
Content

In this chapter we will answer the following questions:

1) What are the simple submodules of M(λ)?

2) When is M(λ) simple?

3) When does an embedding M(µ)→ M(λ) exist?

4) Can we construct such an embedding explicitly?

5) What are the blocks of O?

Today: (1), (2) for λ ∈ Λ and (3) for µ, λ ∈ Λ.
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Simple Submodules of Verma Modules

Lemma (4.1)

Any two nonzero left ideals of a left noetherian ring without zero
divisors must intersect nontrivially.

Proposition (4.1)

For any λ ∈ h∗, the module M(λ) has a unique simple submodule,
which is therefore its socle.

Proof:

M(λ) is artinian, so it has a simple submodule.

Suppose L, L′ are distinct simple submodule of M(λ), then
L ∩ L′ = {0}.
As U(n−)-modules, M(λ) ∼= U(n−). So L and L′ are left
ideals of U(n−).

U(n−) is a left noetherian ring without zero divisors, so
L ∩ L′ 6= {0}. This is a contradiction.
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Simple Submodules of Verma Modules

Note:

The simple submodule of M(λ) is isomorphic to some L(µ)
with µ ≤ λ. Moreover, µ = w · λ for some w ∈W[λ].

Exercise:

Let M be a nonzero submodule of M(λ). Then M has a
nondegenerate contravariant form if and only if it is the
unique simple submodule of M(λ).
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Homomorphisms Between Verma Modules

Theorem (4.2)

Let λ, µ ∈ h∗.

a) Any nonzero homomorphism ϕ : M(µ)→ M(λ) is injective.

b) In all cases, dim Hom(M(µ),M(λ)) ≤ 1.

c) The unique simple submodule L(µ) in M(λ) is a Verma
module.

Proof:

a) As a U(n−)-module homomorphism ϕ : U(n−)→ U(n−),
u′ 7→ u′u, for some fixed u 6= 0.
Since U(n−) has no zero-divisors, Kerϕ = 0.

b) Consider nonzero ϕ1, ϕ2 : M(µ)→ M(λ) and unique simple
submodule L ⊂ M(µ). Then ϕ1(L) = ϕ2(L) is simple.
Let ϕ3 = ϕ1 − cϕ2 s.t. ϕ3(L) = {0}. Then ϕ3 = 0 by (a).

c) By universal property of M(µ), there exists ϕ : M(µ)→ M(λ),
with ϕ(M(µ)) = L(µ). Now ϕ is injective by (a).
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Homomorphisms Between Verma Modules

Notes:

Whenever Hom(M(µ),M(λ)) 6= 0 we can now unambiguously
write M(µ) ⊂ M(λ).

One major goal in this chapter is to study this embedding.

When does it exist?
How can we construct it?

The other goal is to determine when M(λ) is simple.
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Special Case: λ is a Dominant Integral Weight

Proposition (4.3)

Suppose λ+ ρ ∈ Λ+. Then M(w · λ) ⊂ M(λ), for all w ∈W ; thus
all [M(λ) : L(w · λ)] > 0.
More precisely, if w has reduced expression w = sn · · · s1, with si
reflection relative to the simple root αi , then there is a sequence

M(w · λ) = M(λn) ⊂ M(λn−1) ⊂ · · · ⊂ M(λ0) = M(λ),

where λ0 := λ and λk := sk · λk−1, for k ∈ {1, . . . , n}.
In particular, λn ≤ λn−1 ≤ · · · ≤ λ0, with 〈λk + ρ, α∨k+1〉 ∈ Z+, for
k = 0, . . . , n − 1.

Proof:
Use the reformulated Proposition 1.4 and Theorem 4.2(c):

If 〈λk + ρ, α∨k+1〉 ∈ Z+, then there exists an embedding
M(sk+1 · λk) = M(λk+1)→ M(λk).
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Special Case: λ is a Dominant Integral Weight

Exercises: Assume λ+ ρ ∈ Λ+.

The unique simple submodule of M(λ) is isomorphic to
M(w◦ · λ).

If λ ∈ Λ+, then all inclusions in the proposition are proper.

