Category \mathcal{O} : Methods

- ► The functors Hom and Ext
- A duality functor $M \mapsto M^{\vee}$ on \mathcal{O}
- Reflection groups, dominant and antidominant weights
- Tensoring Verma modules with finite dimensional modules
- "Standard" filtrations having Verma modules as subquotients
- Projective objects in O and BGG reciprocity
- "Contravariant" forms on modules

Indecomposable modules for $\mathfrak{sl}(2,\mathbb{C})$

Proposition

Let $\mathfrak{g} = \mathfrak{sl}(2,\mathbb{C})$ and $\{\lambda,\mu\}$ be a linkage class of integral weights with $\lambda \geq 0$, $\mu = -\lambda - 2$ and $\chi = \chi_{\lambda}$. Every indecomposable module in \mathcal{O}_{χ} is isomorphic to one of the following five modules, 1700 1L (N). $L(\mu) = M(\mu), \quad M(\lambda) = P(\lambda), \quad M(\lambda)^{\vee} = Q(\lambda), \quad M(\lambda)^{\vee} = Q(\lambda)^{\vee} = Q(\lambda)$ $(\lambda), M(\lambda)) -$ \rightarrow Ect $(M(\lambda), M(\lambda)) \longrightarrow \dots$

Proof

Suppose $M \in O_{\chi}$ and $\Xi [(*)]$ and indecorposable =) Omly possible factors are $L(\lambda l, L(p))$ (Δ) all nonzers v E M, ere maienal =) v generates rubmokik = L(1) or M) () + Est commutes with direct raws + Induction =) My generates nebrodul NCM, of the form N = L(A) & ... @L(A) & M(A) (J ... & M(A) => N is proph relemostate of M => M/N = L(N) & ... & U(P) At leverk one L(W extend N nontrivially => L(V) extends a L(A) or M(A) nontrivially => Q(A) OR Q(P) C M -> L(V) extends a L(A) or M(A) nontrivially => Q(A) OR Q(P) C M

Let $\chi = \chi_{\lambda}$ be a central character corresponding to the linkage class of an antidominant weight $\lambda \in \mathfrak{h}^*$.

Let $\chi = \chi_{\lambda}$ be a central character corresponding to the linkage class of an antidominant weight $\lambda \in \mathfrak{h}^*$.

Definition

 $P \in \mathcal{O}$ is a **projective generator** of \mathcal{O}_{χ} if a large enough direct sum $P \oplus \cdots \oplus P$ covers any given $M \in \mathcal{O}_{\chi}$.

Let $\chi = \chi_{\lambda}$ be a central character corresponding to the linkage class of an antidominant weight $\lambda \in \mathfrak{h}^*$.

Definition

 $P \in \mathcal{O}$ is a **projective generator** of \mathcal{O}_{χ} if a large enough direct sum $P \oplus \cdots \oplus P$ covers any given $M \in \mathcal{O}_{\chi}$.

Consider a projective module

$$P:=\bigoplus_w n_w P(w\cdot \lambda), \quad \text{ with all } n_w>0.$$

The sum is taken over coset representatives in W of the isotropy group of $\lambda.$

Let $\chi = \chi_{\lambda}$ be a central character corresponding to the linkage class of an antidominant weight $\lambda \in \mathfrak{h}^*$.

Definition

 $P \in \mathcal{O}$ is a **projective generator** of \mathcal{O}_{χ} if a large enough direct sum $P \oplus \cdots \oplus P$ covers any given $M \in \mathcal{O}_{\chi}$.

Consider a projective module

$$P := \bigoplus_{w} n_w P(w \cdot \lambda), \quad \text{ with all } n_w > 0.$$

The sum is taken over coset representatives in W of the isotropy group of $\lambda.$

P is a projective generator of \mathcal{O}_{χ} and $A := \operatorname{End}_{\mathcal{O}} P$ is a finite dimension algebra.

Property of Projective generators

Proposition

The functor $\operatorname{Hom}_{\mathcal{O}}(P, \cdot)$ defines a category equivalence between \mathcal{O}_{χ} and the category of finite dimensional right A-modules.

