In this chapter we will answer the following questions:

- 1) What are the simple submodules of $M(\lambda)$?
- 2) When is $M(\lambda)$ simple?
- 3) When does an embedding $M(\mu) \rightarrow M(\lambda)$ exist?
- 4) Can we construct such an embedding explicitly?
- 5) What are the blocks of \mathcal{O} ?

Today: (1), (2) for $\lambda \in \Lambda$ and (3) for $\mu, \lambda \in \Lambda$.

Simple Submodules of Verma Modules

Lemma (4.1)

Any two nonzero left ideals of a left noetherian ring without zero divisors must intersect nontrivially.

Proposition (4.1)

For any $\lambda \in \mathfrak{h}^*$, the module $M(\lambda)$ has a unique simple submodule, which is therefore its socle.

Proof:

- $M(\lambda)$ is artinian, so it has a simple submodule.
- Suppose L, L' are distinct simple submodule of M(λ), then L ∩ L' = {0}.
- As U(n⁻)-modules, M(λ) ≃ U(n⁻). So L and L' are left ideals of U(n⁻).
- U(n⁻) is a left noetherian ring without zero divisors, so L ∩ L' ≠ {0}. This is a contradiction.

Note:

- The simple submodule of M(λ) is isomorphic to some L(μ) with μ ≤ λ. Moreover, μ = w · λ for some w ∈ W_[λ].
 - Let M be a nonzero submodule of M(λ). Then M has a nondegenerate contravariant form if and only if it is the unique simple submodule of M(λ).

Homomorphisms Between Verma Modules

Theorem (4.2)

Let $\lambda, \mu \in \mathfrak{h}^*$.

- a) Any nonzero homomorphism $\varphi: M(\mu) \to M(\lambda)$ is injective.
- b) In all cases, dim Hom $(M(\mu), M(\lambda)) \leq 1$.
- c) The unique simple submodule $L(\mu)$ in $M(\lambda)$ is a Verma module.

Proof:

- a) As a U(n⁻)-module homomorphism φ : U(n⁻) → U(n⁻), u' → u'u, for some fixed u ≠ 0.
 Since U(n⁻) has no zero-divisors, Ker φ = 0.
- b) Consider nonzero φ₁, φ₂ : M(μ) → M(λ) and unique simple submodule L ⊂ M(μ). Then φ₁(L) = φ₂(L) is simple. Let φ₃ = φ₁ cφ₂ s.t. φ₃(L) = {0}. Then φ₃ = 0 by (a).
 c) By universal property of M(μ), there exists φ : M(μ) → M(λ),
 - with $\varphi(M(\mu)) = L(\mu)$. Now φ is injective by (a).

Notes:

- Whenever Hom(M(μ), M(λ)) ≠ 0 we can now unambiguously write M(μ) ⊂ M(λ).
- One major goal in this chapter is to study this embedding.
 - When does it exist?
 - How can we construct it?
- The other goal is to determine when $M(\lambda)$ is simple.

Proposition (4.3)

Suppose $\lambda + \rho \in \Lambda^+$. Then $M(w \cdot \lambda) \subset M(\lambda)$, for all $w \in W$; thus all $[M(\lambda) : L(w \cdot \lambda)] > 0$.

More precisely, if w has reduced expression $w = s_n \cdots s_1$, with s_i reflection relative to the simple root α_i , then there is a sequence

$$M(w \cdot \lambda) = M(\lambda_n) \subset M(\lambda_{n-1}) \subset \cdots \subset M(\lambda_0) = M(\lambda),$$

where $\lambda_0 := \lambda$ and $\lambda_k := s_k \cdot \lambda_{k-1}$, for $k \in \{1, ..., n\}$. In particular, $\lambda_n \leq \lambda_{n-1} \leq \cdots \leq \lambda_0$, with $\langle \lambda_k + \rho, \alpha_{k+1}^{\vee} \rangle \in \mathbb{Z}^+$, for k = 0, ..., n-1.

Proof:

Use the reformulated Proposition 1.4 and Theorem 4.2(c):

• If $\langle \lambda_k + \rho, \alpha_{k+1}^{\vee} \rangle \in \mathbb{Z}^+$, then there exists an embedding $M(s_{k+1} \cdot \lambda_k) = M(\lambda_{k+1}) \to M(\lambda_k)$.

Exercises: Assume $\lambda + \rho \in \Lambda^+$.

The unique simple submodule of M(λ) is isomorphic to M(w₀ · λ).

• If $\lambda \in \Lambda^+$, then all inclusions in the proposition are proper. Notes:

• This proposition will generalize as follow:

Let $\lambda \in \mathfrak{h}^*$. Given $\alpha > 0$, suppose $\mu := s_{\alpha} \cdot \lambda \leq \lambda$. Then there exists an embedding $M(\mu) \subset M(\lambda)$.

• The failure of Proposition 1.4 to carry over to nonsimple positive roots, means that a totally different strategy is needed to generalize this result.

Simplicity Criterion: Integral Case

Recall that $\lambda \in \mathfrak{h}^*$ is called antidominant if $\langle \lambda + \rho, \alpha^{\vee} \rangle \notin \mathbb{Z}^{>0}$ for all $\alpha \in \Phi^+$.

Theorem (4.4, Simplicity Criterion)

Let $\lambda \in \mathfrak{h}^*$. Then $M(\lambda) = L(\lambda)$ if and only if λ is antidominant.

Proof (Integral case, $\lambda \in \Lambda$):

- Suppose $M(\lambda)$ is simple and that λ is not antidominant.
 - Then, since $\lambda \in \Lambda$, we can find a simple root α such that $\langle \lambda + \rho, \alpha^{\vee} \rangle > 0$.
 - Using the Proposition 1.4 and Theorem 4.2(c), we get a proper embedding $M(s_{\alpha} \cdot \lambda) \to M(\lambda)$.
 - This contradicts the simplicity of $M(\lambda)$.
- Suppose λ is antidominant.
 - Then by (3.5), $\lambda \leq w \cdot \lambda$.
 - But M(λ) only has composition factors L(w · λ) with w · λ ≤ λ.
 - Therefore L(λ) is the only composition factor and it occurs only once, so M(λ) = L(λ).