Notes:

This proposition will generalize as follow:

Let λ ∈ h∗. Given α > 0, suppose µ := sα · λ ≤ λ. Then there
exists an embedding M(µ) ⊂ M(λ).

The failure of Proposition 1.4 to carry over to nonsimple
positive roots, means that a totally different strategy is
needed to generalize this result.
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Simplicity Criterion: Integral Case

Recall that λ ∈ h∗ is called antidominant if 〈λ+ ρ, α∨〉 /∈ Z>0 for
all α ∈ Φ+.

Theorem (4.4, Simplicity Criterion)

Let λ ∈ h∗. Then M(λ) = L(λ) if and only if λ is antidominant.

Proof (Integral case, λ ∈ Λ):

Suppose M(λ) is simple and that λ is not antidominant.
Then, since λ ∈ Λ, we can find a simple root α such that
〈λ+ ρ, α∨〉 > 0.
Using the Proposition 1.4 and Theorem 4.2(c), we get a
proper embedding M(sα · λ)→ M(λ).
This contradicts the simplicity of M(λ).

Suppose λ is antidominant.
Then by (3.5), λ ≤ w · λ.
But M(λ) only has composition factors L(w ·λ) with w ·λ ≤ λ.
Therefore L(λ) is the only composition factor and it occurs
only once, so M(λ) = L(λ).
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Simplicity Criterion: Integral Case

Exercise:

If λ ∈ Λ is antidominant, then the socle of P(w · λ) with
w ∈W is a direct sum of copies of L(λ).

The general version of this result is proven later.

Notes:

Only the second part of this proof can be generalized to
λ ∈ h∗.

The first part does not generalize since Proposition 1.4 no
longer applies.

We therefore need more information on embeddings
M(sα · λ) ⊂ M(λ), where α is not simple.
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Existence of Embeddings: Preliminaries

Proposition (4.5)

Let µ, λ ∈ h∗ and α ∈ ∆, with n := 〈λ+ ρ, α∨〉 ∈ Z and

M(sα · µ) ⊂ M(µ) ⊂ M(λ).

Then there are two possibilities for the position of M(sα · λ):

a) If n ≤ 0, then M(λ) ⊂ M(sα · λ).

b) If n > 0, then M(sα · µ) ⊂ M(sα · λ) ⊂ M(λ).

Lemma (4.5)

Let a be a nilpotent Lie algebra, with x ∈ a and u ∈ U(a). Given a
positive integer n, there exists an integer t depending on x and u
such that x tu ∈ U(a)xn.

We also note that for any α ∈ ∆ and t > 0,

[x , y tα] = ty t−1α (hα − t + 1).
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Existence of Embeddings: Preliminaries

Proof ( Proposition 4.5):

a) If n ≤ 0, then M(λ) ⊂ M(sα · λ) by Proposition 1.4, since

〈sα · λ+ ρ, α∨〉 = 〈sα · (λ+ ρ), α∨〉 = 〈λ+ ρ,−α∨〉 = −n ≥ 0.

b) If n > 0, then we want M(sα · µ) ⊂ M(sα · λ) ⊂ M(λ).
Proposition 1.4 immediately gives M(sα · λ) ⊂ M(µ).
Letting s := 〈µ+ ρ, α∨〉 we get maximal vectors

v+
λ ∈ M(λ), yn

α·v+
λ ∈ M(sα·λ), v+

µ ∈ M(µ), y s
α·v+

µ ∈ M(sα·µ).

Since M(µ) ⊂ M(λ), there is u ∈ U(n−) with v+
µ = u · v+

λ .
Lemma 4.5 gives us t ≥ s such that y t

αu ∈ U(n−)yn
α. So

y t
α · v+

µ = y t
αu · v+

λ ∈ U(n−)yn
αv

+
λ ⊂ M(sα · λ).

If t > s, then we use [x , y t
α] = ty t−1

α (hα − t + 1) to get

(s − t)ty t−1
α v+

µ = xαy
t
α · v+

µ ∈ M(sα · λ).

This proves y s
α · v+

µ ∈ M(sα ·λ) and M(sα ·µ) ⊂ M(sα ·λ).
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Existence of Embeddings: Integral Case

Theorem (4.6, Verma)

Let λ ∈ h∗. Given α > 0, suppose µ := sα · λ ≤ λ. Then there
exists an embedding M(µ) ⊂ M(λ).

