " A< -+ <sey - A< A, then

M(A) D M(sa; - A) D --- D M((sa, -+ Say) - A)-

e We thus have a sufficient condition for [M(\) : L(s, - A)] > 0.
This is also a necessary condition (5.1).
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Simplicity Criterion: General Case

A € b* is antidominant if (A4 p,a) ¢ Z>0 for all a € &+,

Theorem (4.4, Simplicity Criterion)

Let A\ € b*. Then M(\) = L(X) if and only if \ is antidominant.

Proof:
@ Suppose M(A) is simple and that A is not antidominant.
o Then, we can find o > 0 such that (A + p,a") € Z>°.
Since A — s, - A = (A + p,a¥)a, then s, - A < A
So there exist a proper embedding M(s, - A) C M()).
This contradicts the simplicity of M(X).
@ Suppose A is antidominant.
o Then by (3.5), A < w -, forany w € Wy
e But M() only has composition factors L(w - \) with
w-A<Xand w € WP\]'
o Therefore L()) is the only composition factor and it occurs
only once, so M(A) = L()). O
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Simplicity Criterion: General Case

Corollary (4.8)

Let X € b* be antidominant. Then for all w € W]y, the socle of
P(w - \) is a direct sum of copies of L(\).

Proof:

@ Construct a standard filtration
0=PyCPLC--CPy=P(w-]),

with P;/P;i_1 = M(w’ - X) for some w' € W.

Take simple summand L C Soc P(w - \).

Let i be the least index such that L C P;, then LN P;_; = 0.
Then L © M(w' - \) = P;/P;_1.

Then L is a Verma module with antidominant highest weight
linked to w’ - A, so L= L(\). O
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Simplicity Criterion: General Case

Notes:
@ It is hard to determine for what r of appear in
Soc P(w - \) = L(A)".
@ It can be shown (13.14), using Requires Kazhdan—Lusztig
theory (8.4), that

r=(P(w-A): Mws-A)=[M(ws-A): L(w- )]

Exercise:
o Let A e h*. If P(\) = P(M\)Y is self-dual, i.e. P(\) = Q(N).
Then X is antidominant.
e What can we say about the converse? See Theorem 4.10.
@ Solution:
o P(A) has submodule L(x), where i is antidominant.
o P(A\) = Q(X) is injective and indecomposable, so
Q(A) = Q(u). Therefore, A = p.
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Blocks of @O Reuvisited

Definition of blocks:

@ Simple modules M; and M, are in the same block if
EXt@(Ml, Mz) 75 0 or EXtO(M2, Ml) 75 0.

@ Two modules are in the same block if all their composition
factors are.

Theorem (4.9)

The blocks of O are precisely the subcategories consisting of
modules whose composition factors all have highest weights linked
by Wy to an antidominant weight A. Thus the blocks are in
natural bijection with antidominant (or alternatively, dominant)
weights.

We denote the individual blocks by O, where X is antidominant.
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Blocks of @O Reuvisited

Proof:

Enough to prove it for simple modules.

Let © € b*. Then M(u) has unique simple submodule
L(X) = M(X). Where X is antidominant by Theorem 4.4.

All composition factors of M(u), including L(1), are in the
same block as L(\). Moreover, u = w - X for some w € Wy;.

Furthermore, L()\) is the unique simple submodule of M(w - \)
for any w € Wyj. So L(w - A) is in the same block as L()).

Finally, suppose A\ and )\ are both antidominant and A # \.
Then by Theorem 3.3 and Theorem 4.4

Exto(L(A), L(X)) = Exto(L(A), L(X)Y)
= Exto(M(\), M(X')¥) = 0

Therefore, L(A\) and L()\') are not in the same block. O
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Blocks of @O Reuvisited

Notes:

@ Suppose A and )\ are antidominant and that Oy, Oy C Oy,
for some central character .

o Then [Wjyy - Al = W - V| and O\ = Oy
@ Last part is not proven in this book.
Exercise:

@ Suppose M € O has a contravariant form, then its block
summands in distinct blocks Oy, O,, are orthogonal.
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Example: Antidominant Projectives

@ If A+ p € AT, then X is dominant and integral. and w, - A is
antidominant and integral.