Exercise:

- If λ ∈ Λ is antidominant, then the socle of P(w · λ) with w ∈ W is a direct sum of copies of L(λ).
- The general version of this result is proven later.

Notes:

- Only the second part of this proof can be generalized to $\lambda \in \mathfrak{h}^*.$
- The first part does not generalize since Proposition 1.4 no longer applies.
- We therefore need more information on embeddings $M(s_{\alpha} \cdot \lambda) \subset M(\lambda)$, where α is not simple.

Existence of Embeddings: Preliminaries

Proposition (4.5)

Let
$$\mu, \lambda \in \mathfrak{h}^*$$
 and $\alpha \in \Delta$, with $n := \langle \lambda + \rho, \alpha^{\vee} \rangle \in \mathbb{Z}$ and

$$M(\mathbf{s}_{\alpha} \cdot \mu) \subset M(\mu) \subset M(\lambda).$$

Then there are two possibilities for the position of $M(s_{\alpha} \cdot \lambda)$: a) If $n \leq 0$, then $M(\lambda) \subset M(s_{\alpha} \cdot \lambda)$. b) If n > 0, then $M(s_{\alpha} \cdot \mu) \subset M(s_{\alpha} \cdot \lambda) \subset M(\lambda)$.

Lemma (4.5)

Let \mathfrak{a} be a nilpotent Lie algebra, with $x \in \mathfrak{a}$ and $u \in U(\mathfrak{a})$. Given a positive integer n, there exists an integer t depending on x and u such that $x^t u \in U(\mathfrak{a})x^n$.

We also note that for any $\alpha \in \Delta$ and t > 0,

$$[x,y_{lpha}^{t}] = t y_{lpha}^{t-1} (h_{lpha} - t + 1).$$

Existence of Embeddings: Preliminaries

Proof (Proposition 4.5):
a) If
$$n \leq 0$$
, then $M(\lambda) \subset M(s_{\alpha} \cdot \lambda)$ by Proposition 1.4, since
 $\langle s_{\alpha} \cdot \lambda + \rho, \alpha^{\vee} \rangle = \langle s_{\alpha} \cdot (\lambda + \rho), \alpha^{\vee} \rangle = \langle \lambda + \rho, -\alpha^{\vee} \rangle = -n \geq 0.$
b) If $n > 0$, then we want $M(s_{\alpha} \cdot \mu) \subset M(s_{\alpha} \cdot \lambda) \subset M(\lambda).$
• Proposition 1.4 immediately gives $M(s_{\alpha} \cdot \lambda) \subset M(\mu).$
• Letting $s := \langle \mu + \rho, \alpha^{\vee} \rangle$ we get maximal vectors
 $v_{\lambda}^{+} \in M(\lambda), \quad y_{\alpha}^{n} \cdot v_{\lambda}^{+} \in M(s_{\alpha} \cdot \lambda), \quad v_{\mu}^{+} \in M(\mu), \quad y_{\alpha}^{s} \cdot v_{\mu}^{+} \in M(s_{\alpha} \cdot \mu).$
• Since $M(\mu) \subset M(\lambda)$, there is $u \in U(\mathfrak{n}^{-})$ with $v_{\mu}^{+} = u \cdot v_{\lambda}^{+}.$
• Lemma 4.5 gives us $t \geq s$ such that $y_{\alpha}^{t} u \in U(\mathfrak{n}^{-})y_{\alpha}^{n}$. So
 $y_{\alpha}^{t} \cdot v_{\mu}^{+} = y_{\alpha}^{t} u \cdot v_{\lambda}^{+} \in U(\mathfrak{n}^{-})y_{\alpha}^{n}v_{\lambda}^{+} \subset M(s_{\alpha} \cdot \lambda).$
• If $t > s$, then we use $[x, y_{\alpha}^{t}] = ty_{\alpha}^{t-1}(h_{\alpha} - t + 1)$ to get
 $(s - t)ty_{\alpha}^{t-1}v_{\mu}^{+} = x_{\alpha}y_{\alpha}^{t} \cdot v_{\mu}^{+} \in M(s_{\alpha} \cdot \lambda).$
• This proves $y_{\alpha}^{s} \cdot v_{\mu}^{+} \in M(s_{\alpha} \cdot \lambda)$ and $M(s_{\alpha} \cdot \mu) \subset M(s_{\alpha} \cdot \lambda).$

Theorem (4.6, Verma)

Let $\lambda \in \mathfrak{h}^*$. Given $\alpha > 0$, suppose $\mu := s_{\alpha} \cdot \lambda \leq \lambda$. Then there exists an embedding $M(\mu) \subset M(\lambda)$.

Proof (Integral case, $\lambda \in \Lambda$):

- Since λ is integral, so is μ . Therefore we can find $w \in W$ such that $\mu' := w^{-1} \cdot \mu \in \Lambda^+ \rho$.
- Considering a reduced expression w = s_n ··· s₁, we define weights μ₀ := μ' and μ_k := s_k · μ_{k-1}, for k = 1, ..., n.
- Proposition 4.3 tells us that $\mu_0 \geq \cdots \geq \mu_n$ and that

$$M(\mu_0) \supset M(\mu_1) \supset \cdots \supset M(\mu_n).$$

• Letting $\lambda' := w^{-1} \cdot \lambda$ we define a parallel list of weights. $\lambda_0 := \lambda'$ and $\lambda_k := s_k \cdot \lambda_{k-1}$, for k = 1, ..., n.

