Content

In this chapter we will answer the following questions:

1) What are the simple submodules of $M(\lambda)$?
2) When is $M(\lambda)$ simple?
3) When does an embedding $M(\mu) \rightarrow M(\lambda)$ exist?
4) Can we construct such an embedding explicitly?
5) What are the blocks of \mathcal{O} ?

Today: (1), (2) for $\lambda \in \Lambda$ and (3) for $\mu, \lambda \in \Lambda$.

Simple Submodules of Verma Modules

Lemma (4.1)

Any two nonzero left ideals of a left noetherian ring without zero divisors must intersect nontrivially.

Proposition (4.1)

For any $\lambda \in \mathfrak{h}^{*}$, the module $M(\lambda)$ has a unique simple submodule, which is therefore its socle.

Proof:

- $M(\lambda)$ is artinian, so it has a simple submodule.
- Suppose L, L^{\prime} are distinct simple submodule of $M(\lambda)$, then $L \cap L^{\prime}=\{0\}$.
- As $U\left(\mathfrak{n}^{-}\right)$-modules, $M(\lambda) \cong U\left(\mathfrak{n}^{-}\right)$. So L and L^{\prime} are left ideals of $U\left(\mathfrak{n}^{-}\right)$.
- $U\left(\mathfrak{n}^{-}\right)$is a left noetherian ring without zero divisors, so $L \cap L^{\prime} \neq\{0\}$. This is a contradiction.

Simple Submodules of Verma Modules

Note:

- The simple submodule of $M(\lambda)$ is isomorphic to some $L(\mu)$ with $\mu \leq \lambda$. Moreover, $\mu=w \cdot \lambda$ for some $w \in W_{[\lambda]}$.
Exercise:
- Let M be a nonzero submodule of $M(\lambda)$. Then M has a nondegenerate contravariant form if and only if it is the unique simple submodule of $M(\lambda)$.

Homomorphisms Between Verma Modules

Theorem (4.2)

Let $\lambda, \mu \in \mathfrak{h}^{*}$.
a) Any nonzero homomorphism $\varphi: M(\mu) \rightarrow M(\lambda)$ is injective.
b) In all cases, $\operatorname{dim} \operatorname{Hom}(M(\mu), M(\lambda)) \leq 1$.
c) The unique simple submodule $L(\mu)$ in $M(\lambda)$ is a Verma module.

Proof:
a) As a $U\left(\mathfrak{n}^{-}\right)$-module homomorphism $\varphi: U\left(\mathfrak{n}^{-}\right) \rightarrow U\left(\mathfrak{n}^{-}\right)$, $u^{\prime} \mapsto u^{\prime} u$, for some fixed $u \neq 0$.
Since $U\left(\mathfrak{n}^{-}\right)$has no zero-divisors, $\operatorname{Ker} \varphi=0$.
b) Consider nonzero $\varphi_{1}, \varphi_{2}: M(\mu) \rightarrow M(\lambda)$ and unique simple submodule $L \subset M(\mu)$. Then $\varphi_{1}(L)=\varphi_{2}(L)$ is simple. Let $\varphi_{3}=\varphi_{1}-c \varphi_{2}$ s.t. $\varphi_{3}(L)=\{0\}$. Then $\varphi_{3}=0$ by (a).
c) By universal property of $M(\mu)$, there exists $\varphi: M(\mu) \rightarrow M(\lambda)$, with $\varphi(M(\mu))=L(\mu)$. Now φ is injective by (a).

Homomorphisms Between Verma Modules

Notes:

- Whenever $\operatorname{Hom}(M(\mu), M(\lambda)) \neq 0$ we can now unambiguously write $M(\mu) \subset M(\lambda)$.
- One major goal in this chapter is to study this embedding.
- When does it exist?
- How can we construct it?
- The other goal is to determine when $M(\lambda)$ is simple.

Special Case: λ is a Dominant Integral Weight

Proposition (4.3)

Suppose $\lambda+\rho \in \Lambda^{+}$. Then $M(w \cdot \lambda) \subset M(\lambda)$, for all $w \in W$; thus all $[M(\lambda): L(w \cdot \lambda)]>0$.
More precisely, if w has reduced expression $w=s_{n} \cdots s_{1}$, with s_{i} reflection relative to the simple root α_{i}, then there is a sequence

$$
M(w \cdot \lambda)=M\left(\lambda_{n}\right) \subset M\left(\lambda_{n-1}\right) \subset \cdots \subset M\left(\lambda_{0}\right)=M(\lambda)
$$

where $\lambda_{0}:=\lambda$ and $\lambda_{k}:=s_{k} \cdot \lambda_{k-1}$, for $k \in\{1, \ldots, n\}$.
In particular, $\lambda_{n} \leq \lambda_{n-1} \leq \cdots \leq \lambda_{0}$, with $\left\langle\lambda_{k}+\rho, \alpha_{k+1}^{\vee}\right\rangle \in \mathbb{Z}^{+}$, for $k=0, \ldots, n-1$.

Proof:

Use the reformulated Proposition 1.4 and Theorem 4.2(c):

- If $\left\langle\lambda_{k}+\rho, \alpha_{k+1}^{\vee}\right\rangle \in \mathbb{Z}^{+}$, then there exists an embedding

$$
M\left(s_{k+1} \cdot \lambda_{k}\right)=M\left(\lambda_{k+1}\right) \rightarrow M\left(\lambda_{k}\right)
$$

Special Case: λ is a Dominant Integral Weight

Exercises: Assume $\lambda+\rho \in \Lambda^{+}$.

- The unique simple submodule of $M(\lambda)$ is isomorphic to $M\left(w_{\circ} \cdot \lambda\right)$.
- If $\lambda \in \Lambda^{+}$, then all inclusions in the proposition are proper.

Notes:

- This proposition will generalize as follow:

Let $\lambda \in \mathfrak{h}^{*}$. Given $\alpha>0$, suppose $\mu:=s_{\alpha} \cdot \lambda \leq \lambda$. Then there exists an embedding $M(\mu) \subset M(\lambda)$.

- The failure of Proposition 1.4 to carry over to nonsimple positive roots, means that a totally different strategy is needed to generalize this result.

Simplicity Criterion: Integral Case

Recall that $\lambda \in \mathfrak{h}^{*}$ is called antidominant if $\left\langle\lambda+\rho, \alpha^{\vee}\right\rangle \notin \mathbb{Z}^{>0}$ for all $\alpha \in \Phi^{+}$.

