In this chapter we will answer the following questions:

- 1) What are the simple submodules of $M(\lambda)$?
- 2) When is $M(\lambda)$ simple?
- 3) When does an embedding $M(\mu) \rightarrow M(\lambda)$ exist?
- 4) Can we construct such an embedding explicitly?
- 5) What are the blocks of \mathcal{O} ?

Today: (1), (2) for $\lambda \in \Lambda$ and (3) for $\mu, \lambda \in \Lambda$.

Simple Submodules of Verma Modules

Lemma (4.1)

Any two nonzero left ideals of a left noetherian ring without zero divisors must intersect nontrivially.

Proposition (4.1)

For any $\lambda \in \mathfrak{h}^*$, the module $M(\lambda)$ has a unique simple submodule, which is therefore its socle.

Proof:

- $M(\lambda)$ is artinian, so it has a simple submodule.
- Suppose L, L' are distinct simple submodule of M(λ), then L ∩ L' = {0}.
- As $U(\mathfrak{n}^-)$ -modules, $M(\lambda) \cong U(\mathfrak{n}^-)$. So L and L' are left ideals of $U(\mathfrak{n}^-)$.
- U(n⁻) is a left noetherian ring without zero divisors, so L ∩ L' ≠ {0}. This is a contradiction.

Note:

- The simple submodule of M(λ) is isomorphic to some L(μ) with μ ≤ λ. Moreover, μ = w · λ for some w ∈ W_[λ].
 - Let M be a nonzero submodule of M(λ). Then M has a nondegenerate contravariant form if and only if it is the unique simple submodule of M(λ).

Homomorphisms Between Verma Modules

Theorem (4.2)

Let $\lambda, \mu \in \mathfrak{h}^*$.

- a) Any nonzero homomorphism $\varphi: M(\mu) \to M(\lambda)$ is injective.
- b) In all cases, dim Hom $(M(\mu), M(\lambda)) \leq 1$.
- c) The unique simple submodule $L(\mu)$ in $M(\lambda)$ is a Verma module.

Proof:

- a) As a U(n⁻)-module homomorphism φ : U(n⁻) → U(n⁻), u' → u'u, for some fixed u ≠ 0. Since U(n⁻) has no zero-divisors, Ker φ = 0.
- b) Consider nonzero φ₁, φ₂ : M(μ) → M(λ) and unique simple submodule L ⊂ M(μ). Then φ₁(L) = φ₂(L) is simple. Let φ₃ = φ₁ cφ₂ s.t. φ₃(L) = {0}. Then φ₃ = 0 by (a).
 c) By universal property of M(μ), there exists φ : M(μ) → M(λ),
 - with $\varphi(M(\mu)) = L(\mu)$. Now φ is injective by (a).

Notes:

- Whenever Hom(M(μ), M(λ)) ≠ 0 we can now unambiguously write M(μ) ⊂ M(λ).
- One major goal in this chapter is to study this embedding.
 - When does it exist?
 - How can we construct it?
- The other goal is to determine when $M(\lambda)$ is simple.

Proposition (4.3)

Suppose $\lambda + \rho \in \Lambda^+$. Then $M(w \cdot \lambda) \subset M(\lambda)$, for all $w \in W$; thus all $[M(\lambda) : L(w \cdot \lambda)] > 0$.

More precisely, if w has reduced expression $w = s_n \cdots s_1$, with s_i reflection relative to the simple root α_i , then there is a sequence

$$M(w \cdot \lambda) = M(\lambda_n) \subset M(\lambda_{n-1}) \subset \cdots \subset M(\lambda_0) = M(\lambda),$$

where $\lambda_0 := \lambda$ and $\lambda_k := s_k \cdot \lambda_{k-1}$, for $k \in \{1, \ldots, n\}$. In particular, $\lambda_n \leq \lambda_{n-1} \leq \cdots \leq \lambda_0$, with $\langle \lambda_k + \rho, \alpha_{k+1}^{\vee} \rangle \in \mathbb{Z}^+$, for $k = 0, \ldots, n-1$.

Proof:

Use the reformulated Proposition 1.4 and Theorem 4.2(c):

• If $\langle \lambda_k + \rho, \alpha_{k+1}^{\vee} \rangle \in \mathbb{Z}^+$, then there exists an embedding $M(s_{k+1} \cdot \lambda_k) = M(\lambda_{k+1}) \to M(\lambda_k)$.

Exercises: Assume $\lambda + \rho \in \Lambda^+$.

The unique simple submodule of M(λ) is isomorphic to M(w₀ · λ).

• If $\lambda \in \Lambda^+$, then all inclusions in the proposition are proper. Notes:

• This proposition will generalize as follow:

Let $\lambda \in \mathfrak{h}^*$. Given $\alpha > 0$, suppose $\mu := s_{\alpha} \cdot \lambda \leq \lambda$. Then there exists an embedding $M(\mu) \subset M(\lambda)$.

• The failure of Proposition 1.4 to carry over to nonsimple positive roots, means that a totally different strategy is needed to generalize this result.