7. Contravariant forms

Definition

A symmetric bilinear form $(v, v')_M$ on $M \in Mod_{U(g)}$ is contravariant if

 $(u \cdot v, v')_M = (v, \tau(u) \cdot v')_M \quad \text{ for all } u \in U(\mathfrak{g}) \text{ and } v, v' \in M.$

$$\mathfrak{sl}(2, \mathbb{C}) \text{ example } \mathfrak{h}^{*} = \mathcal{L}$$

$$(h_{V_{i}}, \nabla_{i}) = (\lambda - 2i)(v_{i}, \nabla_{i})$$

$$(v_{i}, \lambda, v_{i}) = (\lambda - 2i)(v_{i}, \nabla_{i})$$

$$(v_{i}, \lambda, v_{i}) = (\lambda - 2i)(v_{i}, \nabla_{i}) = (v_{i}, \gamma_{i}) = 0 \quad \forall i \neq j$$

$$(x_{i}, \lambda, v_{i}) = (\lambda - 2i)(v_{i}, \nabla_{i}) = (v_{i}, \gamma_{i}) = 0 \quad \forall i \neq j$$

$$(x_{i}, y_{i}, \gamma_{i}) = (\lambda - 2i)(v_{i}, \gamma_{i}) = (v_{i}, \gamma_{i}) = 0 \quad \forall i \neq j$$

$$(x_{i}, y_{i}, \gamma_{i}) = (\lambda - 2i)(v_{i}, \gamma_{i}) = (v_{i}, \gamma_{$$

(a) $(M_{\lambda}, M_{\mu})_{M} = 0$ whenever $\lambda \neq \mu$. $(\iota) \lambda(\mathcal{L})(\nabla_{j}\nabla^{j}) = (\mathcal{L} \cdot \nabla_{j}\nabla^{j}) = (\nabla_{j}\mathcal{L} \cdot \nabla_{j}) = \mu(\mathcal{L})(\nabla_{j}\nabla^{j})$ ℓj

(a)
$$(M_{\lambda}, M_{\mu})_{M} = 0$$
 whenever $\lambda \neq \mu$.
(b) If $M = U(\mathfrak{g}) \cdot v_{\lambda}^{+}$ has a nonzero contravariant form, then it is
uniquely determined up to a scalar multiple by $(v_{\lambda}^{+}, v_{\lambda}^{+})_{M}$
by \mathcal{M} . I.o., $\mathcal{N} = \mathcal{M} \cdot \mathcal{N}_{\lambda}^{+}$, $\mathcal{N}' = \mathcal{M}' \mathcal{N}_{\lambda}^{+} \in \mathcal{M}_{\mu}$ with $\mathcal{V}, \mathfrak{h}' \in \mathcal{M}(\mathcal{N})^{+}$
 $\mathcal{M}_{\lambda} = \mathcal{M} \cdot \mathcal{N}_{\lambda}^{+}$, $\mathcal{N}' = \mathcal{M}' \mathcal{N}_{\lambda}^{+} \in \mathcal{M}_{\mu}$ with $\mathcal{V}, \mathfrak{h}' \in \mathcal{M}(\mathcal{N})^{+}$
 $\mathcal{M}_{\lambda} = \mathcal{M} \cdot \mathcal{N}_{\lambda}^{+}$, $\mathcal{N}' = \mathcal{M}' \mathcal{N}_{\lambda}^{+} \in \mathcal{M}_{\mu}$, $\mathcal{M}' \mathcal{N}_{\lambda} = \mathcal{M} \cdot \mathcal{N}_{\lambda}^{+}$, $\mathcal{N}' = \mathcal{M}' \mathcal{N}_{\lambda}^{+} \in \mathcal{M}_{\lambda}^{+}$, $\mathcal{M}' = \mathcal{M}' \mathcal{N}_{\lambda}^{+}$, $\mathcal{M}' = \mathcal{M}' \mathcal{N}_{\lambda}^{+} \in \mathcal{M}_{\lambda}^{+}$, $\mathcal{M}' = \mathcal{M}' \mathcal{N}_{\lambda}^{+}$, $\mathcal{M}' = \mathcal{M}' \mathcal{M}' \mathcal{N}_{\lambda}^{+}$, $\mathcal{M}' = \mathcal{M}' \mathcal{M}' \mathcal{N}_{\lambda}^{+}$, $\mathcal{M}' = \mathcal{M}' \mathcal{M}' \mathcal{M}' = \mathcal{M}' \mathcal{M}' \mathcal{M}' \mathcal{M}' + \mathcal{M}' \mathcal{M}' = \mathcal{M}' \mathcal{M}' \mathcal{M}' + \mathcal{M}' \mathcal{M}' + \mathcal{M}' = \mathcal{M}' \mathcal{M}' + \mathcal{$