Theorem (4.4, Simplicity Criterion)

Let $\lambda \in \mathfrak{h}^{*}$. Then $M(\lambda)=L(\lambda)$ if and only if λ is antidominant.
Proof (Integral case, $\lambda \in \Lambda$):

- Suppose $M(\lambda)$ is simple and that λ is not antidominant.
- Then, since $\lambda \in \Lambda$, we can find a simple root α such that $\left\langle\lambda+\rho, \alpha^{\vee}\right\rangle>0$.
- Using the Proposition 1.4 and Theorem 4.2(c), we get a proper embedding $M\left(s_{\alpha} \cdot \lambda\right) \rightarrow M(\lambda)$.
- This contradicts the simplicity of $M(\lambda)$.
- Suppose λ is antidominant.
- Then by (3.5), $\lambda \leq w \cdot \lambda$.
- But $M(\lambda)$ only has composition factors $L(w \cdot \lambda)$ with $w \cdot \lambda \leq \lambda$.
- Therefore $L(\lambda)$ is the only composition factor and it occurs only once, so $M(\lambda)=L(\lambda)$.

Simplicity Criterion: Integral Case

Exercise:

- If $\lambda \in \Lambda$ is antidominant, then the socle of $P(w \cdot \lambda)$ with $w \in W$ is a direct sum of copies of $L(\lambda)$.
- The general version of this result is proven later.

Notes:

- Only the second part of this proof can be generalized to $\lambda \in \mathfrak{h}^{*}$.
- The first part does not generalize since Proposition 1.4 no longer applies.
- We therefore need more information on embeddings $M\left(s_{\alpha} \cdot \lambda\right) \subset M(\lambda)$, where α is not simple.

Existence of Embeddings: Preliminaries

Proposition (4.5)

Let $\mu, \lambda \in \mathfrak{h}^{*}$ and $\alpha \in \Delta$, with $n:=\left\langle\lambda+\rho, \alpha^{\vee}\right\rangle \in \mathbb{Z}$ and

$$
M\left(s_{\alpha} \cdot \mu\right) \subset M(\mu) \subset M(\lambda)
$$

Then there are two possibilities for the position of $M\left(s_{\alpha} \cdot \lambda\right)$:
a) If $n \leq 0$, then $M(\lambda) \subset M\left(s_{\alpha} \cdot \lambda\right)$.
b) If $n>0$, then $M\left(s_{\alpha} \cdot \mu\right) \subset M\left(s_{\alpha} \cdot \lambda\right) \subset M(\lambda)$.

Lemma (4.5)

Let \mathfrak{a} be a nilpotent Lie algebra, with $x \in \mathfrak{a}$ and $u \in U(\mathfrak{a})$. Given a positive integer n, there exists an integer t depending on x and u such that $x^{t} u \in U(\mathfrak{a}) x^{n}$.

We also note that for any $\alpha \in \Delta$ and $t>0$,

$$
\left[x, y_{\alpha}^{t}\right]=t y_{\alpha}^{t-1}\left(h_{\alpha}-t+1\right) .
$$

Existence of Embeddings: Preliminaries

Proof (Proposition 4.5):
a) If $n \leq 0$, then $M(\lambda) \subset M\left(s_{\alpha} \cdot \lambda\right)$ by Proposition 1.4, since

$$
\left\langle s_{\alpha} \cdot \lambda+\rho, \alpha^{\vee}\right\rangle=\left\langle s_{\alpha} \cdot(\lambda+\rho), \alpha^{\vee}\right\rangle=\left\langle\lambda+\rho,-\alpha^{\vee}\right\rangle=-n \geq 0
$$

b) If $n>0$, then we want $M\left(s_{\alpha} \cdot \mu\right) \subset M\left(s_{\alpha} \cdot \lambda\right) \subset M(\lambda)$.

- Proposition 1.4 immediately gives $M\left(s_{\alpha} \cdot \lambda\right) \subset M(\mu)$.
- Letting $s:=\left\langle\mu+\rho, \alpha^{\vee}\right\rangle$ we get maximal vectors

$$
v_{\lambda}^{+} \in M(\lambda), \quad y_{\alpha}^{n} \cdot v_{\lambda}^{+} \in M\left(s_{\alpha} \cdot \lambda\right), \quad v_{\mu}^{+} \in M(\mu), \quad y_{\alpha}^{s} \cdot v_{\mu}^{+} \in M\left(s_{\alpha} \cdot \mu\right)
$$

- Since $M(\mu) \subset M(\lambda)$, there is $u \in U\left(\mathfrak{n}^{-}\right)$with $v_{\mu}^{+}=u \cdot v_{\lambda}^{+}$.
- Lemma 4.5 gives us $t \geq s$ such that $y_{\alpha}^{t} u \in U\left(\mathfrak{n}^{-}\right) y_{\alpha}^{n}$. So

$$
y_{\alpha}^{t} \cdot v_{\mu}^{+}=y_{\alpha}^{t} u \cdot v_{\lambda}^{+} \in U\left(\mathfrak{n}^{-}\right) y_{\alpha}^{n} v_{\lambda}^{+} \subset M\left(s_{\alpha} \cdot \lambda\right) .
$$

- If $t>s$, then we use $\left[x, y_{\alpha}^{t}\right]=t y_{\alpha}^{t-1}\left(h_{\alpha}-t+1\right)$ to get

$$
(s-t) t y_{\alpha}^{t-1} v_{\mu}^{+}=x_{\alpha} y_{\alpha}^{t} \cdot v_{\mu}^{+} \in M\left(s_{\alpha} \cdot \lambda\right) .
$$

- This proves $y_{\alpha}^{s} \cdot v_{\mu}^{+} \in M\left(s_{\alpha} \cdot \lambda\right)$ and $M\left(s_{\alpha} \cdot \mu\right) \subset M\left(s_{\alpha} \cdot \lambda\right)$.

Existence of Embeddings: Integral Case

Theorem (4.6, Verma)

Let $\lambda \in \mathfrak{h}^{*}$. Given $\alpha>0$, suppose $\mu:=s_{\alpha} \cdot \lambda \leq \lambda$. Then there exists an embedding $M(\mu) \subset M(\lambda)$.

Proof (Integral case, $\lambda \in \Lambda$):

- Since λ is integral, so is μ. Therefore we can find $w \in W$ such that $\mu^{\prime}:=w^{-1} \cdot \mu \in \Lambda^{+}-\rho$.
- Considering a reduced expression $w=s_{n} \cdots s_{1}$, we define weights $\mu_{0}:=\mu^{\prime}$ and $\mu_{k}:=s_{k} \cdot \mu_{k-1}$, for $k=1, \ldots, n$.
- Proposition 4.3 tells us that $\mu_{0} \geq \cdots \geq \mu_{n}$ and that

$$
M\left(\mu_{0}\right) \supset M\left(\mu_{1}\right) \supset \cdots \supset M\left(\mu_{n}\right)
$$

- Letting $\lambda^{\prime}:=w^{-1} \cdot \lambda$ we define a parallel list of weights. $\lambda_{0}:=\lambda^{\prime}$ and $\lambda_{k}:=s_{k} \cdot \lambda_{k-1}$, for $k=1, \ldots, n$.

