In this chapter we will answer the following questions:
1) What are the simple submodules of M(\)?
2) When is M(X) simple?
3) When does an embedding M(u) — M(\) exist?
4) Can we construct such an embedding explicitly?
5) What are the blocks of O7

Today: (1), (2) for A € A and (3) for pu, A € A.
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Simple Submodules of Verma Modules

Lemma (4.1)

Any two nonzero left ideals of a left noetherian ring without zero
divisors must intersect nontrivially.

\

Proposition (4.1)

For any \ € b*, the module M(X) has a unique simple submodule,
which is therefore its socle.

Proof:
e M()) is artinian, so it has a simple submodule.

\

@ Suppose L, L’ are distinct simple submodule of M()), then
LNl = {o}.

@ As U(n~)-modules, M(X) =2 U(n~). So L and L' are left
ideals of U(n™).

e U(n™) is a left noetherian ring without zero divisors, so
LN L"# {0}. This is a contradiction. O
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Simple Submodules of Verma Modules

Note:

@ The simple submodule of M(X) is isomorphic to some L(1)
with 1 < A. Moreover, 1 = w - A for some w € W)y

Exercise:

@ Let M be a nonzero submodule of M(A). Then M has a
nondegenerate contravariant form if and only if it is the
unique simple submodule of M(X).
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Homomorphisms Between Verma Modules

Theorem (4.2)

Let X\, € b*.
a) Any nonzero homomorphism ¢ : M(u) — M(\) is injective.
b) In all cases, dim Hom(M(p), M(X)) < 1.

c) The unique simple submodule L() in M(X) is a Verma
module.

Proof:

a) As a U(n™)-module homomorphism ¢ : U(n™) — U(n™),
u' — u'u, for some fixed u # 0.
Since U(n™) has no zero-divisors, Ker ¢ = 0.

b) Consider nonzero 1,2 : M(u) — M(A) and unique simple
submodule L € M(p). Then p1(L) = p2(L) is simple.
Let o3 = 1 — cpa s.t. @3(L) = {0}. Then p3 =0 by (a).

c) By universal property of M(u), there exists ¢ : M(u) — M(X),
with o(M(p)) = L(p). Now ¢ is injective by (a). O
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Homomorphisms Between Verma Modules

Notes:

e Whenever Hom(M(u), M(\)) # 0 we can now unambiguously
write M(p) C M(X).
@ One major goal in this chapter is to study this embedding.

e When does it exist?
o How can we construct it?

@ The other goal is to determine when M(A) is simple.
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Special Case: A is a Dominant Integral Weight

Proposition (4.3)

Suppose A+ p € NT. Then M(w - X\) C M(X), for all w € W; thus
all [M(X) : L(w - A)] > 0.

More precisely, if w has reduced expression w = s, - - - s1, with s;
reflection relative to the simple root «;, then there is a sequence

M(w - A) = M(An) € M(Ap_1) C -+ € M(Xo) = M(N\),

where Ao := X and A\g := sk - Ak—1, for k € {1,...,n}.
In particular, A\, < Ap—1 < --- < Ao, with (\x + p, a)(/H) e Zt, for
k=0,...,n—1.

o’

Proof:
Use the reformulated Proposition 1.4 and Theorem 4.2(c):

o If (\x +p,a,,) € Z*, then there exists an embedding
M(Sk+1 . )\k) = M()\k+1) — M()\k) L]
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Special Case: A is a Dominant Integral Weight

Exercises: Assume A+ p € A™.
@ The unique simple submodule of M()) is isomorphic to
M(ws - N).
@ If A € AT, then all inclusions in the proposition are proper.
Notes:
@ This proposition will generalize as follow:

Let A € b*. Given a > 0, suppose 11 := s, - A < A. Then there
exists an embedding M(u) C M(X).
@ The failure of Proposition 1.4 to carry over to nonsimple
positive roots, means that a totally different strategy is
needed to generalize this result.
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Simplicity Criterion: Integral Case

Recall that A € b* is called antidominant if (A + p,a") ¢ Z>0 for
all € &,

Theorem (Simplicity Criterion)

Let A € h*. Then M(X\) = L(X) if and only if X is antidominant.

Proof (Integral case, A € A):
@ Suppose M(]) is simple and that X is not antidominant.
e Then, since A € A, we can find a simple root « such that
A+ p,a¥) > 0.
o Using the Proposition 1.4 and Theorem 4.2(c), we get a
proper embedding M(s, - A) — M(\).
o This contradicts the simplicity of M()).
@ Suppose A is antidominant.
o Then by (3.5), A< w- .
e But M()) only has composition factors L(w - \) with w- A < A
o Therefore L()\) is the only composition factor and it occurs
only once, so M(\) = L(}). O
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Simplicity Criterion: Integral Case

Exercise:

e If A € A'is antidominant, then the socle of P(w - A) with
w € W is a direct sum of copies of L(A).