Simplicity Criterion: Integral Case

Recall that $\lambda \in \mathfrak{h}^*$ is called antidominant if $\langle \lambda + \rho, \alpha^{\vee} \rangle \notin \mathbb{Z}^{>0}$ for all $\alpha \in \Phi^+$.

Theorem (Simplicity Criterion)

Let $\lambda \in \mathfrak{h}^*$. Then $M(\lambda) = L(\lambda)$ if and only if λ is antidominant.

Proof (Integral case, $\lambda \in \Lambda$):

- Suppose $M(\lambda)$ is simple and that λ is not antidominant.
 - Then, since $\lambda \in \Lambda$, we can find a simple root α such that $\langle \lambda + \rho, \alpha^{\vee} \rangle > 0$.
 - Using the Proposition 1.4 and Theorem 4.2(c), we get a proper embedding $M(s_{\alpha} \cdot \lambda) \to M(\lambda)$.
 - This contradicts the simplicity of $M(\lambda)$.
- Suppose λ is antidominant.
 - Then by (3.5), $\lambda \leq w \cdot \lambda$.
 - But M(λ) only has composition factors L(w · λ) with w · λ ≤ λ.
 - Therefore L(λ) is the only composition factor and it occurs only once, so M(λ) = L(λ).

Exercise:

- If λ ∈ Λ is antidominant, then the socle of P(w · λ) with w ∈ W is a direct sum of copies of L(λ).
- The general version of this result is proven later.

Notes:

- Only the second part of this proof can be generalized to $\lambda \in \mathfrak{h}^*.$
- The first part does not generalize since Proposition 1.4 no longer applies.
- We therefore need more information on embeddings $M(s_{\alpha} \cdot \lambda) \subset M(\lambda)$, where α is not simple.

Existence of Embeddings: Preliminaries

Proposition (4.5)

Let
$$\mu, \lambda \in \mathfrak{h}^*$$
 and $\alpha \in \Delta$, with $n := \langle \lambda + \rho, \alpha^{\vee} \rangle \in \mathbb{Z}$ and

$$M(\mathbf{s}_{\alpha} \cdot \mu) \subset M(\mu) \subset M(\lambda).$$

Then there are two possibilities for the position of $M(s_{\alpha} \cdot \lambda)$: a) If $n \leq 0$, then $M(\lambda) \subset M(s_{\alpha} \cdot \lambda)$. b) If n > 0, then $M(s_{\alpha} \cdot \mu) \subset M(s_{\alpha} \cdot \lambda) \subset M(\lambda)$.

Lemma (4.5)

Let \mathfrak{a} be a nilpotent Lie algebra, with $x \in \mathfrak{a}$ and $u \in U(\mathfrak{a})$. Given a positive integer n, there exists an integer t depending on x and u such that $x^t u \in U(\mathfrak{a})x^n$.

We also note that for any $\alpha \in \Delta$ and t > 0,

$$[x,y_{lpha}^{t}]=ty_{lpha}^{t-1}(h_{lpha}-t+1).$$

Existence of Embeddings: Preliminaries

Proof (Proposition 4.5):
a) If
$$n \leq 0$$
, then $M(\lambda) \subset M(s_{\alpha} \cdot \lambda)$ by Proposition 1.4, since
 $\langle s_{\alpha} \cdot \lambda + \rho, \alpha^{\vee} \rangle = \langle s_{\alpha} \cdot (\lambda + \rho), \alpha^{\vee} \rangle = \langle \lambda + \rho, -\alpha^{\vee} \rangle = -n \geq 0.$
b) If $n > 0$, then we want $M(s_{\alpha} \cdot \mu) \subset M(s_{\alpha} \cdot \lambda) \subset M(\lambda).$
• Proposition 1.4 immediately gives $M(s_{\alpha} \cdot \lambda) \subset M(\mu).$
• Letting $s := \langle \mu + \rho, \alpha^{\vee} \rangle$ we get maximal vectors
 $v_{\lambda}^{+} \in M(\lambda), \quad y_{\alpha}^{n} \cdot v_{\lambda}^{+} \in M(s_{\alpha} \cdot \lambda), \quad v_{\mu}^{+} \in M(\mu), \quad y_{\alpha}^{s} \cdot v_{\mu}^{+} \in M(s_{\alpha} \cdot \mu).$
• Since $M(\mu) \subset M(\lambda)$, there is $u \in U(\mathfrak{n}^{-})$ with $v_{\mu}^{+} = u \cdot v_{\lambda}^{+}.$
• Lemma 4.5 gives us $t \geq s$ such that $y_{\alpha}^{t} u \in U(\mathfrak{n}^{-})y_{\alpha}^{n}$. So
 $y_{\alpha}^{t} \cdot v_{\mu}^{+} = y_{\alpha}^{t} u \cdot v_{\lambda}^{+} \in U(\mathfrak{n}^{-})y_{\alpha}^{n}v_{\lambda}^{+} \subset M(s_{\alpha} \cdot \lambda).$
• If $t > s$, then we use $[x, y_{\alpha}^{t}] = ty_{\alpha}^{t-1}(h_{\alpha} - t + 1)$ to get
 $(s - t)ty_{\alpha}^{t-1}v_{\mu}^{+} = x_{\alpha}y_{\alpha}^{t} \cdot v_{\mu}^{+} \in M(s_{\alpha} \cdot \lambda).$
• This proves $y_{\alpha}^{s} \cdot v_{\mu}^{+} \in M(s_{\alpha} \cdot \lambda)$ and $M(s_{\alpha} \cdot \mu) \subset M(s_{\alpha} \cdot \lambda).$

