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In this chapter we will answer the following questions:

1) What are the simple submodules of M(λ)?

2) When is M(λ) simple?

3) When does an embedding M(µ)→ M(λ) exist?

4) Can we construct such an embedding explicitly?

5) What are the blocks of O?

Today: (1), (2) for λ ∈ Λ and (3) for µ, λ ∈ Λ.
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Simple Submodules of Verma Modules

Lemma (4.1)

Any two nonzero left ideals of a left noetherian ring without zero
divisors must intersect nontrivially.

Proposition (4.1)

For any λ ∈ h∗, the module M(λ) has a unique simple submodule,
which is therefore its socle.

Proof:

M(λ) is artinian, so it has a simple submodule.

Suppose L, L′ are distinct simple submodule of M(λ), then
L ∩ L′ = {0}.
As U(n−)-modules, M(λ) ∼= U(n−). So L and L′ are left
ideals of U(n−).

U(n−) is a left noetherian ring without zero divisors, so
L ∩ L′ 6= {0}. This is a contradiction.
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Simple Submodules of Verma Modules

Note:

The simple submodule of M(λ) is isomorphic to some L(µ)
with µ ≤ λ. Moreover, µ = w · λ for some w ∈W[λ].

Exercise:

Let M be a nonzero submodule of M(λ). Then M has a
nondegenerate contravariant form if and only if it is the
unique simple submodule of M(λ).
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Homomorphisms Between Verma Modules

Theorem (4.2)

Let λ, µ ∈ h∗.

a) Any nonzero homomorphism ϕ : M(µ)→ M(λ) is injective.

b) In all cases, dim Hom(M(µ),M(λ)) ≤ 1.

c) The unique simple submodule L(µ) in M(λ) is a Verma
module.

Proof:

a) As a U(n−)-module homomorphism ϕ : U(n−)→ U(n−),
u′ 7→ u′u, for some fixed u 6= 0.
Since U(n−) has no zero-divisors, Kerϕ = 0.

b) Consider nonzero ϕ1, ϕ2 : M(µ)→ M(λ) and unique simple
submodule L ⊂ M(µ). Then ϕ1(L) = ϕ2(L) is simple.
Let ϕ3 = ϕ1 − cϕ2 s.t. ϕ3(L) = {0}. Then ϕ3 = 0 by (a).

c) By universal property of M(µ), there exists ϕ : M(µ)→ M(λ),
with ϕ(M(µ)) = L(µ). Now ϕ is injective by (a).
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Homomorphisms Between Verma Modules

Notes:

Whenever Hom(M(µ),M(λ)) 6= 0 we can now unambiguously
write M(µ) ⊂ M(λ).

One major goal in this chapter is to study this embedding.

When does it exist?
How can we construct it?

The other goal is to determine when M(λ) is simple.
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Special Case: λ is a Dominant Integral Weight

Proposition (4.3)

Suppose λ+ ρ ∈ Λ+. Then M(w · λ) ⊂ M(λ), for all w ∈W; thus
all [M(λ) : L(w · λ)] > 0.
More precisely, if w has reduced expression w = sn · · · s1, with si
reflection relative to the simple root αi , then there is a sequence

M(w · λ) = M(λn) ⊂ M(λn−1) ⊂ · · · ⊂ M(λ0) = M(λ),

where λ0 := λ and λk := sk · λk−1, for k ∈ {1, . . . , n}.
In particular, λn ≤ λn−1 ≤ · · · ≤ λ0, with 〈λk + ρ, α∨k+1〉 ∈ Z+, for
k = 0, . . . , n − 1.

Proof:
Use the reformulated Proposition 1.4 and Theorem 4.2(c):

If 〈λk + ρ, α∨k+1〉 ∈ Z+, then there exists an embedding
M(sk+1 · λk) = M(λk+1)→ M(λk).
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Special Case: λ is a Dominant Integral Weight

Exercises: Assume λ+ ρ ∈ Λ+.

The unique simple submodule of M(λ) is isomorphic to
M(w◦ · λ).

If λ ∈ Λ+, then all inclusions in the proposition are proper.

Notes:

This proposition will generalize as follow:

Let λ ∈ h∗. Given α > 0, suppose µ := sα · λ ≤ λ. Then there
exists an embedding M(µ) ⊂ M(λ).

The failure of Proposition 1.4 to carry over to nonsimple
positive roots, means that a totally different strategy is
needed to generalize this result.
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Simplicity Criterion: Integral Case

Recall that λ ∈ h∗ is called antidominant if 〈λ+ ρ, α∨〉 /∈ Z>0 for
all α ∈ Φ+.

Theorem (Simplicity Criterion)

Let λ ∈ h∗. Then M(λ) = L(λ) if and only if λ is antidominant.

Proof (Integral case, λ ∈ Λ):

Suppose M(λ) is simple and that λ is not antidominant.
Then, since λ ∈ Λ, we can find a simple root α such that
〈λ+ ρ, α∨〉 > 0.
Using the Proposition 1.4 and Theorem 4.2(c), we get a
proper embedding M(sα · λ)→ M(λ).
This contradicts the simplicity of M(λ).

Suppose λ is antidominant.
Then by (3.5), λ ≤ w · λ.
But M(λ) only has composition factors L(w ·λ) with w ·λ ≤ λ.
Therefore L(λ) is the only composition factor and it occurs
only once, so M(λ) = L(λ).
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Simplicity Criterion: Integral Case

Exercise:

If λ ∈ Λ is antidominant, then the socle of P(w · λ) with
w ∈W is a direct sum of copies of L(λ).