Existence of Embeddings: Integral Case

Proof (continued):

- A short calculation shows that if $w_{k}:=s_{k+1} \cdots s_{n}$, then $\mu_{k}=s_{\beta_{k}} \cdot \lambda_{k}, \beta_{k}$ is the root with $s_{\beta_{k}}=w_{k}^{-1} s_{\alpha} w_{k}$.
- It follows that $\mu_{k}-\lambda_{k} \in \mathbb{Z} \beta_{k}$.
- We may assume that $\mu<\lambda$. This implies $\mu_{k} \neq \lambda_{k}$ and in particular $\mu^{\prime}>\lambda^{\prime}$, since μ^{\prime} is dominant.
- There must thus be a least index k such that $\mu_{k}>\lambda_{k}$ and $\mu_{k+1}<\lambda_{k+1}$. We fix this k.
- We will prove $M\left(\mu_{k+1}\right) \subset M\left(\lambda_{k+1}\right), M\left(\mu_{k+2}\right) \subset M\left(\lambda_{k+2}\right), \ldots$ Culminating in $M\left(\mu_{n}\right) \subset M\left(\lambda_{n}\right)$.
- By definition $\mu_{k+1}-\lambda_{k+1}=s_{k+1}\left(\mu_{k}-\lambda_{k}\right)$.
- By our choice of k, we get $\mu_{k+1}-\lambda_{k+1} \in \mathbb{Z}^{-} \beta_{k+1}$ and $s_{k+1}\left(\mu_{k}-\lambda_{k}\right) \in \mathbb{Z}^{+} \beta_{k}$. So $\beta_{k}=\beta_{k+1}=\alpha_{k+1}$.
- Prop 1.4 yields $M\left(\mu_{k+1}\right)=M\left(s_{k+1} \cdot \lambda_{k+1}\right) \subset M\left(\lambda_{k+1}\right)$.

Existence of Embeddings: Integral Case

Proof (continued):

- Combined with the sequence of embeddings we get

$$
M\left(\mu_{k+2}\right)=M\left(s_{k+2} \cdot \mu_{k+1}\right) \subset M\left(\mu_{k+1}\right) \subset M\left(\lambda_{k+1}\right)
$$

- Proposition 4.5 then implies that

$$
M\left(\mu_{k+2}\right) \subset M\left(s_{k+2} \cdot \lambda_{k+1}\right)=M\left(\lambda_{k+2}\right)
$$

- Iterating these last arguments we get

$$
M(\mu)=M\left(\mu_{n}\right) \subset M\left(\lambda_{n}\right)=M(\lambda)
$$

Extra: Solution to problem we discussed at the end

Remark

Let $\lambda \in \mathfrak{h}^{*}, \alpha>0$ and $M\left(s_{\alpha} \cdot \lambda\right) \subset M(\lambda)$. Then $\left\langle\lambda+\rho, \alpha^{\vee}\right\rangle \in \mathbb{Z}^{+}$.
Proof: The embedding implies that $s_{\alpha} \cdot \lambda \leq \lambda$.
In general we have

$$
s_{\alpha} \cdot \lambda=s_{\alpha}(\lambda+\rho)-\rho=\lambda-\left\langle\lambda+\rho, \alpha^{\vee}\right\rangle \alpha
$$

So $s_{\alpha} \cdot \lambda \leq \lambda$ if and only if

$$
\lambda-s_{\alpha} \cdot \lambda=\left\langle\lambda+\rho, \alpha^{\vee}\right\rangle \alpha \in \Gamma
$$

if and only if

$$
\left\langle\lambda+\rho, \alpha^{\vee}\right\rangle \in \mathbb{Z}^{+} .
$$

Existence of Embeddings: General Case

Theorem (4.6, Verma)

Let $\lambda \in \mathfrak{h}^{*}$. Given $\alpha>0$, suppose $\mu:=s_{\alpha} \cdot \lambda \leq \lambda$. Then there exists an embedding $M(\mu) \subset M(\lambda)$.

Proof:

- Note that $\nu:=\lambda-\mu \in \Gamma$ and let

$$
\begin{aligned}
X & :=\left\{\lambda \in \mathfrak{h}^{*}: M(\mu)=M(\lambda-\nu) \subset M(\lambda)\right\} \\
H & :=\left\{\lambda \in \mathfrak{h}^{*}:\left\langle\lambda+\rho, \alpha^{\vee}\right\rangle \in \mathbb{Z}^{+}\right\}
\end{aligned}
$$

- Recall that $s_{\alpha} \cdot \lambda \leq \lambda$ if and only if $\left\langle\lambda+\rho, \alpha^{\vee}\right\rangle \in \mathbb{Z}^{+}$. It is enough to prove that $X=H$.
- We know that $X \subset H$ and that $\Lambda \cap H \subset X$.
- By 1.9 we know that $\Lambda \cap H$ is is Zariski dense in H.
- Proving that $X \subset \mathfrak{h}^{*}$ is Zariski closed implies $X=H$.

Existence of Embeddings: General Case

Proof(continued, X is Zariski closed):

- $X=\left\{\lambda \in \mathfrak{h}^{*}: M(\lambda-\nu) \subset M(\lambda)\right\}$.
- We need to construct a polynomial on \mathfrak{h}^{*} whose set of common zeros is X.
- Write $\lambda=\lambda_{1} \bar{\omega}_{1}+\cdots+\lambda_{\ell} \bar{\omega}_{\ell}$ and consider $\lambda_{1}, \ldots, \lambda_{\ell}$ as polynomial variables.
- We construct a linear map $g^{\lambda}: U\left(\mathfrak{n}^{-}\right)_{-\nu} \rightarrow U\left(\mathfrak{n}^{-}\right)^{\ell}$, such that
- its matrix is written in terms of the λ_{i}.
- rank $g^{\lambda}<\operatorname{dim} U\left(\mathfrak{n}^{-}\right)_{-\nu}$ if and only if $\lambda \in X$.
- The matrix of g^{λ} then has a certain minor
- which depends polynomially on the λ_{i} 's.
- whose determinant is 0 if and only if $\lambda \in X$.
- The construction of such a g^{λ} thus proves X to be Zariski closed.