@ The general version of this result is proven later.
Notes:
@ Only the second part of this proof can be generalized to
A€ br.
@ The first part does not generalize since Proposition 1.4 no
longer applies.

@ We therefore need more information on embeddings
M(sq - A) € M()), where « is not simple.
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Existence of Embeddings: Preliminaries

Proposition (4.5)
Let u, A € b* and o € A, with n:= (A + p,a") € Z and

M(sq - 1) € M(p) € M(X).

Then there are two possibilities for the position of M(s, - \):
a) Ifn <0, then M(\) C M(s, - ).
b) If n> 0, then M(sy - 1) C M(so - A) C M(N).

Lemma (4.5)

Let a be a nilpotent Lie algebra, with x € a and u € U(a). Given a
positive integer n, there exists an integer t depending on x and u
such that x*u € U(a)x".

\

We also note that for any « € A and t > 0,
[x, vl = tye H(ha — t+1).
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Existence of Embeddings: Preliminaries

Proof ( Proposition 4.5):
a) If n <0, then M(\) C M(s, - \) by Proposition 1.4, since
(S0 At ,0%) = (50 (A p),0Y) = At p, —a¥) = —n > 0.

b) If n > 0, then we want M(s, - 1) C M(s - ) C M()).
o Proposition 1.4 immediately gives M(s, - \) C M(u).
o Letting s := (u+ p,a") we get maximal vectors

vy € M(N),  yavy € M(saA), vy € M(u),  ya-v € M(saop).

o Since M(u) C M(X), there is u € U(n™) with v;F = u- vy
o Lemma 4.5 gives us t > s such that y.u € U(n™)y!. So

Vi v = yhus v € U )yavE © M(s, - ).
o If t > s, then we use [x,yl] = tyt 1(h, — t + 1) to get
(s — )ty vl = xaylh - vl € M(sq - A).
o This proves y; - v;f € M(s,-A) and M(sy - p1) C M(s-A). [
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Existence of Embeddings: Integral Case

Theorem (4.6, Verma)

Let A\ € h*. Given o > 0, suppose i1 := s, - A < \. Then there
exists an embedding M(p) C M(X).

Proof (Integral case, A € A):

@ Since A is integral, so is y. Therefore we can find w € W
such that ¢/ :=w=!- e AT —p.

@ Considering a reduced expression w = s, - - - 51, we define
weights o := ¢/ and py = sg - g1, for k=1,... n.

@ Proposition 4.3 tells us that pg > --- > up, and that

M(po) D M(pa1) O -+ D M(pn).

o Letting ' := w1 - X we define a parallel list of weights.
Xo:=MNand N\ =5k N1, for k=1,... n.
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Existence of Embeddings: Integral Case

Proof (continued):

@ A short calculation shows that if wy := sx11---s,, then
Mk = S8, - Ak, Bk is the root with sg = Wk_lsawk.

It follows that pyx — Ak € Zfk.

We may assume that p < A. This implies px # Ax and in
particular ¢/ > X, since p’ is dominant.

There must thus be a least index k such that px > Ax and
Pl < Agy1. We fix this k.

We will prove M(pks1) C M(Ak+1), M(pik42) C M(Akr2),...
Culminating in M(un) C M(Ap).

By definition fix1 — Akg1 = Skg1 (e — Ak)-

By our choice of k, we get pixr1 — Akyr1 € Z~ Biy1 and
Skr1(pk — M) € ZF Br. So B = Brg1 = k1.

Prop 1.4 yields M(uk+1) = M(sks1 - A1) € M(Aks1)-
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Existence of Embeddings: Integral Case

Proof (continued):

@ Combined with the sequence of embeddings we get

M(pikr2) = M(sks2 - pky1) C M(pky1) C M(Ags)-

@ Proposition 4.5 then implies that

M(piki2) © M(ski2 - Akt) = M(Air2)-
@ lterating these last arguments we get

M(u) = M(us) C M(Aq) = M(A).
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Extra: Solution to problem we discussed at the end

Unless | mistake something in the definition of the partial ordering.
Let u € b* and v € A. Assume M(s, - 1) C M(u). Then
Sa - it < or in other words

(b= sa-p, ) €22F, (Y6 € D).
Noting that
(Wt p, ) = =(sa - (u+p),a”) = —(sa -+ p,a),

we get
1
(wtpa¥)=3(n—sa-p,B") €27,
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