Proof (Integral case, λ ∈ Λ):

Since λ is integral, so is µ. Therefore we can find w ∈W
such that µ′ := w−1 · µ ∈ Λ+ − ρ.

Considering a reduced expression w = sn · · · s1, we define
weights µ0 := µ′ and µk := sk · µk−1, for k = 1, . . . , n.

Proposition 4.3 tells us that µ0 ≥ · · · ≥ µn and that

M(µ0) ⊃ M(µ1) ⊃ · · · ⊃ M(µn).

Letting λ′ := w−1 · λ we define a parallel list of weights.
λ0 := λ′ and λk := sk · λk−1, for k = 1, . . . , n.
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Existence of Embeddings: Integral Case

Proof (continued):

A short calculation shows that if wk := sk+1 · · · sn, then
µk = sβk · λk , βk is the root with sβk = w−1k sαwk .

It follows that µk − λk ∈ Zβk .

We may assume that µ < λ. This implies µk 6= λk and in
particular µ′ > λ′, since µ′ is dominant.

There must thus be a least index k such that µk > λk and
µk+1 < λk+1. We fix this k.

We will prove M(µk+1) ⊂ M(λk+1), M(µk+2) ⊂ M(λk+2),...
Culminating in M(µn) ⊂ M(λn).

By definition µk+1 − λk+1 = sk+1(µk − λk).

By our choice of k, we get µk+1 − λk+1 ∈ Z−βk+1 and
sk+1(µk − λk) ∈ Z+βk . So βk = βk+1 = αk+1.

Prop 1.4 yields M(µk+1) = M(sk+1 · λk+1) ⊂ M(λk+1).
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Existence of Embeddings: Integral Case

Proof (continued):

Combined with the sequence of embeddings we get

M(µk+2) = M(sk+2 · µk+1) ⊂ M(µk+1) ⊂ M(λk+1).

Proposition 4.5 then implies that

M(µk+2) ⊂ M(sk+2 · λk+1) = M(λk+2).

Iterating these last arguments we get

M(µ) = M(µn) ⊂ M(λn) = M(λ).
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Extra: Solution to problem we discussed at the end

Remark

Let λ ∈ h∗, α > 0 and M(sα · λ) ⊂ M(λ). Then 〈λ+ ρ, α∨〉 ∈ Z+.

Proof: The embedding implies that sα · λ ≤ λ.
In general we have

sα · λ = sα(λ+ ρ)− ρ = λ− 〈λ+ ρ, α∨〉α

So sα · λ ≤ λ if and only if

λ− sα · λ = 〈λ+ ρ, α∨〉α ∈ Γ

if and only if
〈λ+ ρ, α∨〉 ∈ Z+.
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Existence of Embeddings: General Case

Theorem (4.6, Verma)

Let λ ∈ h∗. Given α > 0, suppose µ := sα · λ ≤ λ. Then there
exists an embedding M(µ) ⊂ M(λ).

Proof:

Note that ν := λ− µ ∈ Γ and let

X := {λ ∈ h∗ : M(µ) = M(λ− ν) ⊂ M(λ)}
H := {λ ∈ h∗ : 〈λ+ ρ, α∨〉 ∈ Z+}

Recall that sα · λ ≤ λ if and only if 〈λ+ ρ, α∨〉 ∈ Z+. It is
enough to prove that X = H.

We know that X ⊂ H and that Λ ∩ H ⊂ X .

By 1.9 we know that Λ ∩ H is is Zariski dense in H.

Proving that X ⊂ h∗ is Zariski closed implies X = H.
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Existence of Embeddings: General Case

Proof(continued, X is Zariski closed):

X = {λ ∈ h∗ : M(λ− ν) ⊂ M(λ)}.
We need to construct a polynomial on h∗ whose set of
common zeros is X .

Write λ = λ1ω1 + · · ·+ λ`ω` and consider λ1, . . . , λ` as
polynomial variables.

We construct a linear map gλ : U(n−)−ν → U(n−)`, such
that

its matrix is written in terms of the λi .
rank gλ < dimU(n−)−ν if and only if λ ∈ X .

