Content

In this chapter we will answer the following questions:

1) What are the simple submodules of $M(\lambda)$?
2) When is $M(\lambda)$ simple?
3) When does an embedding $M(\mu) \rightarrow M(\lambda)$ exist?
4) Can we construct such an embedding explicitly?
5) What are the blocks of \mathcal{O} ?

Today: (1), (2) for $\lambda \in \Lambda$ and (3) for $\mu, \lambda \in \Lambda$.

Simple Submodules of Verma Modules

Lemma (4.1)

Any two nonzero left ideals of a left noetherian ring without zero divisors must intersect nontrivially.

Proposition (4.1)

For any $\lambda \in \mathfrak{h}^{*}$, the module $M(\lambda)$ has a unique simple submodule, which is therefore its socle.

Proof:

- $M(\lambda)$ is artinian, so it has a simple submodule.
- Suppose L, L^{\prime} are distinct simple submodule of $M(\lambda)$, then $L \cap L^{\prime}=\{0\}$.
- As $U\left(\mathfrak{n}^{-}\right)$-modules, $M(\lambda) \cong U\left(\mathfrak{n}^{-}\right)$. So L and L^{\prime} are left ideals of $U\left(\mathfrak{n}^{-}\right)$.
- $U\left(\mathfrak{n}^{-}\right)$is a left noetherian ring without zero divisors, so $L \cap L^{\prime} \neq\{0\}$. This is a contradiction.

Simple Submodules of Verma Modules

Note:

- The simple submodule of $M(\lambda)$ is isomorphic to some $L(\mu)$ with $\mu \leq \lambda$. Moreover, $\mu=w \cdot \lambda$ for some $w \in W_{[\lambda]}$.
Exercise:
- Let M be a nonzero submodule of $M(\lambda)$. Then M has a nondegenerate contravariant form if and only if it is the unique simple submodule of $M(\lambda)$.

Homomorphisms Between Verma Modules

Theorem (4.2)

Let $\lambda, \mu \in \mathfrak{h}^{*}$.
a) Any nonzero homomorphism $\varphi: M(\mu) \rightarrow M(\lambda)$ is injective.
b) In all cases, $\operatorname{dim} \operatorname{Hom}(M(\mu), M(\lambda)) \leq 1$.
c) The unique simple submodule $L(\mu)$ in $M(\lambda)$ is a Verma module.

Proof:
a) As a $U\left(\mathfrak{n}^{-}\right)$-module homomorphism $\varphi: U\left(\mathfrak{n}^{-}\right) \rightarrow U\left(\mathfrak{n}^{-}\right)$, $u^{\prime} \mapsto u^{\prime} u$, for some fixed $u \neq 0$.
Since $U\left(\mathfrak{n}^{-}\right)$has no zero-divisors, $\operatorname{Ker} \varphi=0$.
b) Consider nonzero $\varphi_{1}, \varphi_{2}: M(\mu) \rightarrow M(\lambda)$ and unique simple submodule $L \subset M(\mu)$. Then $\varphi_{1}(L)=\varphi_{2}(L)$ is simple. Let $\varphi_{3}=\varphi_{1}-c \varphi_{2}$ s.t. $\varphi_{3}(L)=\{0\}$. Then $\varphi_{3}=0$ by (a).
c) By universal property of $M(\mu)$, there exists $\varphi: M(\mu) \rightarrow M(\lambda)$, with $\varphi(M(\mu))=L(\mu)$. Now φ is injective by (a).

Homomorphisms Between Verma Modules

Notes:

- Whenever $\operatorname{Hom}(M(\mu), M(\lambda)) \neq 0$ we can now unambiguously write $M(\mu) \subset M(\lambda)$.
- One major goal in this chapter is to study this embedding.
- When does it exist?
- How can we construct it?
- The other goal is to determine when $M(\lambda)$ is simple.