Theorem (4.6, Verma)

Let $\lambda \in \mathfrak{h}^*$. Given $\alpha > 0$, suppose $\mu := s_{\alpha} \cdot \lambda \leq \lambda$. Then there exists an embedding $M(\mu) \subset M(\lambda)$.

Proof (Integral case, $\lambda \in \Lambda$):

- Since λ is integral, so is μ . Therefore we can find $w \in W$ such that $\mu' := w^{-1} \cdot \mu \in \Lambda^+ \rho$.
- Considering a reduced expression w = s_n ··· s₁, we define weights μ₀ := μ' and μ_k := s_k · μ_{k-1}, for k = 1, ..., n.
- Proposition 4.3 tells us that $\mu_0 \geq \cdots \geq \mu_n$ and that

$$M(\mu_0) \supset M(\mu_1) \supset \cdots \supset M(\mu_n).$$

• Letting $\lambda' := w^{-1} \cdot \lambda$ we define a parallel list of weights. $\lambda_0 := \lambda'$ and $\lambda_k := s_k \cdot \lambda_{k-1}$, for k = 1, ..., n.

Existence of Embeddings: Integral Case

Proof (continued):

- A short calculation shows that if $w_k := s_{k+1} \cdots s_n$, then $\mu_k = s_{\beta_k} \cdot \lambda_k$, β_k is the root with $s_{\beta_k} = w_k^{-1} s_\alpha w_k$.
- It follows that $\mu_k \lambda_k \in \mathbb{Z}\beta_k$.
- We may assume that $\mu < \lambda$. This implies $\mu_k \neq \lambda_k$ and in particular $\mu' > \lambda'$, since μ' is dominant.
- There must thus be a least index k such that $\mu_k > \lambda_k$ and $\mu_{k+1} < \lambda_{k+1}$. We fix this k.
- We will prove $M(\mu_{k+1}) \subset M(\lambda_{k+1})$, $M(\mu_{k+2}) \subset M(\lambda_{k+2})$,... Culminating in $M(\mu_n) \subset M(\lambda_n)$.
- By definition $\mu_{k+1} \lambda_{k+1} = s_{k+1}(\mu_k \lambda_k)$.
- By our choice of k, we get $\mu_{k+1} \lambda_{k+1} \in \mathbb{Z}^- \beta_{k+1}$ and $s_{k+1}(\mu_k \lambda_k) \in \mathbb{Z}^+ \beta_k$. So $\beta_k = \beta_{k+1} = \alpha_{k+1}$.
- Prop 1.4 yields $M(\mu_{k+1}) = M(s_{k+1} \cdot \lambda_{k+1}) \subset M(\lambda_{k+1})$.

Proof (continued):

• Combined with the sequence of embeddings we get

$$M(\mu_{k+2}) = M(s_{k+2} \cdot \mu_{k+1}) \subset M(\mu_{k+1}) \subset M(\lambda_{k+1}).$$

• Proposition 4.5 then implies that

$$M(\mu_{k+2}) \subset M(s_{k+2} \cdot \lambda_{k+1}) = M(\lambda_{k+2}).$$

Iterating these last arguments we get

$$M(\mu) = M(\mu_n) \subset M(\lambda_n) = M(\lambda).$$

Unless I mistake something in the definition of the partial ordering. Let $\mu \in \mathfrak{h}^*$ and $\alpha \in \Delta$. Assume $M(s_{\alpha} \cdot \mu) \subset M(\mu)$. Then $s_{\alpha} \cdot \mu \leq \mu$ or in other words

$$\langle \mu - \mathbf{s}_{\alpha} \cdot \mu, \beta^{\vee} \rangle \in 2\mathbb{Z}^+, \quad (\forall \beta \in \Delta).$$

Noting that

$$\langle \mu + \rho, \alpha^{\vee} \rangle = -\langle \mathbf{s}_{\alpha} \cdot (\mu + \rho), \alpha^{\vee} \rangle = -\langle \mathbf{s}_{\alpha} \cdot \mu + \rho, \alpha^{\vee} \rangle,$$

we get

$$\langle \mu + \rho, \alpha^{\vee} \rangle = \frac{1}{2} \langle \mu - \mathbf{s}_{\alpha} \cdot \mu, \beta^{\vee} \rangle \in \mathbb{Z}^+.$$