Theorem (4.10)

Let \+p € AT. Then P(ws - \) = P(w, - \)V and
(P(wo - A): M(w - X)) = [M(w-X): L(ws - A)] =1 forallwe W.

Proof:
e Consider the module P(—p) = M(—p) = L(—p) = Q(—p).
e This is projective and injective.
@ Define the module T := M(—p) ® L(A + p).

e Since dim L(\ + p) < oo, then T is projective and injective.

o T has standard filtration M(u — p), where u runs over the
weights of L(A + p).

o M(p — p) appears dim L(A + p),, times.

e Each direct summand of T satisfies similar properties.
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Example: Antidominant Projectives

Proof (continued):
@ Consider the central character y = ) and the block
summand TX of T.
e TX is projective and injective.
e TX has standard filtration by M(u — p)’s, where  runs over
the weights of L(\ + p), for which p — p is linked to A.
o M(p— p) appears dim L(A + p), times
o lfu—p=w-A thenu=w-(A+p).
e Since dim L(A + p) < oo, then dim L(A + p)w.(x4p) = 1.
@ TX has standard filtration by M(w - A)’s, for w € W, each
occuring exactly once.
@ In particular, TX has the M(w, - A) = L(ws - A) as quotient.
e Now TX is projective, so it has P(w, - A) as direct summand.
o Therefore, (P(wo - A): M(w - X)) < 1.
o But L(ws, - A) is the unique simple submodule of M(w - )), so
[M(w - X)) : L(ws - A)] > 1.
@ So (P(ws-A): M(w- X)) =1and thus TX = P(w, - \).
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Example: Antidominant Projectives

Proof (continued):

@ w, -\ is antidominant, so the socle of P(wo - A) is L(ws - )",

for some r.
@ So L(ws - A) is a submodule of P(ws - A).

@ Now TX = P(w, - A) is injective and indecomposable, so
P(ws - A) is the injective envelope of L(ws - A).
@ In other words, P(ws - \) & Q(ws - \) = P(ws - A)V. O
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Example: Antidominant Projectives

Notes:

@ This theorem generalizes (7.16):

e Let A\ € h* be antidominant. Then P()\) = P(\)" and

(P(A) : M(w - X)) = [M(w- ) : L(A)] =1 for all w € Wy

e By Exercise 4.8, P(\) = P(\)Y only when X\ is antidominant.
Exercise:

e What can we say about dim Endp P(ws - A)?

@ Solution: dim Endp P(wo - \) =17
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Application to sl(3, C)

What are the composition factors of M(w - \), when A € A'is
antidominant and regular?
e For s((3,C), A ={«, B} and W = {1, 54, 58, 5258, S3Sas Wo } .
o Linkage class: {\, 54\, 58\, 5058 A, 5550+ A, Wo - A}
e Composition factors of M(\):
o [M(A): L(\)] =1
o [M(N): L(w-A)] =0 forw# 1.
o chL(A) =chM())
e Composition factors of M(s, - A):
o [M(sa-A): L(sa-N)] =1
o [M(sa-N): L(N)] =1
o [M(sy-A):L(w-A)]=0forw¢ {1,s,}.
o chl(sy-A)=chM(sy-A)—chM(X)
@ Remaining cases (w € {5,583, 5854, Wo}): Section 5.4.

@ General solution: Chapter 8.
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Application to sl(3, C)

Exercise:
@ Suppose A € A is antidominant and in the a-hyperplane.
A\ aY) =0.
Linkage class: {\,sg - A, 5453 - A}.
Wo - A = 5,58 - A is dominant.
A< 53N <5530 A

@ The composition factors of M(\) and M(sz - A) are know.
e Composition factors of M(syss - A):
o [M(sasg-A):L(sasg-A)]=1
o [M(sasg-A):L(N\)]=1
o [M(sasg-A):L(sg-A)]=r>0.
o chL(sysg-A) =ch M(sysg-A)—rch M(sg-A)+(r—1)ch M(X).