Existence of Embeddings: Integral Case

Proof (continued):

- A short calculation shows that if $w_k := s_{k+1} \cdots s_n$, then $\mu_k = s_{\beta_k} \cdot \lambda_k$, β_k is the root with $s_{\beta_k} = w_k^{-1} s_\alpha w_k$.
- It follows that $\mu_k \lambda_k \in \mathbb{Z}\beta_k$.
- We may assume that $\mu < \lambda$. This implies $\mu_k \neq \lambda_k$ and in particular $\mu' > \lambda'$, since μ' is dominant.
- There must thus be a least index k such that $\mu_k > \lambda_k$ and $\mu_{k+1} < \lambda_{k+1}$. We fix this k.
- We will prove $M(\mu_{k+1}) \subset M(\lambda_{k+1})$, $M(\mu_{k+2}) \subset M(\lambda_{k+2})$,... Culminating in $M(\mu_n) \subset M(\lambda_n)$.
- By definition $\mu_{k+1} \lambda_{k+1} = s_{k+1}(\mu_k \lambda_k)$.
- By our choice of k, we get $\mu_{k+1} \lambda_{k+1} \in \mathbb{Z}^- \beta_{k+1}$ and $s_{k+1}(\mu_k \lambda_k) \in \mathbb{Z}^+ \beta_k$. So $\beta_k = \beta_{k+1} = \alpha_{k+1}$.
- Prop 1.4 yields $M(\mu_{k+1}) = M(s_{k+1} \cdot \lambda_{k+1}) \subset M(\lambda_{k+1})$.

Proof (continued):

• Combined with the sequence of embeddings we get

$$M(\mu_{k+2}) = M(s_{k+2} \cdot \mu_{k+1}) \subset M(\mu_{k+1}) \subset M(\lambda_{k+1}).$$

• Proposition 4.5 then implies that

$$M(\mu_{k+2}) \subset M(s_{k+2} \cdot \lambda_{k+1}) = M(\lambda_{k+2}).$$

Iterating these last arguments we get

$$M(\mu) = M(\mu_n) \subset M(\lambda_n) = M(\lambda).$$

Remark

Let $\lambda \in \mathfrak{h}^*$, $\alpha > 0$ and $M(s_{\alpha} \cdot \lambda) \subset M(\lambda)$. Then $\langle \lambda + \rho, \alpha^{\vee} \rangle \in \mathbb{Z}^+$.

Proof: The embedding implies that $s_{\alpha} \cdot \lambda \leq \lambda$. In general we have

$$s_{lpha} \cdot \lambda = s_{lpha}(\lambda +
ho) -
ho = \lambda - \langle \lambda +
ho, lpha^{ee}
angle lpha$$

So $s_{\alpha} \cdot \lambda \leq \lambda$ if and only if

$$\lambda - \mathbf{s}_{\alpha} \cdot \lambda = \langle \lambda + \rho, \alpha^{\vee} \rangle \alpha \in \mathsf{\Gamma}$$

if and only if

$$\langle \lambda + \rho, \alpha^{\vee} \rangle \in \mathbb{Z}^+.$$

Existence of Embeddings: General Case

Theorem (4.6, Verma)

Let $\lambda \in \mathfrak{h}^*$. Given $\alpha > 0$, suppose $\mu := s_{\alpha} \cdot \lambda \leq \lambda$. Then there exists an embedding $M(\mu) \subset M(\lambda)$.

Proof:

• Note that $\nu := \lambda - \mu \in \Gamma$ and let

$$\begin{split} X &:= \{\lambda \in \mathfrak{h}^* : M(\mu) = M(\lambda - \nu) \subset M(\lambda)\}\\ H &:= \{\lambda \in \mathfrak{h}^* : \langle \lambda + \rho, \alpha^{\vee} \rangle \in \mathbb{Z}^+\} \end{split}$$

- Recall that s_α · λ ≤ λ if and only if (λ + ρ, α[∨]) ∈ Z⁺. It is enough to prove that X = H.
- We know that $X \subset H$ and that $\Lambda \cap H \subset X$.
- By 1.9 we know that $\Lambda \cap H$ is is Zariski dense in H.
- Proving that $X \subset \mathfrak{h}^*$ is Zariski closed implies X = H.

Existence of Embeddings: General Case

Proof(continued, X is Zariski closed):

- $X = \{\lambda \in \mathfrak{h}^* : M(\lambda \nu) \subset M(\lambda)\}.$
- We need to construct a polynomial on h^{*} whose set of common zeros is X.
- Write $\lambda = \lambda_1 \overline{\omega}_1 + \cdots + \lambda_\ell \overline{\omega}_\ell$ and consider $\lambda_1, \ldots, \lambda_\ell$ as polynomial variables.
- We construct a linear map $g^{\lambda}: U(\mathfrak{n}^-)_{u} o U(\mathfrak{n}^-)^{\ell}$, such that
 - its matrix is written in terms of the λ_i .
 - rank $g^{\lambda} < \dim U(\mathfrak{n}^{-})_{-\nu}$ if and only if $\lambda \in X$.
- The matrix of g^{λ} then has a certain minor
 - which depends polynomially on the λ_i 's.
 - whose determinant is 0 if and only if $\lambda \in X$.
- The construction of such a g^{λ} thus proves X to be Zariski closed.

Existence of Embeddings: General Case

Proof(continued, construction of g^{λ}):

- Let (h_i, x_i, y_i) be standard bases for s_i ≅ sl(2, C) corresponding to simple roots, for i = 1, ..., ℓ.
- For u ∈ U(n⁻) we can find u_i, u'_i ∈ U(n⁻) depending linearly on u such that [x_i, u] = u_i + u'_ih_i.