- (a) $(M_{\lambda}, M_{\mu})_M = 0$ whenever $\lambda \neq \mu$.
- (b) If $M = U(\mathfrak{g}) \cdot v_{\lambda}^{+}$ has a nonzero contravariant form, then it is uniquely determined up to a scalar multiple by $(v_{\lambda}^{+}, v_{\lambda}^{+})_{M}$
- (c) $(v \otimes w, v' \otimes w')_M := (v, v')_{M_1}(w, w')_{M_2}$ is a (non-degenerate) contravariant form of $M := M_1 \otimes M_2$ if the forms on M_1 and M_2 are (non-degenerate) contravariant forms.

(a)
$$(M_{\lambda}, M_{\mu})_M = 0$$
 whenever $\lambda \neq \mu$.

- (b) If $M = U(\mathfrak{g}) \cdot v_{\lambda}^{+}$ has a nonzero contravariant form, then it is uniquely determined up to a scalar multiple by $(v_{\lambda}^{+}, v_{\lambda}^{+})_{M}$
- (c) $(v \otimes w, v' \otimes w')_M := (v, v')_{M_1}(w, w')_{M_2}$ is a (non-degenerate) contravariant form of $M := M_1 \otimes M_2$ if the forms on M_1 and M_2 are (non-degenerate) contravariant forms.
- (d) If N is a submodule of M, then the orthogonal space

$$N^{\perp} := \{ v \in M | (v, v')_M = 0 \text{ for all } v' \in N \}$$

is also a submodule.

(c)(1) Frid

(a)
$$(M_{\lambda}, M_{\mu})_M = 0$$
 whenever $\lambda \neq \mu$.

- (b) If $M = U(\mathfrak{g}) \cdot v_{\lambda}^{+}$ has a nonzero contravariant form, then it is uniquely determined up to a scalar multiple by $(v_{\lambda}^{+}, v_{\lambda}^{+})_{M}$
- (c) $(v \otimes w, v' \otimes w')_M := (v, v')_{M_1}(w, w')_{M_2}$ is a (non-degenerate) contravariant form of $M := M_1 \otimes M_2$ if the forms on M_1 and M_2 are (non-degenerate) contravariant forms.
- (d) If N is a submodule of M, then the orthogonal space

$$N^{\perp} := \{ v \in M | (v, v')_M = 0 \text{ for all } v' \in N \}$$

is also a submodule.

(e) If $M \in \mathcal{O}$ has a contravariant form, then the M^{χ} for distinct central characters χ are orthogonal.

$$M^{X} = \left(v \in M : \left(Z - \chi(z) \right)^{n} v = 0 \right) for a \sim 70 depending on z^{2}$$

Proof

(e) Let X_1, X_2 be distinct : $TP \forall X \notin : (M_{\mathcal{X}_1}^{\mathcal{X}_1}, M_{\mathcal{X}_2}^{\mathcal{X}_2}) = 0$ Fix $z \in Z(\mathfrak{G}) \quad \mathfrak{n!} \quad X_1(z) = c_1 \neq c_2 = k_2(z)$ Suppose first $v, w \in M$ are eigenvectors of Z $C_{1}(v, w) = (Z \cdot v, w) = (v, Z \cdot w) = C_{2}(v, w)$ En general VV; EMT: -I minimal C, EZ+: (z-c;) v;=0 the induction on $C_1 + C_2$

We have a "universal construction" of contravariant forms involving $U(\mathfrak{g}).$

We have a "universal construction" of contravariant forms involving $U(\mathfrak{g}).$

We define

ϵ[±] : U(n[±]) → C, augmentation maps sending all nonconstant PBW basis elements to 0.