@ Can we determine r?
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Shapovalov Elements

Can we construct an embedding M(s, - A\) C M(X) explicitly?
Here A € b*, v € d* and (A + p,7Y) > 0.

vt € M(\) maximal vector of weight .

vt e M(sy - A\) maximal vector of weight s, - A

There is a unique (up to a scalar) u € U(n™) such that
e u-v™ is a maximal vector of weight s, - A =X — (A + p, V).
o Then embedding is given by v/ - v +— v/'u-v™.

How does u depend on \?
@ Hard to answer.
e Find instead element 6., , € U(b™)_,, for r > 0, such that
e 0, ,€ U(b~)_,, is independent of A.

o 0, ,- vt is a maximal vector of weight A — ry whenever
(A+p,vY) = r and vt is a maximal vector of weight .

@ 0, is the Shapovalov element.
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Shapovalov Elements

Example/Exercise:
g :5[(35((:)' A= {aaﬁ} and ®F = {avﬁafy = +6}

@ Since a, 3 are simple, then 0, , = y/ and 03, = yﬁr.
@ To determine 0. , is difficult. We do only 6, 1.
°

We construct first the element v € U(n™)_, dependent on A.
Since u # 0, then u = ry,ys + sy,, with r, s not both 0.
Write A\ = aw,, + bwg.

Assume (A + p,vY) =1, then a+ b= —1.

Define hyperplane H := {\ = aw, + bwg : a+ b= —1}.

If u- vt € M(\) is maximal vector of weight A\ — ~, then

o 0=xqu-vh =(r(a+1)—s)ys-vt.

o 0=xgu-vt =(rb+s)y,-vt.

@ This determines v in terms of A € H.

o In all cases, r # 0.
@ u is unique up to a scalar
e So we may take r =1 and s = —b = A(hg).
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Shapovalov Elements

Example/Exercise:
e Now consider y,yg — yyhg € U(b™)_,.
@ For all A € H an maximal vector v of weight \:
o Xo(Yays —yyhg) vt =(a+1+b)yg-vt =0
o xg(yays — yyhg) v = (b= b)ya-v* =0.
@ S0 041 = Yays — yhs.
o Clearly 0,1 is independent of \.
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Shapovalov Elements

Write &1 = {aq,...,an} with A = {ay,...,ap}. Let y; € U(n™)
correspond to —q;, fori=1,... ., m.

Theorem (4.12, Shapovalov)

Fix v € ®* and an integer r > 0. There exists an element
0-,r € U(b™)_, having the following properties:

a) For each root 8 > 0, the commutator [x3, 0. ] lies in the left
ideal I, , :== U(g)(hy + p(hy) — r) + U(g)n.
b) Ify= Zle ajaj, then we can write

V)
Oy =Ty +>_ piaj,
i=1 i

with p; € U(n™)_,,, q; € U(h), and deg p; < r S'_; a;.
Moreover, 0., . is unique (up to a scalar) modulo the left ideal
Jy.r = UbT)(hy + p(hy) —r).
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Shapovalov Elements

Notes:

e Consider A € h*, vy € T and r > 0. Let v € M()\) be a
maximal vector of weight .

e Then 6., vT is a maximal vector of weight A — ry =5, - A,
whenever r = (A + p,v").

e If so, then consider g; from (b) as polynomial functions on h*

and write
0,,(\) = H Y+ pigi(N).
J

e Then 6., ,(\) € Un™)_,y and 6., ,(\) - v is a maximal vector
of weight A —ry = s, - A.
e 0. ,()) is unique (up to a scalar) in U(n™).
o Difficult to construct 60, , explicitly. We use a more round
about approach.
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Proof of Shapovalov's Theorem

Proof (Set-up, Induction in ht~):

@ Fixr>0andye€ o™,
o If v is simple (hty = 1), then 6, , = yJ.
e This is our induction base.

o If v ¢ A, then there exists & € A (0.2) such that
o p:={(v,a")>0.
o f:=s5,7vy=7v—pa>0, and ht3 < ht~.