Special Case: λ is a Dominant Integral Weight

Proposition (4.3)

Suppose $\lambda+\rho \in \Lambda^{+}$. Then $M(w \cdot \lambda) \subset M(\lambda)$, for all $w \in W$; thus all $[M(\lambda): L(w \cdot \lambda)]>0$.
More precisely, if w has reduced expression $w=s_{n} \cdots s_{1}$, with s_{i} reflection relative to the simple root α_{i}, then there is a sequence

$$
M(w \cdot \lambda)=M\left(\lambda_{n}\right) \subset M\left(\lambda_{n-1}\right) \subset \cdots \subset M\left(\lambda_{0}\right)=M(\lambda)
$$

where $\lambda_{0}:=\lambda$ and $\lambda_{k}:=s_{k} \cdot \lambda_{k-1}$, for $k \in\{1, \ldots, n\}$.
In particular, $\lambda_{n} \leq \lambda_{n-1} \leq \cdots \leq \lambda_{0}$, with $\left\langle\lambda_{k}+\rho, \alpha_{k+1}^{\vee}\right\rangle \in \mathbb{Z}^{+}$, for $k=0, \ldots, n-1$.

Proof:

Use the reformulated Proposition 1.4 and Theorem 4.2(c):

- If $\left\langle\lambda_{k}+\rho, \alpha_{k+1}^{\vee}\right\rangle \in \mathbb{Z}^{+}$, then there exists an embedding

$$
M\left(s_{k+1} \cdot \lambda_{k}\right)=M\left(\lambda_{k+1}\right) \rightarrow M\left(\lambda_{k}\right)
$$

Special Case: λ is a Dominant Integral Weight

Exercises: Assume $\lambda+\rho \in \Lambda^{+}$.

- The unique simple submodule of $M(\lambda)$ is isomorphic to $M\left(w_{\circ} \cdot \lambda\right)$.
- If $\lambda \in \Lambda^{+}$, then all inclusions in the proposition are proper.

Notes:

- This proposition will generalize as follow:

Let $\lambda \in \mathfrak{h}^{*}$. Given $\alpha>0$, suppose $\mu:=s_{\alpha} \cdot \lambda \leq \lambda$. Then there exists an embedding $M(\mu) \subset M(\lambda)$.

- The failure of Proposition 1.4 to carry over to nonsimple positive roots, means that a totally different strategy is needed to generalize this result.

Simplicity Criterion: Integral Case

Recall that $\lambda \in \mathfrak{h}^{*}$ is called antidominant if $\left\langle\lambda+\rho, \alpha^{\vee}\right\rangle \notin \mathbb{Z}^{>0}$ for all $\alpha \in \Phi^{+}$.

Theorem (Simplicity Criterion)

Let $\lambda \in \mathfrak{h}^{*}$. Then $M(\lambda)=L(\lambda)$ if and only if λ is antidominant.
Proof (Integral case, $\lambda \in \Lambda$):

- Suppose $M(\lambda)$ is simple and that λ is not antidominant.
- Then, since $\lambda \in \Lambda$, we can find a simple root α such that $\left\langle\lambda+\rho, \alpha^{\vee}\right\rangle>0$.
- Using the Proposition 1.4 and Theorem 4.2(c), we get a proper embedding $M\left(s_{\alpha} \cdot \lambda\right) \rightarrow M(\lambda)$.
- This contradicts the simplicity of $M(\lambda)$.
- Suppose λ is antidominant.
- Then by (3.5), $\lambda \leq w \cdot \lambda$.
- But $M(\lambda)$ only has composition factors $L(w \cdot \lambda)$ with $w \cdot \lambda \leq \lambda$.
- Therefore $L(\lambda)$ is the only composition factor and it occurs only once, so $M(\lambda)=L(\lambda)$.

Simplicity Criterion: Integral Case

Exercise:

- If $\lambda \in \Lambda$ is antidominant, then the socle of $P(w \cdot \lambda)$ with $w \in W$ is a direct sum of copies of $L(\lambda)$.
- The general version of this result is proven later.

Notes:

- Only the second part of this proof can be generalized to $\lambda \in \mathfrak{h}^{*}$.
- The first part does not generalize since Proposition 1.4 no longer applies.
- We therefore need more information on embeddings $M\left(s_{\alpha} \cdot \lambda\right) \subset M(\lambda)$, where α is not simple.

Existence of Embeddings: Preliminaries

Proposition (4.5)

Let $\mu, \lambda \in \mathfrak{h}^{*}$ and $\alpha \in \Delta$, with $n:=\left\langle\lambda+\rho, \alpha^{\vee}\right\rangle \in \mathbb{Z}$ and

$$
M\left(s_{\alpha} \cdot \mu\right) \subset M(\mu) \subset M(\lambda)
$$

Then there are two possibilities for the position of $M\left(s_{\alpha} \cdot \lambda\right)$:
a) If $n \leq 0$, then $M(\lambda) \subset M\left(s_{\alpha} \cdot \lambda\right)$.
b) If $n>0$, then $M\left(s_{\alpha} \cdot \mu\right) \subset M\left(s_{\alpha} \cdot \lambda\right) \subset M(\lambda)$.