The matrix of gλ then has a certain minor

which depends polynomially on the λi ’s.
whose determinant is 0 if and only if λ ∈ X .

The construction of such a gλ thus proves X to be Zariski
closed.
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Existence of Embeddings: General Case

Proof(continued, construction of gλ):

Let (hi , xi , yi ) be standard bases for si ∼= sl(2,C)
corresponding to simple roots, for i = 1, . . . , `.

For u ∈ U(n−) we can find ui , u
′
i ∈ U(n−) depending linearly

on u such that [xi , u] = ui + u′ihi .

We define for i = 1, . . . , `, the linear maps

f λi : U(n−)−ν → U(n−), u 7→ ui + λ(hi )u
′
i = ui + λiu

′
i .

gλ : U(n−)−ν → U(n−)λ, u 7→ f λ1 (u)⊕ · · · ⊕ f λ` (u).

Let v+ ∈ M(λ) be a maximal vector of weight λ.

A short calculation shows that gλ(u) = 0 if and only if u · v+
is a maximal vector of weight λ− ν.

So rank gλ < dimU(n−)−ν if and only if M(λ− ν) ⊂ M(λ).

18 / 42



Existence of Embeddings: General Case

Notes:

Generalization of Proposition 1.4:
Let λ ∈ h∗ and α > 0. Then sα · λ ≤ λ if and only if
〈λ+ ρ, α∨〉 ∈ Z+ if and only if M(sα · λ) ⊂ M(λ).

Generalization of Proposition 4.3:
Let λ ∈ h∗ and α1, . . . , αn > 0 with
(sαn · · · sα1) · λ ≤ · · · ≤ sα1 · λ ≤ λ, then

M(λ) ⊃ M(sα1 · λ) ⊃ · · · ⊃ M((sαn · · · sα1) · λ).

We thus have a sufficient condition for [M(λ) : L(sα · λ)] > 0.
This is also a necessary condition (5.1).
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Simplicity Criterion: General Case

λ ∈ h∗ is antidominant if 〈λ+ ρ, α∨〉 /∈ Z>0 for all α ∈ Φ+.

Theorem (4.4, Simplicity Criterion)

Let λ ∈ h∗. Then M(λ) = L(λ) if and only if λ is antidominant.

Proof:

Suppose M(λ) is simple and that λ is not antidominant.

Then, we can find α > 0 such that 〈λ+ ρ, α∨〉 ∈ Z>0.
Since λ− sα · λ = 〈λ+ ρ, α∨〉α, then sα · λ < λ.
So there exist a proper embedding M(sα · λ) ⊂ M(λ).
This contradicts the simplicity of M(λ).

Suppose λ is antidominant.

Then by (3.5), λ ≤ w · λ, for any w ∈W[λ].
But M(λ) only has composition factors L(w · λ) with
w · λ ≤ λ and w ∈W[λ].
Therefore L(λ) is the only composition factor and it occurs
only once, so M(λ) = L(λ).
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Simplicity Criterion: General Case

Corollary (4.8)

Let λ ∈ h∗ be antidominant. Then for all w ∈W[λ], the socle of
P(w · λ) is a direct sum of copies of L(λ).

Proof:

Construct a standard filtration

0 = P0 ⊂ P1 ⊂ · · · ⊂ Pn = P(w · λ),

with Pi/Pi−1 ∼= M(w ′ · λ) for some w ′ ∈W .

Take simple summand L ⊂ SocP(w · λ).

Let i be the least index such that L ⊂ Pi , then L ∩ Pi−1 = 0.

Then L ⊂ M(w ′ · λ) ∼= Pi/Pi−1.

Then L is a Verma module with antidominant highest weight
linked to w ′ · λ, so L ∼= L(λ).

21 / 42



Simplicity Criterion: General Case

Notes:

It is hard to determine for what r of appear in
SocP(w · λ) ∼= L(λ)r .

It can be shown (13.14), using Requires Kazhdan–Lusztig
theory (8.4), that

r = (P(w · λ) : M(w◦ · λ)) = [M(w◦ · λ) : L(w · λ)].