• We define for $i = 1, \ldots, \ell$, the linear maps

$$f_i^{\lambda}: U(\mathfrak{n}^-)_{-\nu} \to U(\mathfrak{n}^-), \quad u \mapsto u_i + \lambda(h_i)u_i' = u_i + \lambda_i u_i'.$$

 $g^{\lambda}: U(\mathfrak{n}^-)_{-\nu} \to U(\mathfrak{n}^-)^{\lambda}, \quad u \mapsto f_1^{\lambda}(u) \oplus \cdots \oplus f_{\ell}^{\lambda}(u).$

• Let $v^+ \in M(\lambda)$ be a maximal vector of weight λ .

 A short calculation shows that g^λ(u) = 0 if and only if u · v⁺ is a maximal vector of weight λ − ν.

• So rank $g^{\lambda} < \dim U(\mathfrak{n}^{-})_{-\nu}$ if and only if $M(\lambda - \nu) \subset M(\lambda)$.

Notes:

- Generalization of Proposition 1.4: Let $\lambda \in \mathfrak{h}^*$ and $\alpha > 0$. Then $s_{\alpha} \cdot \lambda \leq \lambda$ if and only if $\langle \lambda + \rho, \alpha^{\vee} \rangle \in \mathbb{Z}^+$ if and only if $M(s_{\alpha} \cdot \lambda) \subset M(\lambda)$.
- Generalization of Proposition 4.3: Let $\lambda \in \mathfrak{h}^*$ and $\alpha_1, \ldots, \alpha_n > 0$ with $(s_{\alpha_n} \cdots s_{\alpha_1}) \cdot \lambda \leq \cdots \leq s_{\alpha_1} \cdot \lambda \leq \lambda$, then $M(\lambda) \supset M(s_{\alpha_1} \cdot \lambda) \supset \cdots \supset M((s_{\alpha_n} \cdots s_{\alpha_1}) \cdot \lambda).$
- We thus have a sufficient condition for [M(λ) : L(s_α · λ)] > 0. This is also a necessary condition (5.1).

Simplicity Criterion: General Case

 $\lambda \in \mathfrak{h}^*$ is antidominant if $\langle \lambda + \rho, \alpha^{\vee} \rangle \notin \mathbb{Z}^{>0}$ for all $\alpha \in \Phi^+$.

Theorem (4.4, Simplicity Criterion)

Let $\lambda \in \mathfrak{h}^*$. Then $M(\lambda) = L(\lambda)$ if and only if λ is antidominant.

Proof:

- Suppose $M(\lambda)$ is simple and that λ is not antidominant.
 - Then, we can find $\alpha > 0$ such that $\langle \lambda + \rho, \alpha^{\vee} \rangle \in \mathbb{Z}^{>0}$.
 - Since $\lambda \mathbf{s}_{\alpha} \cdot \lambda = \langle \lambda + \rho, \alpha^{\vee} \rangle \alpha$, then $\mathbf{s}_{\alpha} \cdot \lambda < \lambda$.
 - So there exist a proper embedding $M(s_{\alpha} \cdot \lambda) \subset M(\lambda)$.
 - This contradicts the simplicity of $M(\lambda)$.
- Suppose λ is antidominant.
 - Then by (3.5), $\lambda \leq w \cdot \lambda$, for any $w \in W_{[\lambda]}$.
 - But $M(\lambda)$ only has composition factors $L(w \cdot \lambda)$ with $w \cdot \lambda \leq \lambda$ and $w \in W_{[\lambda]}$.
 - Therefore L(λ) is the only composition factor and it occurs only once, so M(λ) = L(λ).

Simplicity Criterion: General Case

Corollary (4.8)

Let $\lambda \in \mathfrak{h}^*$ be antidominant. Then for all $w \in W_{[\lambda]}$, the socle of $P(w \cdot \lambda)$ is a direct sum of copies of $L(\lambda)$.

Proof:

• Construct a standard filtration

$$0=P_0\subset P_1\subset\cdots\subset P_n=P(w\cdot\lambda),$$

with $P_i/P_{i-1} \cong M(w' \cdot \lambda)$ for some $w' \in W$.

- Take simple summand $L \subset \operatorname{Soc} P(w \cdot \lambda)$.
- Let *i* be the least index such that $L \subset P_i$, then $L \cap P_{i-1} = 0$.
- Then $L \subset M(w' \cdot \lambda) \cong P_i/P_{i-1}$.
- Then L is a Verma module with antidominant highest weight linked to w' · λ, so L ≃ L(λ).

Simplicity Criterion: General Case

Notes:

- It is hard to determine for what r of appear in Soc $P(w \cdot \lambda) \cong L(\lambda)^r$.
- It can be shown (13.14), using Requires Kazhdan-Lusztig theory (8.4), that

$$r = (P(w \cdot \lambda) : M(w_{\circ} \cdot \lambda)) = [M(w_{\circ} \cdot \lambda) : L(w \cdot \lambda)].$$

Exercise:

- Let $\lambda \in \mathfrak{h}^*$. If $P(\lambda) \cong P(\lambda)^{\vee}$ is self-dual, i.e. $P(\lambda) \cong Q(\lambda)$. Then λ is antidominant.
 - What can we say about the converse? See Theorem 4.10.
- Solution:
 - $P(\lambda)$ has submodule $L(\mu)$, where μ is antidominant.
 - $P(\lambda) = Q(\lambda)$ is injective and indecomposable, so $Q(\lambda) \cong Q(\mu)$. Therefore, $\lambda = \mu$.

Definition of blocks:

- Simple modules M_1 and M_2 are in the same block if $\operatorname{Ext}_{\mathcal{O}}(M_1, M_2) \neq 0$ or $\operatorname{Ext}_{\mathcal{O}}(M_2, M_1) \neq 0$.
- Two modules are in the same block if all their composition factors are.

Theorem (4.9)

The blocks of \mathcal{O} are precisely the subcategories consisting of modules whose composition factors all have highest weights linked by $W_{[\lambda]}$ to an antidominant weight λ . Thus the blocks are in natural bijection with antidominant (or alternatively, dominant) weights.

We denote the individual blocks by \mathcal{O}_{λ} , where λ is antidominant.