The general version of this result is proven later.

Notes:

Only the second part of this proof can be generalized to
λ ∈ h∗.

The first part does not generalize since Proposition 1.4 no
longer applies.

We therefore need more information on embeddings
M(sα · λ) ⊂ M(λ), where α is not simple.
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Existence of Embeddings: Preliminaries

Proposition (4.5)

Let µ, λ ∈ h∗ and α ∈ ∆, with n := 〈λ+ ρ, α∨〉 ∈ Z and

M(sα · µ) ⊂ M(µ) ⊂ M(λ).

Then there are two possibilities for the position of M(sα · λ):

a) If n ≤ 0, then M(λ) ⊂ M(sα · λ).

b) If n > 0, then M(sα · µ) ⊂ M(sα · λ) ⊂ M(λ).

Lemma (4.5)

Let a be a nilpotent Lie algebra, with x ∈ a and u ∈ U(a). Given a
positive integer n, there exists an integer t depending on x and u
such that x tu ∈ U(a)xn.

We also note that for any α ∈ ∆ and t > 0,

[x , y tα] = ty t−1α (hα − t + 1).
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Existence of Embeddings: Preliminaries

Proof ( Proposition 4.5):

a) If n ≤ 0, then M(λ) ⊂ M(sα · λ) by Proposition 1.4, since

〈sα · λ+ ρ, α∨〉 = 〈sα · (λ+ ρ), α∨〉 = 〈λ+ ρ,−α∨〉 = −n ≥ 0.

b) If n > 0, then we want M(sα · µ) ⊂ M(sα · λ) ⊂ M(λ).
Proposition 1.4 immediately gives M(sα · λ) ⊂ M(µ).
Letting s := 〈µ+ ρ, α∨〉 we get maximal vectors

v+
λ ∈ M(λ), yn

α·v+
λ ∈ M(sα·λ), v+

µ ∈ M(µ), y s
α·v+

µ ∈ M(sα·µ).

Since M(µ) ⊂ M(λ), there is u ∈ U(n−) with v+
µ = u · v+

λ .
Lemma 4.5 gives us t ≥ s such that y t

αu ∈ U(n−)yn
α. So

y t
α · v+

µ = y t
αu · v+

λ ∈ U(n−)yn
αv

+
λ ⊂ M(sα · λ).

If t > s, then we use [x , y t
α] = ty t−1

α (hα − t + 1) to get

(s − t)ty t−1
α v+

µ = xαy
t
α · v+

µ ∈ M(sα · λ).

This proves y s
α · v+

µ ∈ M(sα ·λ) and M(sα ·µ) ⊂ M(sα ·λ).
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Existence of Embeddings: Integral Case

Theorem (4.6, Verma)

Let λ ∈ h∗. Given α > 0, suppose µ := sα · λ ≤ λ. Then there
exists an embedding M(µ) ⊂ M(λ).

Proof (Integral case, λ ∈ Λ):

Since λ is integral, so is µ. Therefore we can find w ∈W
such that µ′ := w−1 · µ ∈ Λ+ − ρ.

Considering a reduced expression w = sn · · · s1, we define
weights µ0 := µ′ and µk := sk · µk−1, for k = 1, . . . , n.

Proposition 4.3 tells us that µ0 ≥ · · · ≥ µn and that

M(µ0) ⊃ M(µ1) ⊃ · · · ⊃ M(µn).

Letting λ′ := w−1 · λ we define a parallel list of weights.
λ0 := λ′ and λk := sk · λk−1, for k = 1, . . . , n.
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Existence of Embeddings: Integral Case

Proof (continued):

A short calculation shows that if wk := sk+1 · · · sn, then
µk = sβk · λk , βk is the root with sβk = w−1k sαwk .

It follows that µk − λk ∈ Zβk .

We may assume that µ < λ. This implies µk 6= λk and in
particular µ′ > λ′, since µ′ is dominant.

There must thus be a least index k such that µk > λk and
µk+1 < λk+1. We fix this k.

We will prove M(µk+1) ⊂ M(λk+1), M(µk+2) ⊂ M(λk+2),...
Culminating in M(µn) ⊂ M(λn).

By definition µk+1 − λk+1 = sk+1(µk − λk).

By our choice of k, we get µk+1 − λk+1 ∈ Z−βk+1 and
sk+1(µk − λk) ∈ Z+βk . So βk = βk+1 = αk+1.

Prop 1.4 yields M(µk+1) = M(sk+1 · λk+1) ⊂ M(λk+1).
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Existence of Embeddings: Integral Case

Proof (continued):

Combined with the sequence of embeddings we get

M(µk+2) = M(sk+2 · µk+1) ⊂ M(µk+1) ⊂ M(λk+1).

Proposition 4.5 then implies that

M(µk+2) ⊂ M(sk+2 · λk+1) = M(λk+2).

Iterating these last arguments we get

M(µ) = M(µn) ⊂ M(λn) = M(λ).
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Extra: Solution to problem we discussed at the end

Unless I mistake something in the definition of the partial ordering.
Let µ ∈ h∗ and α ∈ ∆. Assume M(sα · µ) ⊂ M(µ). Then
sα · µ ≤ µ or in other words

〈µ− sα · µ, β∨〉 ∈ 2Z+, (∀β ∈ ∆).

Noting that

〈µ+ ρ, α∨〉 = −〈sα · (µ+ ρ), α∨〉 = −〈sα · µ+ ρ, α∨〉,

we get

〈µ+ ρ, α∨〉 =
1

2
〈µ− sα · µ, β∨〉 ∈ Z+.
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