Exercise:

Let λ ∈ h∗. If P(λ) ∼= P(λ)∨ is self-dual, i.e. P(λ) ∼= Q(λ).
Then λ is antidominant.

What can we say about the converse? See Theorem 4.10.

Solution:

P(λ) has submodule L(µ), where µ is antidominant.
P(λ) = Q(λ) is injective and indecomposable, so
Q(λ) ∼= Q(µ). Therefore, λ = µ.
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Blocks of O Revisited

Definition of blocks:

Simple modules M1 and M2 are in the same block if
ExtO(M1,M2) 6= 0 or ExtO(M2,M1) 6= 0.

Two modules are in the same block if all their composition
factors are.

Theorem (4.9)

The blocks of O are precisely the subcategories consisting of
modules whose composition factors all have highest weights linked
by W[λ] to an antidominant weight λ. Thus the blocks are in
natural bijection with antidominant (or alternatively, dominant)
weights.

We denote the individual blocks by Oλ, where λ is antidominant.
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Blocks of O Revisited

Proof:

Enough to prove it for simple modules.

Let µ ∈ h∗. Then M(µ) has unique simple submodule
L(λ) = M(λ). Where λ is antidominant by Theorem 4.4.

All composition factors of M(µ), including L(µ), are in the
same block as L(λ). Moreover, µ = w · λ for some w ∈W[λ].

Furthermore, L(λ) is the unique simple submodule of M(w ·λ)
for any w ∈W[λ]. So L(w · λ) is in the same block as L(λ).

Finally, suppose λ and λ′ are both antidominant and λ 6= λ′.
Then by Theorem 3.3 and Theorem 4.4

ExtO(L(λ), L(λ′)) = ExtO(L(λ), L(λ′)∨)

= ExtO(M(λ),M(λ′)∨) = 0

Therefore, L(λ) and L(λ′) are not in the same block.
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Blocks of O Revisited

Notes:

Suppose λ and λ′ are antidominant and that Oλ,Oλ′ ⊂ Oχ,
for some central character χ.

Then |W[λ] · λ| = |W[λ′] · λ′| and Oλ ∼= Oλ′ .
Last part is not proven in this book.

Exercise:

Suppose M ∈ O has a contravariant form, then its block
summands in distinct blocks Oλ,Oµ are orthogonal.
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Example: Antidominant Projectives

If λ+ ρ ∈ Λ+, then λ is dominant and integral. and w◦ · λ is
antidominant and integral.

Theorem (4.10)

Let λ+ ρ ∈ Λ+. Then P(w◦ · λ) ∼= P(w◦ · λ)∨ and
(P(w◦ · λ) : M(w · λ)) = [M(w · λ) : L(w◦ · λ)] = 1 for all w ∈W .

Proof:

Consider the module P(−ρ) = M(−ρ) = L(−ρ) = Q(−ρ).

This is projective and injective.

Define the module T := M(−ρ)⊗ L(λ+ ρ).

Since dim L(λ+ ρ) <∞, then T is projective and injective.
T has standard filtration M(µ− ρ), where µ runs over the
weights of L(λ+ ρ).
M(µ− ρ) appears dim L(λ+ ρ)µ times.
Each direct summand of T satisfies similar properties.
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Example: Antidominant Projectives

Proof (continued):

Consider the central character χ = χλ and the block
summand Tχ of T .

Tχ is projective and injective.
Tχ has standard filtration by M(µ− ρ)’s, where µ runs over
the weights of L(λ+ ρ), for which µ− ρ is linked to λ.
M(µ− ρ) appears dim L(λ+ ρ)µ times.
If µ− ρ = w · λ, then µ = w · (λ+ ρ).
Since dim L(λ+ ρ) <∞, then dim L(λ+ ρ)w ·(λ+ρ) = 1.

Tχ has standard filtration by M(w · λ)’s, for w ∈W , each
occuring exactly once.

In particular, Tχ has the M(w◦ · λ) = L(w◦ · λ) as quotient.

Now Tχ is projective, so it has P(w◦ · λ) as direct summand.
Therefore, (P(w◦ · λ) : M(w · λ)) ≤ 1.
But L(w◦ · λ) is the unique simple submodule of M(w · λ), so
[M(w · λ) : L(w◦ · λ)] ≥ 1.