Blocks of ${\mathcal O}$ Revisited

Proof:

- Enough to prove it for simple modules.
- Let $\mu \in \mathfrak{h}^*$. Then $M(\mu)$ has unique simple submodule $L(\lambda) = M(\lambda)$. Where λ is antidominant by Theorem 4.4.
- All composition factors of M(μ), including L(μ), are in the same block as L(λ). Moreover, μ = w · λ for some w ∈ W_[λ].
- Furthermore, L(λ) is the unique simple submodule of M(w · λ) for any w ∈ W_[λ]. So L(w · λ) is in the same block as L(λ).
- Finally, suppose λ and λ' are both antidominant and $\lambda \neq \lambda'$. Then by Theorem 3.3 and Theorem 4.4

$$\begin{aligned} \mathsf{Ext}_{\mathcal{O}}(L(\lambda), L(\lambda')) &= \mathsf{Ext}_{\mathcal{O}}(L(\lambda), L(\lambda')^{\vee}) \\ &= \mathsf{Ext}_{\mathcal{O}}(M(\lambda), M(\lambda')^{\vee}) = 0 \end{aligned}$$

• Therefore, $L(\lambda)$ and $L(\lambda')$ are not in the same block.

Notes:

- Suppose λ and λ' are antidominant and that $\mathcal{O}_{\lambda}, \mathcal{O}_{\lambda'} \subset \mathcal{O}_{\chi}$, for some central character χ .
- Then $|W_{[\lambda]} \cdot \lambda| = |W_{[\lambda']} \cdot \lambda'|$ and $\mathcal{O}_{\lambda} \cong \mathcal{O}_{\lambda'}$.
- Last part is not proven in this book.

Exercise:

 Suppose *M* ∈ *O* has a contravariant form, then its block summands in distinct blocks *O*_λ, *O*_μ are orthogonal.

Example: Antidominant Projectives

• If $\lambda + \rho \in \Lambda^+$, then λ is dominant and integral. and $w_{\circ} \cdot \lambda$ is antidominant and integral.

Theorem (4.10)

Let
$$\lambda + \rho \in \Lambda^+$$
. Then $P(w_{\circ} \cdot \lambda) \cong P(w_{\circ} \cdot \lambda)^{\vee}$ and
 $(P(w_{\circ} \cdot \lambda) : M(w \cdot \lambda)) = [M(w \cdot \lambda) : L(w_{\circ} \cdot \lambda)] = 1$ for all $w \in W$.

Proof:

- Consider the module $P(-\rho) = M(-\rho) = L(-\rho) = Q(-\rho)$.
 - This is projective and injective.
- Define the module $T := M(-\rho) \otimes L(\lambda + \rho)$.
 - Since dim $L(\lambda + \rho) < \infty$, then T is projective and injective.
 - T has standard filtration $M(\mu \rho)$, where μ runs over the weights of $L(\lambda + \rho)$.
 - $M(\mu \rho)$ appears dim $L(\lambda + \rho)_{\mu}$ times.
 - Each direct summand of T satisfies similar properties.

Example: Antidominant Projectives

Proof (continued):

- Consider the central character $\chi = \chi_{\lambda}$ and the block summand T^{χ} of T.
 - T^{χ} is projective and injective.
 - *T^χ* has standard filtration by *M*(μ − ρ)'s, where μ runs over the weights of *L*(λ + ρ), for which μ − ρ is linked to λ.
 - $M(\mu \rho)$ appears dim $L(\lambda + \rho)_{\mu}$ times.
 - If $\mu \rho = w \cdot \lambda$, then $\mu = w \cdot (\lambda + \rho)$.
 - Since dim $L(\lambda + \rho) < \infty$, then dim $L(\lambda + \rho)_{w \cdot (\lambda + \rho)} = 1$.
- *T^χ* has standard filtration by *M*(*w* · λ)'s, for *w* ∈ *W*, each occuring exactly once.
- In particular, T^{χ} has the $M(w_{\circ} \cdot \lambda) = L(w_{\circ} \cdot \lambda)$ as quotient.
- Now T^{χ} is projective, so it has $P(w_{\circ} \cdot \lambda)$ as direct summand.
 - Therefore, $(P(w_{\circ} \cdot \lambda) : M(w \cdot \lambda)) \leq 1$.
 - But L(w_o · λ) is the unique simple submodule of M(w · λ), so [M(w · λ) : L(w_o · λ)] ≥ 1.
- So $(P(w_{\circ} \cdot \lambda) : M(w \cdot \lambda)) = 1$ and thus $T^{\chi} = P(w_{\circ} \cdot \lambda)$.

Proof (continued):

- w_o · λ is antidominant, so the socle of P(w_o · λ) is L(w_o · λ)^r, for some r.
- So $L(w_{\circ} \cdot \lambda)$ is a submodule of $P(w_{\circ} \cdot \lambda)$.
- Now T^χ = P(w_o · λ) is injective and indecomposable, so P(w_o · λ) is the injective envelope of L(w_o · λ).
- In other words, $P(w_{\circ} \cdot \lambda) \cong Q(w_{\circ} \cdot \lambda) = P(w_{\circ} \cdot \lambda)^{\vee}$.

Notes:

- This theorem generalizes (7.16):
- Let $\lambda \in \mathfrak{h}^*$ be antidominant. Then $P(\lambda) \cong P(\lambda)^{\vee}$ and $(P(\lambda) : M(w \cdot \lambda)) = [M(w \cdot \lambda) : L(\lambda)] = 1$ for all $w \in W_{[\lambda]}$.
- By Exercise 4.8, $P(\lambda) \cong P(\lambda)^{\vee}$ only when λ is antidominant.

Exercise:

- What can we say about dim $\operatorname{End}_{\mathcal{O}} P(w_{\circ} \cdot \lambda)$?
- Solution: dim $\operatorname{End}_{\mathcal{O}} P(w_{\circ} \cdot \lambda) = 1$?