We have a "universal construction" of contravariant forms involving $U(\mathfrak{g}).$

We define

 e[±]: U(n[±]) → C, augmentation maps sending all nonconstant PBW basis elements to 0.

$$\blacktriangleright \ \phi := \epsilon^- \otimes \mathrm{id} \otimes \epsilon^+ : U(\mathfrak{g}) \cong U(\mathfrak{n}^-) \oplus U(\mathfrak{h}) \oplus U(\mathfrak{n}^+) \to U(\mathfrak{h})$$

We have a "universal construction" of contravariant forms involving $U(\mathfrak{g}).$

We define

- e[±]: U(n[±]) → C, augmentation maps sending all nonconstant PBW basis elements to 0.
- $\blacktriangleright \ \phi := \epsilon^- \otimes \operatorname{id} \otimes \epsilon^+ : U(\mathfrak{g}) \cong U(\mathfrak{n}^-) \oplus U(\mathfrak{h}) \oplus U(\mathfrak{n}^+) \to U(\mathfrak{h})$
- The universal bilinear form on $U(\mathfrak{g})$,

$$C(u, u') := \phi(\tau(u)u')$$

Proposition

•
$$\phi(\tau(u)) = \phi(u)$$
 for all u .

Proposition

$$\phi(\tau(u)) = \phi(u) \text{ for all } u.$$

$$C(u, u') \text{ is symmetric.}$$

$$C(\psi, w') = \phi(\tau(w) w') = \phi(\tau(\tau(w) w')) = \phi(\tau(w) \tau^{2}(w)) - C(\psi', w)$$

Proposition

- $\blacktriangleright \ \phi(\tau(u)) = \phi(u) \text{ for all } u.$
- \blacktriangleright C(u, u') is symmetric.
- ► C(1,1) = 1.

Proposition

•
$$\phi(\tau(u)) = \phi(u)$$
 for all u .

- \blacktriangleright C(u, u') is symmetric.
- ► C(1,1) = 1.
- \blacktriangleright C(u, u') is "contravariant":

$$C(u_0u, u') = C(u, \tau(u_0)u')$$

for all $u_0, u, u' \in U(\mathfrak{g})$.

Induced C-valued form

All $\lambda \in \mathfrak{h}^*$ define a representation of \mathfrak{h} .

Induced C-valued form

 \implies

All $\lambda \in \mathfrak{h}^*$ define a representation of \mathfrak{h} .

All λ induce an algebra homomorphism $\lambda: U(\mathfrak{h}) \to \mathbb{C}$.

Induced C-valued form

All $\lambda \in \mathfrak{h}^*$ define a representation of \mathfrak{h} .

All λ induce an algebra homomorphism $\lambda: U(\mathfrak{h}) \to \mathbb{C}$.

The linear map

 \implies

$$\phi_{\lambda} := \lambda \circ \phi : U(\mathfrak{g}) \to \mathbb{C}$$

defines a ${\mathbb C}\text{-valued}$ symmetric bilinear form

$$C^{\lambda}(u, u') := \phi_{\lambda}(\tau(u)u')$$

on $U(\mathfrak{g})$.

Corollary of the Universal construction

Theorem

Let M be a highest weight module of weight λ generated by a maximal vector $v^+.$

There exists a (nonzero) contravariant form $(v, v')_M$ on M, which is uniquely determined up to scalar multiples by $(v^+, v^+)_M$.

Corollary of the Universal construction

Theorem

Let M be a highest weight module of weight λ generated by a maximal vector $v^+.$

There exists a (nonzero) contravariant form $(v, v')_M$ on M, which is uniquely determined up to scalar multiples by $(v^+, v^+)_M$.

Its radical is the unique maximal submodule of M.

In particular, the form is nondegenerate if and only if $M \cong L(\lambda)$.

Proof M'= ZMM, NCM' unique maximal submodule of M Note that: For $u \in U(g)$: $u \cdot v^+ \equiv \varphi_{\lambda}(u) v^+ (and M')$ $\mathcal{U} \lor \mathcal{V} \leftarrow \mathcal{V} \leftarrow$ $(=) C^{2}(U(q), n) = O(=) u is in rodical of C^{2}$ In porticular $\forall u_2, u_2 \in \mathcal{O}(\mathcal{T})$: $u_1 v^+ = u_2 v^+ =) u_1 - u_2 in robuind of C^{\delta}$ \Rightarrow $(v, v')_{M} = C'(u, u')$ with $u, u' \in U(\pi)$ s.t. N is ruleical of (.,), (,), in inherits contravariance of C²