Lemma (4.5)

Let \mathfrak{a} be a nilpotent Lie algebra, with $x \in \mathfrak{a}$ and $u \in U(\mathfrak{a})$. Given a positive integer n, there exists an integer t depending on x and u such that $x^{t} u \in U(\mathfrak{a}) x^{n}$.

We also note that for any $\alpha \in \Delta$ and $t>0$,

$$
\left[x, y_{\alpha}^{t}\right]=t y_{\alpha}^{t-1}\left(h_{\alpha}-t+1\right) .
$$

Existence of Embeddings: Preliminaries

Proof (Proposition 4.5):
a) If $n \leq 0$, then $M(\lambda) \subset M\left(s_{\alpha} \cdot \lambda\right)$ by Proposition 1.4, since

$$
\left\langle s_{\alpha} \cdot \lambda+\rho, \alpha^{\vee}\right\rangle=\left\langle s_{\alpha} \cdot(\lambda+\rho), \alpha^{\vee}\right\rangle=\left\langle\lambda+\rho,-\alpha^{\vee}\right\rangle=-n \geq 0
$$

b) If $n>0$, then we want $M\left(s_{\alpha} \cdot \mu\right) \subset M\left(s_{\alpha} \cdot \lambda\right) \subset M(\lambda)$.

- Proposition 1.4 immediately gives $M\left(s_{\alpha} \cdot \lambda\right) \subset M(\mu)$.
- Letting $s:=\left\langle\mu+\rho, \alpha^{\vee}\right\rangle$ we get maximal vectors

$$
v_{\lambda}^{+} \in M(\lambda), \quad y_{\alpha}^{n} \cdot v_{\lambda}^{+} \in M\left(s_{\alpha} \cdot \lambda\right), \quad v_{\mu}^{+} \in M(\mu), \quad y_{\alpha}^{s} \cdot v_{\mu}^{+} \in M\left(s_{\alpha} \cdot \mu\right)
$$

- Since $M(\mu) \subset M(\lambda)$, there is $u \in U\left(\mathfrak{n}^{-}\right)$with $v_{\mu}^{+}=u \cdot v_{\lambda}^{+}$.
- Lemma 4.5 gives us $t \geq s$ such that $y_{\alpha}^{t} u \in U\left(\mathfrak{n}^{-}\right) y_{\alpha}^{n}$. So

$$
y_{\alpha}^{t} \cdot v_{\mu}^{+}=y_{\alpha}^{t} u \cdot v_{\lambda}^{+} \in U\left(\mathfrak{n}^{-}\right) y_{\alpha}^{n} v_{\lambda}^{+} \subset M\left(s_{\alpha} \cdot \lambda\right) .
$$

- If $t>s$, then we use $\left[x, y_{\alpha}^{t}\right]=t y_{\alpha}^{t-1}\left(h_{\alpha}-t+1\right)$ to get

$$
(s-t) t y_{\alpha}^{t-1} v_{\mu}^{+}=x_{\alpha} y_{\alpha}^{t} \cdot v_{\mu}^{+} \in M\left(s_{\alpha} \cdot \lambda\right) .
$$

- This proves $y_{\alpha}^{s} \cdot v_{\mu}^{+} \in M\left(s_{\alpha} \cdot \lambda\right)$ and $M\left(s_{\alpha} \cdot \mu\right) \subset M\left(s_{\alpha} \cdot \lambda\right)$.

Existence of Embeddings: Integral Case

Theorem (4.6, Verma)

Let $\lambda \in \mathfrak{h}^{*}$. Given $\alpha>0$, suppose $\mu:=s_{\alpha} \cdot \lambda \leq \lambda$. Then there exists an embedding $M(\mu) \subset M(\lambda)$.