Application to $\mathfrak{sl}(3,\mathbb{C})$

What are the composition factors of $M(w \cdot \lambda)$, when $\lambda \in \Lambda$ is antidominant and regular?

- For $\mathfrak{sl}(3,\mathbb{C})$, $\Delta = \{\alpha, \beta\}$ and $W = \{1, s_{\alpha}, s_{\beta}, s_{\alpha}s_{\beta}, s_{\beta}s_{\alpha}, w_{\circ}\}.$
- Linkage class: $\{\lambda, s_{\alpha} \cdot \lambda, s_{\beta} \cdot \lambda, s_{\alpha}s_{\beta} \cdot \lambda, s_{\beta}s_{\alpha} \cdot \lambda, w_{\circ} \cdot \lambda\}.$
- Composition factors of $M(\lambda)$:

•
$$[M(\lambda) : L(\lambda)] = 1$$

- $[M(\lambda) : L(w \cdot \lambda)] = 0$ for $w \neq 1$.
- $\operatorname{ch} L(\lambda) = \operatorname{ch} M(\lambda)$

• Composition factors of $M(s_{\alpha} \cdot \lambda)$:

•
$$[M(s_{\alpha} \cdot \lambda) : L(s_{\alpha} \cdot \lambda)] = 1$$

- $[M(s_{\alpha} \cdot \lambda) : L(\lambda)] = 1$
- $[M(s_{\alpha} \cdot \lambda) : L(w \cdot \lambda)] = 0$ for $w \notin \{1, s_{\alpha}\}.$
- $\operatorname{ch} L(s_{\alpha} \cdot \lambda) = \operatorname{ch} M(s_{\alpha} \cdot \lambda) \operatorname{ch} M(\lambda)$
- Remaining cases ($w \in \{s_{\alpha}s_{\beta}, s_{\beta}s_{\alpha}, w_{\circ}\}$): Section 5.4.
- General solution: Chapter 8.

Application to $\mathfrak{sl}(3,\mathbb{C})$

Exercise:

- Suppose $\lambda \in \Lambda$ is antidominant and in the α -hyperplane.
 - $\langle \lambda, \alpha^{\vee} \rangle = 0.$
 - Linkage class: $\{\lambda, s_{\beta} \cdot \lambda, s_{\alpha}s_{\beta} \cdot \lambda\}.$
 - $w_{\circ} \cdot \lambda = s_{\alpha}s_{\beta} \cdot \lambda$ is dominant.
 - $\lambda < \mathbf{s}_{\beta} \cdot \lambda < \mathbf{s}_{\alpha}\mathbf{s}_{\beta} \cdot \lambda$.
- The composition factors of $M(\lambda)$ and $M(s_{\beta} \cdot \lambda)$ are know.
- Composition factors of $M(s_{\alpha}s_{\beta}\cdot\lambda)$:
 - $[M(s_{\alpha}s_{\beta}\cdot\lambda):L(s_{\alpha}s_{\beta}\cdot\lambda)]=1$
 - $[M(s_{\alpha}s_{\beta}\cdot\lambda):L(\lambda)]=1$
 - $[M(s_{\alpha}s_{\beta}\cdot\lambda):L(s_{\beta}\cdot\lambda)]=r>0.$
 - ch $L(s_{\alpha}s_{\beta}\cdot\lambda)$ = ch $M(s_{\alpha}s_{\beta}\cdot\lambda) r$ ch $M(s_{\beta}\cdot\lambda) + (r-1)$ ch $M(\lambda)$.
- Can we determine r?

Shapovalov Elements

Can we construct an embedding $M(s_{\gamma} \cdot \lambda) \subset M(\lambda)$ explicitly?

- $\bullet \ \ {\rm Here} \ \lambda \in \mathfrak{h}^* \text{, } \gamma \in \Phi^+ \ {\rm and} \ \langle \lambda + \rho, \gamma^\vee \rangle \geq 0.$
- $v^+ \in M(\lambda)$ maximal vector of weight λ .
- $\bar{v}^+ \in M(s_\gamma \cdot \lambda)$ maximal vector of weight $s_\gamma \cdot \lambda$.
- There is a unique (up to a scalar) $u \in U(\mathfrak{n}^-)$ such that
 - *u* · *v*⁺ is a maximal vector of weight s_γ · λ = λ − (λ + ρ, γ[∨])γ.
 - Then embedding is given by $u' \cdot \overline{v}^+ \mapsto u'u \cdot v^+$.

How does *u* depend on λ ?

- Hard to answer.
- Find instead element $\theta_{\gamma,r} \in U(\mathfrak{b}^-)_{-r\gamma}$, for r > 0, such that
 - $\theta_{\gamma,r} \in U(\mathfrak{b}^-)_{-r\gamma}$ is independent of λ .
 - $\theta_{\gamma,r} \cdot v^+$ is a maximal vector of weight $\lambda r\gamma$ whenever $\langle \lambda + \rho, \gamma^{\vee} \rangle = r$ and v^+ is a maximal vector of weight λ .
- $\theta_{\gamma,r}$ is the Shapovalov element.

Shapovalov Elements

Example/Exercise:

- $\mathfrak{g} = \mathfrak{sl}(3,\mathbb{C}), \Delta = \{\alpha,\beta\} \text{ and } \Phi^+ = \{\alpha,\beta,\gamma = \alpha + \beta\}.$
- Since α, β are simple, then $\theta_{\alpha,r} = y_{\alpha}^{r}$ and $\theta_{\beta,r} = y_{\beta}^{r}$.
- To determine $\theta_{\gamma,r}$ is difficult. We do only $\theta_{\gamma,1}$.
- We construct first the element $u \in U(\mathfrak{n}^-)_{-\gamma}$ dependent on λ .
 - Since $u \neq 0$, then $u = ry_{\alpha}y_{\beta} + sy_{\gamma}$, with r, s not both 0.