Existence of Embeddings: General Case

Proof(continued, construction of $\left.g^{\lambda}\right)$:

- Let $\left(h_{i}, x_{i}, y_{i}\right)$ be standard bases for $\mathfrak{s}_{i} \cong \mathfrak{s l}(2, \mathbb{C})$ corresponding to simple roots, for $i=1, \ldots, \ell$.
- For $u \in U\left(\mathfrak{n}^{-}\right)$we can find $u_{i}, u_{i}^{\prime} \in U\left(\mathfrak{n}^{-}\right)$depending linearly on u such that $\left[x_{i}, u\right]=u_{i}+u_{i}^{\prime} h_{i}$.
- We define for $i=1, \ldots, \ell$, the linear maps

$$
\begin{aligned}
f_{i}^{\lambda}: U\left(\mathfrak{n}^{-}\right)_{-\nu} \rightarrow U\left(\mathfrak{n}^{-}\right), \quad u & \mapsto u_{i}+\lambda\left(h_{i}\right) u_{i}^{\prime}=u_{i}+\lambda_{i} u_{i}^{\prime} . \\
g^{\lambda}: U\left(\mathfrak{n}^{-}\right)_{-\nu} & \rightarrow U\left(\mathfrak{n}^{-}\right)^{\lambda}, \quad u \mapsto f_{1}^{\lambda}(u) \oplus \cdots \oplus f_{\ell}^{\lambda}(u) .
\end{aligned}
$$

- Let $v^{+} \in M(\lambda)$ be a maximal vector of weight λ.
- A short calculation shows that $g^{\lambda}(u)=0$ if and only if $u \cdot v^{+}$ is a maximal vector of weight $\lambda-\nu$.
- So rank $g^{\lambda}<\operatorname{dim} U\left(\mathfrak{n}^{-}\right)_{-\nu}$ if and only if $M(\lambda-\nu) \subset M(\lambda)$.

Existence of Embeddings: General Case

Notes:

- Generalization of Proposition 1.4:

Let $\lambda \in \mathfrak{h}^{*}$ and $\alpha>0$. Then $s_{\alpha} \cdot \lambda \leq \lambda$ if and only if $\left\langle\lambda+\rho, \alpha^{\vee}\right\rangle \in \mathbb{Z}^{+}$if and only if $M\left(s_{\alpha} \cdot \lambda\right) \subset M(\lambda)$.

- Generalization of Proposition 4.3:

Let $\lambda \in \mathfrak{h}^{*}$ and $\alpha_{1}, \ldots, \alpha_{n}>0$ with
$\left(s_{\alpha_{n}} \cdots s_{\alpha_{1}}\right) \cdot \lambda \leq \cdots \leq s_{\alpha_{1}} \cdot \lambda \leq \lambda$, then

$$
M(\lambda) \supset M\left(s_{\alpha_{1}} \cdot \lambda\right) \supset \cdots \supset M\left(\left(s_{\alpha_{n}} \cdots s_{\alpha_{1}}\right) \cdot \lambda\right)
$$

- We thus have a sufficient condition for $\left[M(\lambda): L\left(s_{\alpha} \cdot \lambda\right)\right]>0$. This is also a necessary condition (5.1).

Simplicity Criterion: General Case

$\lambda \in \mathfrak{h}^{*}$ is antidominant if $\left\langle\lambda+\rho, \alpha^{\vee}\right\rangle \notin \mathbb{Z}^{>0}$ for all $\alpha \in \Phi^{+}$.

Theorem (4.4, Simplicity Criterion)

Let $\lambda \in \mathfrak{h}^{*}$. Then $M(\lambda)=L(\lambda)$ if and only if λ is antidominant.
Proof:

- Suppose $M(\lambda)$ is simple and that λ is not antidominant.
- Then, we can find $\alpha>0$ such that $\left\langle\lambda+\rho, \alpha^{\vee}\right\rangle \in \mathbb{Z}^{>0}$.
- Since $\lambda-s_{\alpha} \cdot \lambda=\left\langle\lambda+\rho, \alpha^{\vee}\right\rangle \alpha$, then $s_{\alpha} \cdot \lambda<\lambda$.
- So there exist a proper embedding $M\left(s_{\alpha} \cdot \lambda\right) \subset M(\lambda)$.
- This contradicts the simplicity of $M(\lambda)$.
- Suppose λ is antidominant.
- Then by (3.5), $\lambda \leq w \cdot \lambda$, for any $w \in W_{[\lambda]}$.
- But $M(\lambda)$ only has composition factors $L(w \cdot \lambda)$ with $w \cdot \lambda \leq \lambda$ and $w \in W_{[\lambda]}$.
- Therefore $L(\lambda)$ is the only composition factor and it occurs only once, so $M(\lambda)=L(\lambda)$.

Simplicity Criterion: General Case

Corollary (4.8)

Let $\lambda \in \mathfrak{h}^{*}$ be antidominant. Then for all $w \in W_{[\lambda]}$, the socle of $P(w \cdot \lambda)$ is a direct sum of copies of $L(\lambda)$.

Proof:

- Construct a standard filtration

$$
0=P_{0} \subset P_{1} \subset \cdots \subset P_{n}=P(w \cdot \lambda)
$$

with $P_{i} / P_{i-1} \cong M\left(w^{\prime} \cdot \lambda\right)$ for some $w^{\prime} \in W$.

- Take simple summand $L \subset \operatorname{Soc} P(w \cdot \lambda)$.
- Let i be the least index such that $L \subset P_{i}$, then $L \cap P_{i-1}=0$.
- Then $L \subset M\left(w^{\prime} \cdot \lambda\right) \cong P_{i} / P_{i-1}$.
- Then L is a Verma module with antidominant highest weight linked to $w^{\prime} \cdot \lambda$, so $L \cong L(\lambda)$.

Simplicity Criterion: General Case

Notes:

- It is hard to determine for what r of appear in Soc $P(w \cdot \lambda) \cong L(\lambda)^{r}$.
- It can be shown (13.14), using Requires Kazhdan-Lusztig theory (8.4), that

$$
r=\left(P(w \cdot \lambda): M\left(w_{\circ} \cdot \lambda\right)\right)=\left[M\left(w_{\circ} \cdot \lambda\right): L(w \cdot \lambda)\right] .
$$

Exercise:

- Let $\lambda \in \mathfrak{h}^{*}$. If $P(\lambda) \cong P(\lambda)^{\vee}$ is self-dual, i.e. $P(\lambda) \cong Q(\lambda)$. Then λ is antidominant.
- What can we say about the converse? See Theorem 4.10.
- Solution:
- $P(\lambda)$ has submodule $L(\mu)$, where μ is antidominant.
- $P(\lambda)=Q(\lambda)$ is injective and indecomposable, so $Q(\lambda) \cong Q(\mu)$. Therefore, $\lambda=\mu$.

Blocks of \mathcal{O} Revisited

Definition of blocks:

- Simple modules M_{1} and M_{2} are in the same block if $\operatorname{Ext}_{\mathcal{O}}\left(M_{1}, M_{2}\right) \neq 0$ or $\operatorname{Ext}_{\mathcal{O}}\left(M_{2}, M_{1}\right) \neq 0$.
- Two modules are in the same block if all their composition factors are.