Proof (Integral case, $\lambda \in \Lambda$):

- Since λ is integral, so is μ. Therefore we can find $w \in W$ such that $\mu^{\prime}:=w^{-1} \cdot \mu \in \Lambda^{+}-\rho$.
- Considering a reduced expression $w=s_{n} \cdots s_{1}$, we define weights $\mu_{0}:=\mu^{\prime}$ and $\mu_{k}:=s_{k} \cdot \mu_{k-1}$, for $k=1, \ldots, n$.
- Proposition 4.3 tells us that $\mu_{0} \geq \cdots \geq \mu_{n}$ and that

$$
M\left(\mu_{0}\right) \supset M\left(\mu_{1}\right) \supset \cdots \supset M\left(\mu_{n}\right)
$$

- Letting $\lambda^{\prime}:=w^{-1} \cdot \lambda$ we define a parallel list of weights. $\lambda_{0}:=\lambda^{\prime}$ and $\lambda_{k}:=s_{k} \cdot \lambda_{k-1}$, for $k=1, \ldots, n$.

Existence of Embeddings: Integral Case

Proof (continued):

- A short calculation shows that if $w_{k}:=s_{k+1} \cdots s_{n}$, then $\mu_{k}=s_{\beta_{k}} \cdot \lambda_{k}, \beta_{k}$ is the root with $s_{\beta_{k}}=w_{k}^{-1} s_{\alpha} w_{k}$.
- It follows that $\mu_{k}-\lambda_{k} \in \mathbb{Z} \beta_{k}$.
- We may assume that $\mu<\lambda$. This implies $\mu_{k} \neq \lambda_{k}$ and in particular $\mu^{\prime}>\lambda^{\prime}$, since μ^{\prime} is dominant.
- There must thus be a least index k such that $\mu_{k}>\lambda_{k}$ and $\mu_{k+1}<\lambda_{k+1}$. We fix this k.
- We will prove $M\left(\mu_{k+1}\right) \subset M\left(\lambda_{k+1}\right), M\left(\mu_{k+2}\right) \subset M\left(\lambda_{k+2}\right), \ldots$ Culminating in $M\left(\mu_{n}\right) \subset M\left(\lambda_{n}\right)$.
- By definition $\mu_{k+1}-\lambda_{k+1}=s_{k+1}\left(\mu_{k}-\lambda_{k}\right)$.
- By our choice of k, we get $\mu_{k+1}-\lambda_{k+1} \in \mathbb{Z}^{-} \beta_{k+1}$ and $s_{k+1}\left(\mu_{k}-\lambda_{k}\right) \in \mathbb{Z}^{+} \beta_{k}$. So $\beta_{k}=\beta_{k+1}=\alpha_{k+1}$.
- Prop 1.4 yields $M\left(\mu_{k+1}\right)=M\left(s_{k+1} \cdot \lambda_{k+1}\right) \subset M\left(\lambda_{k+1}\right)$.

Existence of Embeddings: Integral Case

Proof (continued):

- Combined with the sequence of embeddings we get

$$
M\left(\mu_{k+2}\right)=M\left(s_{k+2} \cdot \mu_{k+1}\right) \subset M\left(\mu_{k+1}\right) \subset M\left(\lambda_{k+1}\right)
$$

- Proposition 4.5 then implies that

$$
M\left(\mu_{k+2}\right) \subset M\left(s_{k+2} \cdot \lambda_{k+1}\right)=M\left(\lambda_{k+2}\right)
$$

- Iterating these last arguments we get

$$
M(\mu)=M\left(\mu_{n}\right) \subset M\left(\lambda_{n}\right)=M(\lambda)
$$

Extra: Solution to problem we discussed at the end

Unless I mistake something in the definition of the partial ordering. Let $\mu \in \mathfrak{h}^{*}$ and $\alpha \in \Delta$. Assume $M\left(s_{\alpha} \cdot \mu\right) \subset M(\mu)$. Then $s_{\alpha} \cdot \mu \leq \mu$ or in other words

$$
\left\langle\mu-s_{\alpha} \cdot \mu, \beta^{\vee}\right\rangle \in 2 \mathbb{Z}^{+}, \quad(\forall \beta \in \Delta)
$$

Noting that

$$
\left\langle\mu+\rho, \alpha^{\vee}\right\rangle=-\left\langle s_{\alpha} \cdot(\mu+\rho), \alpha^{\vee}\right\rangle=-\left\langle s_{\alpha} \cdot \mu+\rho, \alpha^{\vee}\right\rangle
$$

we get

$$
\left\langle\mu+\rho, \alpha^{\vee}\right\rangle=\frac{1}{2}\left\langle\mu-s_{\alpha} \cdot \mu, \beta^{\vee}\right\rangle \in \mathbb{Z}^{+}
$$