So (P(w◦ · λ) : M(w · λ)) = 1 and thus Tχ = P(w◦ · λ).
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Example: Antidominant Projectives

Proof (continued):

w◦ · λ is antidominant, so the socle of P(w◦ · λ) is L(w◦ · λ)r ,
for some r .

So L(w◦ · λ) is a submodule of P(w◦ · λ).

Now Tχ = P(w◦ · λ) is injective and indecomposable, so
P(w◦ · λ) is the injective envelope of L(w◦ · λ).

In other words, P(w◦ · λ) ∼= Q(w◦ · λ) = P(w◦ · λ)∨.
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Example: Antidominant Projectives

Notes:

This theorem generalizes (7.16):

Let λ ∈ h∗ be antidominant. Then P(λ) ∼= P(λ)∨ and
(P(λ) : M(w · λ)) = [M(w · λ) : L(λ)] = 1 for all w ∈W[λ].

By Exercise 4.8, P(λ) ∼= P(λ)∨ only when λ is antidominant.

Exercise:

What can we say about dim EndO P(w◦ · λ)?

Solution: dim EndO P(w◦ · λ) = 1?
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Application to sl(3,C)

What are the composition factors of M(w · λ), when λ ∈ Λ is
antidominant and regular?

For sl(3,C), ∆ = {α, β} and W = {1, sα, sβ, sαsβ, sβsα,w◦}.
Linkage class: {λ, sα · λ, sβ · λ, sαsβ · λ, sβsα · λ,w◦ · λ}.
Composition factors of M(λ):

[M(λ) : L(λ)] = 1
[M(λ) : L(w · λ)] = 0 for w 6= 1.
ch L(λ) = chM(λ)

Composition factors of M(sα · λ):

[M(sα · λ) : L(sα · λ)] = 1
[M(sα · λ) : L(λ)] = 1
[M(sα · λ) : L(w · λ)] = 0 for w /∈ {1, sα}.
ch L(sα · λ) = chM(sα · λ)− chM(λ)

Remaining cases (w ∈ {sαsβ, sβsα,w◦}): Section 5.4.

General solution: Chapter 8.
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Application to sl(3,C)

Exercise:

Suppose λ ∈ Λ is antidominant and in the α-hyperplane.

〈λ, α∨〉 = 0.
Linkage class: {λ, sβ · λ, sαsβ · λ}.
w◦ · λ = sαsβ · λ is dominant.
λ < sβ · λ < sαsβ · λ.

The composition factors of M(λ) and M(sβ · λ) are know.

Composition factors of M(sαsβ · λ):

[M(sαsβ · λ) : L(sαsβ · λ)] = 1
[M(sαsβ · λ) : L(λ)] = 1
[M(sαsβ · λ) : L(sβ · λ)] = r > 0.
ch L(sαsβ ·λ) = chM(sαsβ ·λ)−r chM(sβ ·λ)+(r−1) chM(λ).

Can we determine r?
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Shapovalov Elements

Can we construct an embedding M(sγ · λ) ⊂ M(λ) explicitly?

Here λ ∈ h∗, γ ∈ Φ+ and 〈λ+ ρ, γ∨〉 ≥ 0.

v+ ∈ M(λ) maximal vector of weight λ.

v̄+ ∈ M(sγ · λ) maximal vector of weight sγ · λ.

There is a unique (up to a scalar) u ∈ U(n−) such that

u · v+ is a maximal vector of weight sγ · λ = λ− 〈λ+ ρ, γ∨〉γ.
Then embedding is given by u′ · v̄+ 7→ u′u · v+.

How does u depend on λ?

Hard to answer.

Find instead element θγ,r ∈ U(b−)−rγ , for r > 0, such that

θγ,r ∈ U(b−)−rγ is independent of λ.
θγ,r · v+ is a maximal vector of weight λ− rγ whenever
〈λ+ ρ, γ∨〉 = r and v+ is a maximal vector of weight λ.