• Write
$$\lambda = a\overline{\omega}_{\alpha} + b\overline{\omega}_{\beta}$$
.

- Assume $\langle \lambda + \rho, \gamma^{\vee} \rangle = 1$, then a + b = -1.
- Define hyperplane $H := \{\lambda = a\overline{\omega}_{\alpha} + b\overline{\omega}_{\beta} : a + b = -1\}.$

• If $u \cdot v^+ \in M(\lambda)$ is maximal vector of weight $\lambda - \gamma$, then

•
$$0 = x_{\alpha}u \cdot v^+ = (r(a+1)-s)y_{\beta} \cdot v^+.$$

• $0 = x_{\beta}u \cdot v^+ = (rb+s)y_{\alpha} \cdot v^+.$

- This determines u in terms of $\lambda \in H$.
 - In all cases, $r \neq 0$.
 - *u* is unique up to a scalar
 - So we may take r = 1 and $s = -b = \lambda(h_{\beta})$.

Example/Exercise:

- Now consider $y_{\alpha}y_{\beta} y_{\gamma}h_{\beta} \in U(\mathfrak{b}^{-})_{-\gamma}.$
- For all $\lambda \in H$ an maximal vector v^+ of weight λ :

•
$$x_{\alpha}(y_{\alpha}y_{\beta} - y_{\gamma}h_{\beta}) \cdot v^{+} = (a+1+b)y_{\beta} \cdot v^{+} = 0$$

• $x_{\beta}(y_{\alpha}y_{\beta} - y_{\gamma}h_{\beta}) \cdot v^{+} = (b-b)y_{\alpha} \cdot v^{+} = 0.$

• So
$$\theta_{\gamma,1} = y_{\alpha}y_{\beta} - y_{\gamma}h_{\beta}.$$

• Clearly $\theta_{\gamma,1}$ is independent of λ .

Shapovalov Elements

Write $\Phi^+ = \{\alpha_1, \ldots, \alpha_m\}$ with $\Delta = \{\alpha_1, \ldots, \alpha_\ell\}$. Let $y_i \in U(\mathfrak{n}^-)$ correspond to $-\alpha_i$, for $i = 1, \ldots, m$.

Theorem (4.12, Shapovalov)

Fix $\gamma \in \Phi^+$ and an integer r > 0. There exists an element $\theta_{\gamma,r} \in U(\mathfrak{b}^-)_{-r\gamma}$ having the following properties:

a) For each root $\beta > 0$, the commutator $[x_{\beta}, \theta_{\gamma,r}]$ lies in the left ideal $I_{\gamma,r} := U(\mathfrak{g})(h_{\gamma} + \rho(h_{\gamma}) - r) + U(\mathfrak{g})\mathfrak{n}$.

b) If $\gamma = \sum_{i=1}^{\ell} a_i \alpha_i$, then we can write

$$heta_{\gamma,r} = \prod_{i=1}^{\ell} y_i^{ra_i} + \sum_j p_j q_j,$$

with $p_j \in U(\mathfrak{n}^-)_{-r\gamma}$, $q_j \in U(\mathfrak{h})$, and deg $p_j < r \sum_{i=1}^{\ell} a_i$. Moreover, $\theta_{\gamma,r}$ is unique (up to a scalar) modulo the left ideal $J_{\gamma,r} := U(\mathfrak{b}^-)(h_{\gamma} + \rho(h_{\gamma}) - r)$.

Shapovalov Elements

Notes:

- Consider λ ∈ h*, γ ∈ Φ⁺ and r > 0. Let v⁺ ∈ M(λ) be a maximal vector of weight λ.
- Then $\theta_{\gamma,r} \cdot v^+$ is a maximal vector of weight $\lambda r\gamma = s_{\gamma} \cdot \lambda$, whenever $r = \langle \lambda + \rho, \gamma^{\vee} \rangle$.
- If so, then consider q_j from (b) as polynomial functions on \mathfrak{h}^* and write

$$heta_{\gamma,r}(\lambda) = \prod_{i=1}^{\ell} y_i^{ra_i} + \sum_j p_j q_j(\lambda).$$

Then θ_{γ,r}(λ) ∈ U(n⁻)_{-rγ} and θ_{γ,r}(λ) · v⁺ is a maximal vector of weight λ − rγ = s_γ · λ.

• $\theta_{\gamma,r}(\lambda)$ is unique (up to a scalar) in $U(\mathfrak{n}^-)$.

• Difficult to construct $\theta_{\gamma,r}$ explicitly. We use a more round about approach.

Proof (Set-up, Induction in ht γ):

- Fix r > 0 and $\gamma \in \Phi^+$.
 - If γ is simple (ht $\gamma = 1$), then $\theta_{\gamma,r} = y_{\gamma}^{r}$.
 - This is our induction base.
- If $\gamma \notin \Delta$, then there exists $\alpha \in \Delta$ (0.2) such that

•
$$p := \langle \gamma, \alpha^{\vee} \rangle > 0.$$

•
$$\beta := s_{\alpha}\gamma = \gamma - p\alpha > 0$$
, and $ht \beta < ht \gamma$.

- The induction hypothesis provides $\theta_{\beta,r} \in U(\mathfrak{b}^-)_{-r\beta}$ with the desired properties.
- Before applying this we discuss the proof strategy.

Proof of Shapovalov's Theorem

Proof (Strategy):

• Consider hyperplane $H_{\gamma,r}$ and half-space H_{α} :

$$\begin{split} & \mathcal{H}_{\gamma,r} := \{ \lambda \in \mathfrak{h}^* : \langle \lambda + \rho, \gamma^{\vee} \rangle = r \} \\ & \mathcal{H}_{\alpha} := \{ \lambda \in \mathfrak{h}^* : \langle \lambda + \rho, \alpha^{\vee} \rangle < 0 \} \end{split}$$

- $H_{\gamma,r}$ is Zariski closed.
- $\Lambda \cap H_{\gamma,r}$ is Zariski dense in $H_{\gamma,r}$.
- $\Theta := H_{\alpha} \cap \Lambda \cap H_{\gamma,r}$ is also Zariski dense in $H_{\gamma,r}$. Why?