Theorem (4.9)

The blocks of \mathcal{O} are precisely the subcategories consisting of modules whose composition factors all have highest weights linked by $W_{[\lambda]}$ to an antidominant weight λ. Thus the blocks are in natural bijection with antidominant (or alternatively, dominant) weights.

We denote the individual blocks by \mathcal{O}_{λ}, where λ is antidominant.

Blocks of \mathcal{O} Revisited

Proof:

- Enough to prove it for simple modules.
- Let $\mu \in \mathfrak{h}^{*}$. Then $M(\mu)$ has unique simple submodule $L(\lambda)=M(\lambda)$. Where λ is antidominant by Theorem 4.4.
- All composition factors of $M(\mu)$, including $L(\mu)$, are in the same block as $L(\lambda)$. Moreover, $\mu=w \cdot \lambda$ for some $w \in W_{[\lambda]}$.
- Furthermore, $L(\lambda)$ is the unique simple submodule of $M(w \cdot \lambda)$ for any $w \in W_{[\lambda]}$. So $L(w \cdot \lambda)$ is in the same block as $L(\lambda)$.
- Finally, suppose λ and λ^{\prime} are both antidominant and $\lambda \neq \lambda^{\prime}$. Then by Theorem 3.3 and Theorem 4.4

$$
\begin{aligned}
\operatorname{Ext}_{\mathcal{O}}\left(L(\lambda), L\left(\lambda^{\prime}\right)\right) & =\operatorname{Ext}_{\mathcal{O}}\left(L(\lambda), L\left(\lambda^{\prime}\right)^{\vee}\right) \\
& =\operatorname{Ext}_{\mathcal{O}}\left(M(\lambda), M\left(\lambda^{\prime}\right)^{\vee}\right)=0
\end{aligned}
$$

- Therefore, $L(\lambda)$ and $L\left(\lambda^{\prime}\right)$ are not in the same block.

Blocks of \mathcal{O} Revisited

Notes:

- Suppose λ and λ^{\prime} are antidominant and that $\mathcal{O}_{\lambda}, \mathcal{O}_{\lambda^{\prime}} \subset \mathcal{O}_{\chi}$, for some central character χ.
- Then $\left|W_{[\lambda]} \cdot \lambda\right|=\left|W_{\left[\lambda^{\prime}\right]} \cdot \lambda^{\prime}\right|$ and $\mathcal{O}_{\lambda} \cong \mathcal{O}_{\lambda^{\prime}}$.
- Last part is not proven in this book.

Exercise:

- Suppose $M \in \mathcal{O}$ has a contravariant form, then its block summands in distinct blocks $\mathcal{O}_{\lambda}, \mathcal{O}_{\mu}$ are orthogonal.

Example: Antidominant Projectives

- If $\lambda+\rho \in \Lambda^{+}$, then λ is dominant and integral. and $w_{0} \cdot \lambda$ is antidominant and integral.

Theorem (4.10)

Let $\lambda+\rho \in \Lambda^{+}$. Then $P\left(w_{0} \cdot \lambda\right) \cong P\left(w_{0} \cdot \lambda\right)^{\vee}$ and
$\left(P\left(w_{0} \cdot \lambda\right): M(w \cdot \lambda)\right)=\left[M(w \cdot \lambda): L\left(w_{0} \cdot \lambda\right)\right]=1$ for all $w \in W$.
Proof:

- Consider the module $P(-\rho)=M(-\rho)=L(-\rho)=Q(-\rho)$.
- This is projective and injective.
- Define the module $T:=M(-\rho) \otimes L(\lambda+\rho)$.
- Since $\operatorname{dim} L(\lambda+\rho)<\infty$, then T is projective and injective.
- T has standard filtration $M(\mu-\rho)$, where μ runs over the weights of $L(\lambda+\rho)$.
- $M(\mu-\rho)$ appears $\operatorname{dim} L(\lambda+\rho)_{\mu}$ times.
- Each direct summand of T satisfies similar properties.

Example: Antidominant Projectives

Proof (continued):

- Consider the central character $\chi=\chi_{\lambda}$ and the block summand T^{χ} of T.
- T^{χ} is projective and injective.
- T^{χ} has standard filtration by $M(\mu-\rho)$'s, where μ runs over the weights of $L(\lambda+\rho)$, for which $\mu-\rho$ is linked to λ.
- $M(\mu-\rho)$ appears $\operatorname{dim} L(\lambda+\rho)_{\mu}$ times.
- If $\mu-\rho=w \cdot \lambda$, then $\mu=w \cdot(\lambda+\rho)$.
- Since $\operatorname{dim} L(\lambda+\rho)<\infty$, then $\operatorname{dim} L(\lambda+\rho)_{w \cdot(\lambda+\rho)}=1$.
- T^{χ} has standard filtration by $M(w \cdot \lambda)$'s, for $w \in W$, each occuring exactly once.
- In particular, T^{χ} has the $M\left(w_{0} \cdot \lambda\right)=L\left(w_{0} \cdot \lambda\right)$ as quotient.
- Now T^{χ} is projective, so it has $P\left(w_{0} \cdot \lambda\right)$ as direct summand.
- Therefore, $\left(P\left(w_{0} \cdot \lambda\right): M(w \cdot \lambda)\right) \leq 1$.
- But $L\left(w_{o} \cdot \lambda\right)$ is the unique simple submodule of $M(w \cdot \lambda)$, so $\left[M(w \cdot \lambda): L\left(w_{0} \cdot \lambda\right)\right] \geq 1$.
- So $\left(P\left(w_{0} \cdot \lambda\right): M(w \cdot \lambda)\right)=1$ and thus $T^{\chi}=P\left(w_{\circ} \cdot \lambda\right)$.

Example: Antidominant Projectives

Proof (continued):

- $w_{\circ} \cdot \lambda$ is antidominant, so the socle of $P\left(w_{\circ} \cdot \lambda\right)$ is $L\left(w_{\circ} \cdot \lambda\right)^{r}$, for some r.
- So $L\left(w_{0} \cdot \lambda\right)$ is a submodule of $P\left(w_{0} \cdot \lambda\right)$.
- Now $T^{\chi}=P\left(w_{0} \cdot \lambda\right)$ is injective and indecomposable, so $P\left(w_{0} \cdot \lambda\right)$ is the injective envelope of $L\left(w_{0} \cdot \lambda\right)$.
- In other words, $P\left(w_{\circ} \cdot \lambda\right) \cong Q\left(w_{\circ} \cdot \lambda\right)=P\left(w_{\circ} \cdot \lambda\right)^{\vee}$.