θγ,r is the Shapovalov element.
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Shapovalov Elements

Example/Exercise:

g = sl(3,C), ∆ = {α, β} and Φ+ = {α, β, γ = α + β}.
Since α, β are simple, then θα,r = y rα and θβ,r = y rβ.

To determine θγ,r is difficult. We do only θγ,1.

We construct first the element u ∈ U(n−)−γ dependent on λ.

Since u 6= 0, then u = ryαyβ + syγ , with r , s not both 0.
Write λ = aωα + bωβ .
Assume 〈λ+ ρ, γ∨〉 = 1, then a + b = −1.
Define hyperplane H := {λ = aωα + bωβ : a + b = −1}.

If u · v+ ∈ M(λ) is maximal vector of weight λ− γ, then

0 = xαu · v+ = (r(a + 1)− s)yβ · v+.
0 = xβu · v+ = (rb + s)yα · v+.

This determines u in terms of λ ∈ H.

In all cases, r 6= 0.
u is unique up to a scalar
So we may take r = 1 and s = −b = λ(hβ).
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Shapovalov Elements

Example/Exercise:

Now consider yαyβ − yγhβ ∈ U(b−)−γ .

For all λ ∈ H an maximal vector v+ of weight λ:

xα(yαyβ − yγhβ) · v+ = (a + 1 + b)yβ · v+ = 0
xβ(yαyβ − yγhβ) · v+ = (b − b)yα · v+ = 0.

So θγ,1 = yαyβ − yγhβ.

Clearly θγ,1 is independent of λ.
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Shapovalov Elements

Write Φ+ = {α1, . . . , αm} with ∆ = {α1, . . . , α`}. Let yi ∈ U(n−)
correspond to −αi , for i = 1, . . . ,m.

Theorem (4.12, Shapovalov)

Fix γ ∈ Φ+ and an integer r > 0. There exists an element
θγ,r ∈ U(b−)−rγ having the following properties:

a) For each root β > 0, the commutator [xβ, θγ,r ] lies in the left
ideal Iγ,r := U(g)(hγ + ρ(hγ)− r) + U(g)n.

b) If γ =
∑`

i=1 aiαi , then we can write

θγ,r =
∏̀
i=1

y raii +
∑
j

pjqj ,

with pj ∈ U(n−)−rγ , qj ∈ U(h), and deg pj < r
∑`

i=1 ai .

Moreover, θγ,r is unique (up to a scalar) modulo the left ideal
Jγ,r := U(b−)(hγ + ρ(hγ)− r).
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Shapovalov Elements

Notes:

Consider λ ∈ h∗, γ ∈ Φ+ and r > 0. Let v+ ∈ M(λ) be a
maximal vector of weight λ.

Then θγ,r · v+ is a maximal vector of weight λ− rγ = sγ · λ,
whenever r = 〈λ+ ρ, γ∨〉.
If so, then consider qj from (b) as polynomial functions on h∗

and write

θγ,r (λ) =
∏̀
i=1

y raii +
∑
j

pjqj(λ).

Then θγ,r (λ) ∈ U(n−)−rγ and θγ,r (λ) · v+ is a maximal vector
of weight λ− rγ = sγ · λ.

θγ,r (λ) is unique (up to a scalar) in U(n−).

Difficult to construct θγ,r explicitly. We use a more round
about approach.
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Proof of Shapovalov’s Theorem

Proof (Set-up, Induction in ht γ):

Fix r > 0 and γ ∈ Φ+.

If γ is simple (ht γ = 1), then θγ,r = y r
γ .

This is our induction base.

If γ /∈ ∆, then there exists α ∈ ∆ (0.2) such that

p := 〈γ, α∨〉 > 0.
β := sαγ = γ − pα > 0, and htβ < ht γ.

The induction hypothesis provides θβ,r ∈ U(b−)−rβ with the
desired properties.

Before applying this we discuss the proof strategy.
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Proof of Shapovalov’s Theorem

Proof (Strategy):

Consider hyperplane Hγ,r and half-space Hα:

Hγ,r := {λ ∈ h∗ : 〈λ+ ρ, γ∨〉 = r}
Hα := {λ ∈ h∗ : 〈λ+ ρ, α∨〉 < 0}

Hγ,r is Zariski closed.

Λ ∩ Hγ,r is Zariski dense in Hγ,r .