@ The induction hypothesis provides 63, € U(b™)_,3 with the

desired properties.

@ Before applying this we discuss the proof strategy.
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Proof of Shapovalov's Theorem

Proof (Strategy):
@ Consider hyperplane H, , and half-space H,:

Hyri={ e (A+p.7") =r}
Ho :={X e b*: (A +p,a’) <0}

@ H, , is Zariski closed.
e AN H, , is Zariski dense in H, ;.
@ ©:=H,NANH,, is also Zariski dense in H, ,. Why?

Note that H, , contains exactly the weights A for which we expect
0,.r to describe the embedding M(s, - A) < M(\).
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Proof of Shapovalov's Theorem

Proof (Strategy):
@ Recall that | is the left ideal in U(g) annihilating any maximal
vector vt € M()\) of weight \.
@ Suppose we have 0., ,(\) € U(n")_,,, for each A € ©, s.t.
a'") [xy,04.,(N)] € 1.
b') Independent of the choice of A € ©, the highest degree term in
6~.-(A) when written in a standard PBW basis is []; y/*'.
c') The coefficients of 6., ,(\) in the PBW basis depend
polynomially on A.
@ By (¢’) there exists pj € U(n")—_,y and g; € U(h) such that
0y,r(A) = 22 Pigi(A).
@ 0, ,()\) can be extended to all A € H, ,:
o Rewrite (a')-(c¢’) as polynomial equations whose mutual
solution space is then Zariski closed. It is then H, ..

o Define then 0, := 3. pjq; € U(b™)—ry.
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Proof of Shapovalov's Theorem

Proof (Strategy):
The element 0., := >_. pjq; € U(b™)_, then satisfies the
conditions of the theorem.

a) Follows from (a’). How?

b) Follows directly from (b") and the definition of 6., ,.
*) 6, is unique (up to a scalar) modulo J, .
o Ateach A € H,,, J,  specializes to the annihilator in U(b™)
any maximal vector v € M()) of weight A.
o At each A € H,,, 0., specializes to 6, ,(\), which is the

unique (up to a scalar) element in U(n~) inducing
M(sy - X) = M(X).
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Proof of Shapovalov's Theorem

Proof (Construction of 6., ,()), A € ©):
@ Recall the data we have:
e r>0,v>0with hty > L.
o a € Awithp=(y,a") >0, 8:=s,7=7— pa >0 and
ht 5 < ht.
e 05, € U(b™)_,s, satisfying the conditions of the theorem.
o 0s,(u), for all u € Hg , satisfying (a’)-(c’).
@ For \ € O there is g € Z>9 such that
o [1i=5, - A=A+qa> A\ u€ Hg,.
0 so-(p—rB)=A—ry, with {ug—rB+p,aV) =g+ rp.
o Writing n:= q + rp > 0 we get embeddings:

o M(A) — M(u), induced by yd.
o M(p—rpB)— M(u), induced by 8 ,(1).
o M(\—ry) = M(u— rpB), induced by y?.

41/42



Proof of Shapovalov's Theorem

Proof (Construction of 6., ,()), A € ©):
@ We have the embeddings:

M(A) < M(u), induced by y3.

M(p — rB) < M(u), induced by 65 ().

M(X — ry) = M(p — rp3), induced by y2.

y3, 05.,(1) and y2 are unique in U(n~) up to a scalar.

e Furthermore the embedding M(\ — ry) < M()) is induced
by a unique element 6., (), satisfying:

e'y,r()‘)yg = ycrlaﬁ,r(:u)

@ 0. ,(\) then satisfies the properties (a')-(c’).
a'") [xy,60+,-(N)] € 1. Why?
b") Follows by comparing highest degree terms on either side.
c') Pull all y, to the right on both sides and remove y.
Rewriting into PBW no extra dependencies on \ appear.
(¢’) then follows since 63, satisfy (¢’) and p = A + ra. O
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