Example: Antidominant Projectives

Notes:

- This theorem generalizes (7.16):
- Let $\lambda \in \mathfrak{h}^{*}$ be antidominant. Then $P(\lambda) \cong P(\lambda)^{\vee}$ and $(P(\lambda): M(w \cdot \lambda))=[M(w \cdot \lambda): L(\lambda)]=1$ for all $w \in W_{[\lambda]}$.
- By Exercise 4.8, $P(\lambda) \cong P(\lambda)^{\vee}$ only when λ is antidominant.

Exercise:

- What can we say about $\operatorname{dim}^{E^{\mathcal{O}}}{ }_{\mathcal{O}} P\left(w_{0} \cdot \lambda\right)$?
- Solution: $\operatorname{dim}^{\operatorname{End}}{ }_{\mathcal{O}} P\left(w_{0} \cdot \lambda\right)=1$?

Application to $\mathfrak{s l}(3, \mathbb{C})$

What are the composition factors of $M(w \cdot \lambda)$, when $\lambda \in \Lambda$ is antidominant and regular?

- For $\mathfrak{s l}(3, \mathbb{C}), \Delta=\{\alpha, \beta\}$ and $W=\left\{1, s_{\alpha}, s_{\beta}, s_{\alpha} s_{\beta}, s_{\beta} s_{\alpha}, w_{\circ}\right\}$.
- Linkage class: $\left\{\lambda, s_{\alpha} \cdot \lambda, s_{\beta} \cdot \lambda, s_{\alpha} s_{\beta} \cdot \lambda, s_{\beta} s_{\alpha} \cdot \lambda, w_{\circ} \cdot \lambda\right\}$.
- Composition factors of $M(\lambda)$:
- $[M(\lambda): L(\lambda)]=1$
- $[M(\lambda): L(w \cdot \lambda)]=0$ for $w \neq 1$.
- ch $L(\lambda)=\operatorname{ch} M(\lambda)$
- Composition factors of $M\left(s_{\alpha} \cdot \lambda\right)$:
- $\left[M\left(s_{\alpha} \cdot \lambda\right): L\left(s_{\alpha} \cdot \lambda\right)\right]=1$
- $\left[M\left(s_{\alpha} \cdot \lambda\right): L(\lambda)\right]=1$
- $\left[M\left(s_{\alpha} \cdot \lambda\right): L(w \cdot \lambda)\right]=0$ for $w \notin\left\{1, s_{\alpha}\right\}$.
- ch $L\left(s_{\alpha} \cdot \lambda\right)=\operatorname{ch} M\left(s_{\alpha} \cdot \lambda\right)-\operatorname{ch} M(\lambda)$
- Remaining cases $\left(w \in\left\{s_{\alpha} s_{\beta}, s_{\beta} s_{\alpha}, w_{o}\right\}\right)$: Section 5.4.
- General solution: Chapter 8.

Application to $\mathfrak{s l}(3, \mathbb{C})$

Exercise:

- Suppose $\lambda \in \Lambda$ is antidominant and in the α-hyperplane.
- $\left\langle\lambda, \alpha^{\vee}\right\rangle=0$.
- Linkage class: $\left\{\lambda, s_{\beta} \cdot \lambda, s_{\alpha} s_{\beta} \cdot \lambda\right\}$.
- $w_{0} \cdot \lambda=s_{\alpha} s_{\beta} \cdot \lambda$ is dominant.
- $\lambda<s_{\beta} \cdot \lambda<s_{\alpha} s_{\beta} \cdot \lambda$.
- The composition factors of $M(\lambda)$ and $M\left(s_{\beta} \cdot \lambda\right)$ are know.
- Composition factors of $M\left(s_{\alpha} s_{\beta} \cdot \lambda\right)$:
- $\left[M\left(s_{\alpha} s_{\beta} \cdot \lambda\right): L\left(s_{\alpha} s_{\beta} \cdot \lambda\right)\right]=1$
- $\left[M\left(s_{\alpha} s_{\beta} \cdot \lambda\right): L(\lambda)\right]=1$
- $\left[M\left(s_{\alpha} s_{\beta} \cdot \lambda\right): L\left(s_{\beta} \cdot \lambda\right)\right]=r>0$.
- ch $L\left(s_{\alpha} s_{\beta} \cdot \lambda\right)=\operatorname{ch} M\left(s_{\alpha} s_{\beta} \cdot \lambda\right)-r \operatorname{ch} M\left(s_{\beta} \cdot \lambda\right)+(r-1) \operatorname{ch} M(\lambda)$.
- Can we determine r ?

Shapovalov Elements

Can we construct an embedding $M\left(s_{\gamma} \cdot \lambda\right) \subset M(\lambda)$ explicitly?

- Here $\lambda \in \mathfrak{h}^{*}, \gamma \in \Phi^{+}$and $\left\langle\lambda+\rho, \gamma^{\vee}\right\rangle \geq 0$.
- $v^{+} \in M(\lambda)$ maximal vector of weight λ.
- $\bar{v}^{+} \in M\left(s_{\gamma} \cdot \lambda\right)$ maximal vector of weight $s_{\gamma} \cdot \lambda$.
- There is a unique (up to a scalar) $u \in U\left(\mathfrak{n}^{-}\right)$such that
- $u \cdot v^{+}$is a maximal vector of weight $s_{\gamma} \cdot \lambda=\lambda-\left\langle\lambda+\rho, \gamma^{\vee}\right\rangle \gamma$.
- Then embedding is given by $u^{\prime} \cdot \bar{v}^{+} \mapsto u^{\prime} u \cdot v^{+}$.

How does u depend on λ ?

- Hard to answer.
- Find instead element $\theta_{\gamma, r} \in U\left(\mathfrak{b}^{-}\right)_{-r \gamma}$, for $r>0$, such that
- $\theta_{\gamma, r} \in U\left(\mathfrak{b}^{-}\right)_{-r \gamma}$ is independent of λ.
- $\theta_{\gamma, r} \cdot v^{+}$is a maximal vector of weight $\lambda-r \gamma$ whenever $\left\langle\lambda+\rho, \gamma^{\vee}\right\rangle=r$ and v^{+}is a maximal vector of weight λ.
- $\theta_{\gamma, r}$ is the Shapovalov element.