Θ := Hα ∩ Λ ∩ Hγ,r is also Zariski dense in Hγ,r . Why?

Note that Hγ,r contains exactly the weights λ for which we expect
θγ,r to describe the embedding M(sγ · λ) ↪→ M(λ).
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Proof of Shapovalov’s Theorem

Proof (Strategy):

Recall that I is the left ideal in U(g) annihilating any maximal
vector v+ ∈ M(λ) of weight λ.

Suppose we have θγ,r (λ) ∈ U(n−)−rγ , for each λ ∈ Θ, s.t.

a’) [xγ , θγ,r (λ)] ∈ I .
b’) Independent of the choice of λ ∈ Θ, the highest degree term in

θγ,r (λ) when written in a standard PBW basis is
∏

i y
rai
i .

c’) The coefficients of θγ,r (λ) in the PBW basis depend
polynomially on λ.

By (c ′) there exists pj ∈ U(n−)−rγ and qj ∈ U(h) such that
θγ,r (λ) =

∑
j pjqj(λ).

θγ,r (λ) can be extended to all λ ∈ Hγ,r :

Rewrite (a′)-(c ′) as polynomial equations whose mutual
solution space is then Zariski closed. It is then Hγ,r .

Define then θγ,r :=
∑

j pjqj ∈ U(b−)−rγ .
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Proof of Shapovalov’s Theorem

Proof (Strategy):
The element θγ,r :=

∑
j pjqj ∈ U(b−)−rγ then satisfies the

conditions of the theorem.

a) Follows from (a′). How?

b) Follows directly from (b′) and the definition of θγ,r .

*) θγ,r is unique (up to a scalar) modulo Jγ,r .

At each λ ∈ Hγ,r , Jγ,r specializes to the annihilator in U(b−)
any maximal vector v+ ∈ M(λ) of weight λ.
At each λ ∈ Hγ,r , θγ,r specializes to θγ,r (λ), which is the
unique (up to a scalar) element in U(n−) inducing
M(sγ · λ) ↪→ M(λ).
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Proof of Shapovalov’s Theorem

Proof (Construction of θγ,r (λ), λ ∈ Θ):

Recall the data we have:

r > 0, γ > 0 with ht γ > 1.
α ∈ ∆ with p = 〈γ, α∨〉 > 0, β := sαγ = γ − pα > 0 and
htβ < ht γ.
θβ,r ∈ U(b−)−rβ , satisfying the conditions of the theorem.
θβ,r (µ), for all µ ∈ Hβ,r satisfying (a′)-(c ′).

For λ ∈ Θ there is q ∈ Z>0 such that

µ := sα · λ = λ+ qα > λ, µ ∈ Hβ,r .
sα · (µ− rβ) = λ− rγ, with 〈µ− rβ + ρ, α∨〉 = q + rp.

Writing n := q + rp > 0 we get embeddings:

M(λ) ↪→ M(µ), induced by yq
α.

M(µ− rβ) ↪→ M(µ), induced by θβ,r (µ).
M(λ− rγ) ↪→ M(µ− rβ), induced by yn

α.
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Proof of Shapovalov’s Theorem

Proof (Construction of θγ,r (λ), λ ∈ Θ):

We have the embeddings:

M(λ) ↪→ M(µ), induced by yq
α.

M(µ− rβ) ↪→ M(µ), induced by θβ,r (µ).
M(λ− rγ) ↪→ M(µ− rβ), induced by yn

α.
yq
α, θβ,r (µ) and yn

α are unique in U(n−) up to a scalar.

Furthermore the embedding M(λ− rγ) ↪→ M(λ) is induced
by a unique element θγ,r (λ), satisfying:

θγ,r (λ)yqα = ynαθβ,r (µ)

θγ,r (λ) then satisfies the properties (a′)-(c ′).

a’) [xγ , θγ,r (λ)] ∈ I . Why?
b’) Follows by comparing highest degree terms on either side.
c’) Pull all yα to the right on both sides and remove yn

α.
Rewriting into PBW no extra dependencies on λ appear.
(c ′) then follows since θβ,r satisfy (c ′) and µ = λ+ rα.
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