Note that $H_{\gamma,r}$ contains exactly the weights λ for which we expect $\theta_{\gamma,r}$ to describe the embedding $M(s_{\gamma} \cdot \lambda) \hookrightarrow M(\lambda)$.

Proof (Strategy):

- Recall that I is the left ideal in U(g) annihilating any maximal vector v⁺ ∈ M(λ) of weight λ.
- Suppose we have $\theta_{\gamma,r}(\lambda) \in U(\mathfrak{n}^-)_{-r\gamma}$, for each $\lambda \in \Theta$, s.t.

a')
$$[x_{\gamma}, \theta_{\gamma,r}(\lambda)] \in I.$$

- b') Independent of the choice of $\lambda \in \Theta$, the highest degree term in $\theta_{\gamma,r}(\lambda)$ when written in a standard PBW basis is $\prod_i y_i^{ra_i}$.
- c') The coefficients of $\theta_{\gamma,r}(\lambda)$ in the PBW basis depend polynomially on λ .
- By (c') there exists $p_j \in U(\mathfrak{n}^-)_{-r\gamma}$ and $q_j \in U(\mathfrak{h})$ such that $\theta_{\gamma,r}(\lambda) = \sum_j p_j q_j(\lambda)$.
- $\theta_{\gamma,r}(\lambda)$ can be extended to all $\lambda \in H_{\gamma,r}$:
 - Rewrite (a')-(c') as polynomial equations whose mutual solution space is then Zariski closed. It is then $H_{\gamma,r}$.
- Define then $\theta_{\gamma,r} := \sum_j p_j q_j \in U(\mathfrak{b}^-)_{-r\gamma}.$

Proof (Strategy):

The element $\theta_{\gamma,r} := \sum_j p_j q_j \in U(\mathfrak{b}^-)_{-r\gamma}$ then satisfies the conditions of the theorem.

- a) Follows from (a'). How?
- b) Follows directly from (b') and the definition of $\theta_{\gamma,r}$.
- *) $\theta_{\gamma,r}$ is unique (up to a scalar) modulo $J_{\gamma,r}$.
 - At each λ ∈ H_{γ,r}, J_{γ,r} specializes to the annihilator in U(b⁻) any maximal vector v⁺ ∈ M(λ) of weight λ.
 - At each λ ∈ H_{γ,r}, θ_{γ,r} specializes to θ_{γ,r}(λ), which is the unique (up to a scalar) element in U(n⁻) inducing M(s_γ · λ) → M(λ).

Proof (Construction of $\theta_{\gamma,r}(\lambda)$, $\lambda \in \Theta$):

- Recall the data we have:
 - r > 0, $\gamma > 0$ with ht $\gamma > 1$.
 - $\alpha \in \Delta$ with $p = \langle \gamma, \alpha^{\vee} \rangle > 0$, $\beta := s_{\alpha}\gamma = \gamma p\alpha > 0$ and $ht \beta < ht \gamma$.
 - $heta_{eta,r} \in U(\mathfrak{b}^-)_{-reta}$, satisfying the conditions of the theorem.
 - $\theta_{\beta,r}(\mu)$, for all $\mu \in H_{\beta,r}$ satisfying (a')-(c').
- For $\lambda \in \Theta$ there is $q \in \mathbb{Z}^{>0}$ such that

•
$$\mu := s_{\alpha} \cdot \lambda = \lambda + q\alpha > \lambda, \ \mu \in H_{\beta,r}.$$

• $s_{\alpha} \cdot (\mu - r\beta) = \lambda - r\gamma$, with $\langle \mu - r\beta + \rho, \alpha^{\vee} \rangle = q + rp$.

- Writing n := q + rp > 0 we get embeddings:
 - $M(\lambda) \hookrightarrow M(\mu)$, induced by y^q_{α} .
 - $M(\mu r\beta) \hookrightarrow M(\mu)$, induced by $\theta_{\beta,r}(\mu)$.
 - $M(\lambda r\gamma) \hookrightarrow M(\mu r\beta)$, induced by y_{α}^n .

Proof of Shapovalov's Theorem

Proof (Construction of $\theta_{\gamma,r}(\lambda)$, $\lambda \in \Theta$):

- We have the embeddings:
 - $M(\lambda) \hookrightarrow M(\mu)$, induced by y^q_{α} .
 - $M(\mu r\beta) \hookrightarrow M(\mu)$, induced by $\theta_{\beta,r}(\mu)$.
 - $M(\lambda r\gamma) \hookrightarrow M(\mu r\beta)$, induced by y_{α}^{n} .
 - y^q_{α} , $\theta_{\beta,r}(\mu)$ and y^n_{α} are unique in $U(\mathfrak{n}^-)$ up to a scalar.
- Furthermore the embedding M(λ − rγ) → M(λ) is induced by a unique element θ_{γ,r}(λ), satisfying:

$$\theta_{\gamma,r}(\lambda)y^{q}_{\alpha} = y^{n}_{\alpha}\theta_{\beta,r}(\mu)$$

- $\theta_{\gamma,r}(\lambda)$ then satisfies the properties (a')-(c').
 - a') $[x_{\gamma}, \theta_{\gamma,r}(\lambda)] \in I$. Why?
 - b') Follows by comparing highest degree terms on either side.
 - c') Pull all y_{α} to the right on both sides and remove y_{α}^{n} . Rewriting into PBW no extra dependencies on λ appear. (c') then follows since $\theta_{\beta,r}$ satisfy (c') and $\mu = \lambda + r\alpha$.