Shapovalov Elements

Example/Exercise:

- $\mathfrak{g}=\mathfrak{s l}(3, \mathbb{C}), \Delta=\{\alpha, \beta\}$ and $\Phi^{+}=\{\alpha, \beta, \gamma=\alpha+\beta\}$.
- Since α, β are simple, then $\theta_{\alpha, r}=y_{\alpha}^{r}$ and $\theta_{\beta, r}=y_{\beta}^{r}$.
- To determine $\theta_{\gamma, r}$ is difficult. We do only $\theta_{\gamma, 1}$.
- We construct first the element $u \in U\left(\mathfrak{n}^{-}\right)_{-\gamma}$ dependent on λ.
- Since $u \neq 0$, then $u=r y_{\alpha} y_{\beta}+s y_{\gamma}$, with r, s not both 0 .
- Write $\lambda=a \bar{\omega}_{\alpha}+b \bar{\omega}_{\beta}$.
- Assume $\left\langle\lambda+\rho, \gamma^{\vee}\right\rangle=1$, then $a+b=-1$.
- Define hyperplane $H:=\left\{\lambda=a \bar{\omega}_{\alpha}+b \bar{\omega}_{\beta}: a+b=-1\right\}$.
- If $u \cdot v^{+} \in M(\lambda)$ is maximal vector of weight $\lambda-\gamma$, then
- $0=x_{\alpha} u \cdot v^{+}=(r(a+1)-s) y_{\beta} \cdot v^{+}$.
- $0=x_{\beta} u \cdot v^{+}=(r b+s) y_{\alpha} \cdot v^{+}$.
- This determines u in terms of $\lambda \in H$.
- In all cases, $r \neq 0$.
- u is unique up to a scalar
- So we may take $r=1$ and $s=-b=\lambda\left(h_{\beta}\right)$.

Shapovalov Elements

Example/Exercise:

- Now consider $y_{\alpha} y_{\beta}-y_{\gamma} h_{\beta} \in U\left(\mathfrak{b}^{-}\right)_{-\gamma}$.
- For all $\lambda \in H$ an maximal vector v^{+}of weight λ :
- $x_{\alpha}\left(y_{\alpha} y_{\beta}-y_{\gamma} h_{\beta}\right) \cdot v^{+}=(a+1+b) y_{\beta} \cdot v^{+}=0$
- $x_{\beta}\left(y_{\alpha} y_{\beta}-y_{\gamma} h_{\beta}\right) \cdot v^{+}=(b-b) y_{\alpha} \cdot v^{+}=0$.
- So $\theta_{\gamma, 1}=y_{\alpha} y_{\beta}-y_{\gamma} h_{\beta}$.
- Clearly $\theta_{\gamma, 1}$ is independent of λ.

Shapovalov Elements

Write $\Phi^{+}=\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$ with $\Delta=\left\{\alpha_{1}, \ldots, \alpha_{\ell}\right\}$. Let $y_{i} \in U\left(\mathfrak{n}^{-}\right)$ correspond to $-\alpha_{i}$, for $i=1, \ldots, m$.

Theorem (4.12, Shapovalov)

Fix $\gamma \in \Phi^{+}$and an integer $r>0$. There exists an element $\theta_{\gamma, r} \in U\left(\mathfrak{b}^{-}\right)_{-r \gamma}$ having the following properties:
a) For each root $\beta>0$, the commutator $\left[x_{\beta}, \theta_{\gamma, r}\right]$ lies in the left ideal $I_{\gamma, r}:=U(\mathfrak{g})\left(h_{\gamma}+\rho\left(h_{\gamma}\right)-r\right)+U(\mathfrak{g}) \mathfrak{n}$.
b) If $\gamma=\sum_{i=1}^{\ell} a_{i} \alpha_{i}$, then we can write

$$
\theta_{\gamma, r}=\prod_{i=1}^{\ell} y_{i}^{r a_{i}}+\sum_{j} p_{j} q_{j}
$$

with $p_{j} \in U\left(\mathfrak{n}^{-}\right)_{-r \gamma}, q_{j} \in U(\mathfrak{h})$, and $\operatorname{deg} p_{j}<r \sum_{i=1}^{\ell} a_{i}$.
Moreover, $\theta_{\gamma, r}$ is unique (up to a scalar) modulo the left ideal $J_{\gamma, r}:=U\left(\mathfrak{b}^{-}\right)\left(h_{\gamma}+\rho\left(h_{\gamma}\right)-r\right)$.

Shapovalov Elements

Notes:

- Consider $\lambda \in \mathfrak{h}^{*}, \gamma \in \Phi^{+}$and $r>0$. Let $v^{+} \in M(\lambda)$ be a maximal vector of weight λ.
- Then $\theta_{\gamma, r} \cdot v^{+}$is a maximal vector of weight $\lambda-r \gamma=s_{\gamma} \cdot \lambda$, whenever $r=\left\langle\lambda+\rho, \gamma^{\vee}\right\rangle$.
- If so, then consider q_{j} from (b) as polynomial functions on \mathfrak{h}^{*} and write

$$
\theta_{\gamma, r}(\lambda)=\prod_{i=1}^{\ell} y_{i}^{r a_{j}}+\sum_{j} p_{j} q_{j}(\lambda)
$$

- Then $\theta_{\gamma, r}(\lambda) \in U\left(\mathfrak{n}^{-}\right)_{-r \gamma}$ and $\theta_{\gamma, r}(\lambda) \cdot v^{+}$is a maximal vector of weight $\lambda-r \gamma=s_{\gamma} \cdot \lambda$.
- $\theta_{\gamma, r}(\lambda)$ is unique (up to a scalar) in $U\left(\mathfrak{n}^{-}\right)$.
- Difficult to construct $\theta_{\gamma, r}$ explicitly. We use a more round about approach.

Proof of Shapovalov's Theorem

Proof (Set-up, Induction in ht γ):

- Fix $r>0$ and $\gamma \in \Phi^{+}$.
- If γ is simple (ht $\gamma=1$), then $\theta_{\gamma, r}=y_{\gamma}^{r}$.
- This is our induction base.
- If $\gamma \notin \Delta$, then there exists $\alpha \in \Delta$ (0.2) such that
- $p:=\left\langle\gamma, \alpha^{\vee}\right\rangle>0$.
- $\beta:=s_{\alpha} \gamma=\gamma-p \alpha>0$, and ht $\beta<$ ht γ.
- The induction hypothesis provides $\theta_{\beta, r} \in U\left(\mathfrak{b}^{-}\right)_{-r \beta}$ with the desired properties.
- Before applying this we discuss the proof strategy.

Proof of Shapovalov's Theorem

Proof (Strategy):

- Consider hyperplane $H_{\gamma, r}$ and half-space H_{α} :

$$
\begin{aligned}
H_{\gamma, r} & :=\left\{\lambda \in \mathfrak{h}^{*}:\left\langle\lambda+\rho, \gamma^{\vee}\right\rangle=r\right\} \\
H_{\alpha} & :=\left\{\lambda \in \mathfrak{h}^{*}:\left\langle\lambda+\rho, \alpha^{\vee}\right\rangle<0\right\}
\end{aligned}
$$

- $H_{\gamma, r}$ is Zariski closed.
- $\wedge \cap H_{\gamma, r}$ is Zariski dense in $H_{\gamma, r}$.
- $\Theta:=H_{\alpha} \cap \wedge \cap H_{\gamma, r}$ is also Zariski dense in $H_{\gamma, r}$. Why?

Note that $H_{\gamma, r}$ contains exactly the weights λ for which we expect $\theta_{\gamma, r}$ to describe the embedding $M\left(s_{\gamma} \cdot \lambda\right) \hookrightarrow M(\lambda)$.

Proof of Shapovalov's Theorem

Proof (Strategy):

- Recall that I is the left ideal in $U(\mathfrak{g})$ annihilating any maximal vector $v^{+} \in M(\lambda)$ of weight λ.
- Suppose we have $\theta_{\gamma, r}(\lambda) \in U\left(\mathfrak{n}^{-}\right)_{-r \gamma}$, for each $\lambda \in \Theta$, s.t.
a') $\left[x_{\gamma}, \theta_{\gamma, r}(\lambda)\right] \in I$.
b') Independent of the choice of $\lambda \in \Theta$, the highest degree term in $\theta_{\gamma, r}(\lambda)$ when written in a standard PBW basis is $\prod_{i} y_{i}^{r_{i}}$.
c^{\prime}) The coefficients of $\theta_{\gamma, r}(\lambda)$ in the PBW basis depend polynomially on λ.
- By $\left(c^{\prime}\right)$ there exists $p_{j} \in U\left(\mathfrak{n}^{-}\right)_{-r \gamma}$ and $q_{j} \in U(\mathfrak{h})$ such that $\theta_{\gamma, r}(\lambda)=\sum_{j} p_{j} q_{j}(\lambda)$.
- $\theta_{\gamma, r}(\lambda)$ can be extended to all $\lambda \in H_{\gamma, r}$:
- Rewrite $\left(a^{\prime}\right)-\left(c^{\prime}\right)$ as polynomial equations whose mutual solution space is then Zariski closed. It is then $H_{\gamma, r}$.
- Define then $\theta_{\gamma, r}:=\sum_{j} p_{j} q_{j} \in U\left(\mathfrak{b}^{-}\right)_{-r \gamma}$.

Proof of Shapovalov's Theorem

Proof (Strategy):
The element $\theta_{\gamma, r}:=\sum_{j} p_{j} q_{j} \in U\left(\mathfrak{b}^{-}\right)_{-r \gamma}$ then satisfies the conditions of the theorem.
a) Follows from (a^{\prime}). How?
b) Follows directly from (b^{\prime}) and the definition of $\theta_{\gamma, r}$.
*) $\theta_{\gamma, r}$ is unique (up to a scalar) modulo $J_{\gamma, r}$.

- At each $\lambda \in H_{\gamma, r}, J_{\gamma, r}$ specializes to the annihilator in $U\left(\mathfrak{b}^{-}\right)$ any maximal vector $v^{+} \in M(\lambda)$ of weight λ.
- At each $\lambda \in H_{\gamma, r}, \theta_{\gamma, r}$ specializes to $\theta_{\gamma, r}(\lambda)$, which is the unique (up to a scalar) element in $U\left(\mathfrak{n}^{-}\right)$inducing $M\left(s_{\gamma} \cdot \lambda\right) \hookrightarrow M(\lambda)$.

Proof of Shapovalov's Theorem

Proof (Construction of $\theta_{\gamma, r}(\lambda), \lambda \in \Theta$):

- Recall the data we have:
- $r>0, \gamma>0$ with ht $\gamma>1$.
- $\alpha \in \Delta$ with $p=\left\langle\gamma, \alpha^{\vee}\right\rangle>0, \beta:=s_{\alpha} \gamma=\gamma-p \alpha>0$ and ht $\beta<$ ht γ.
- $\theta_{\beta, r} \in U\left(\mathfrak{b}^{-}\right)_{-r \beta}$, satisfying the conditions of the theorem.
- $\theta_{\beta, r}(\mu)$, for all $\mu \in H_{\beta, r}$ satisfying ($\left.a^{\prime}\right)-\left(c^{\prime}\right)$.
- For $\lambda \in \Theta$ there is $q \in \mathbb{Z}^{>0}$ such that
- $\mu:=s_{\alpha} \cdot \lambda=\lambda+q \alpha>\lambda, \mu \in H_{\beta, r}$.
- $s_{\alpha} \cdot(\mu-r \beta)=\lambda-r \gamma$, with $\left\langle\mu-r \beta+\rho, \alpha^{\vee}\right\rangle=q+r p$.
- Writing $n:=q+r p>0$ we get embeddings:
- $M(\lambda) \hookrightarrow M(\mu)$, induced by y_{α}^{q}.
- $M(\mu-r \beta) \hookrightarrow M(\mu)$, induced by $\theta_{\beta, r}(\mu)$.
- $M(\lambda-r \gamma) \hookrightarrow M(\mu-r \beta)$, induced by y_{α}^{n}.

Proof of Shapovalov's Theorem

Proof (Construction of $\theta_{\gamma, r}(\lambda), \lambda \in \Theta$):

- We have the embeddings:
- $M(\lambda) \hookrightarrow M(\mu)$, induced by y_{α}^{q}.
- $M(\mu-r \beta) \hookrightarrow M(\mu)$, induced by $\theta_{\beta, r}(\mu)$.
- $M(\lambda-r \gamma) \hookrightarrow M(\mu-r \beta)$, induced by y_{α}^{n}.
- $y_{\alpha}^{q}, \theta_{\beta, r}(\mu)$ and y_{α}^{n} are unique in $U\left(\mathfrak{n}^{-}\right)$up to a scalar.
- Furthermore the embedding $M(\lambda-r \gamma) \hookrightarrow M(\lambda)$ is induced by a unique element $\theta_{\gamma, r}(\lambda)$, satisfying:

$$
\theta_{\gamma, r}(\lambda) y_{\alpha}^{q}=y_{\alpha}^{n} \theta_{\beta, r}(\mu)
$$

- $\theta_{\gamma, r}(\lambda)$ then satisfies the properties $\left(a^{\prime}\right)-\left(c^{\prime}\right)$.
a') $\left[x_{\gamma}, \theta_{\gamma, r}(\lambda)\right] \in I$. Why?
b') Follows by comparing highest degree terms on either side.
c') Pull all y_{α} to the right on both sides and remove y_{α}^{n}. Rewriting into PBW no extra dependencies on λ appear. $\left(c^{\prime}\right)$ then follows since $\theta_{\beta, r}$ satisfy $\left(c^{\prime}\right)$ and $\mu=\lambda+r \alpha$.

