Category \mathcal{O} : Methods

- The functors Hom and Ext
- A duality functor $M \mapsto M^{\vee}$ on \mathcal{O}
- Reflection groups, dominant and antidominant weights
- Tensoring Verma modules with finite dimensional modules
- "Standard" filtrations having Verma modules as subquotients
- Projective objects in \mathcal{O} and BGG reciprocity
- "Contravariant" forms on modules

Indecomposable modules for $\mathfrak{s l}(2, \mathbb{C})$

Proposition
Let $\mathfrak{g}=\mathfrak{s l}(2, \mathbb{C})$ and $\{\lambda, \mu\}$ be a linkage class of integral weights with $\lambda \geq 0, \mu=-\lambda-2$ and $\chi=\chi_{\lambda}$. Every indecomposable module in \mathcal{O}_{χ} is isomorphic to one of the following five modules.

$$
\begin{aligned}
& {\left[L(\lambda), \quad L(\mu)=M(\mu), \quad M(\lambda)=P(\lambda), \quad M(\lambda)^{\vee}=Q(\lambda),{ }_{y j} P(\mu)=Q(\mu)\right. \text {. }}
\end{aligned}
$$

Proof
Suppose $M \in O_{x}$ ast $E[(*)]$ anai inderoponble
\Rightarrow Omly possiblefectors are $L(\lambda), L(\mu)(\Delta)$
all nomerso $v \in M_{\lambda}$ are maxiemal $\Rightarrow v$ generaties vibundul $\cong L\left(\lambda_{10} M(1)\right.$
$(\square)+$ Ext conmantes whth direct nemar + Entuction
$\Rightarrow M_{\lambda}$ geverotles mebmobul $N \subset M$, of the form

$$
N=L(\lambda) \oplus \ldots \Phi L(\lambda) \oplus M(\lambda) \notin \ldots M(\lambda)
$$

\Rightarrow Nispropir solmotule of $M \stackrel{(\Delta)}{\Rightarrow} M / N \cong L(M) \oplus \ldots(\Delta L(N)$
At levest ous L (M) extend N montricically
\Rightarrow L(p) eetents a $L(\lambda)$ o $M(\lambda)$ noturaiblly $\Rightarrow Q(\lambda) O R Q(y) \subset M$
chave pop Mislits

Projective generators

Let $\chi=\chi_{\lambda}$ be a central character corresponding to the linkage class of an antidominant weight $\lambda \in \mathfrak{h}^{*}$.

Projective generators

Let $\chi=\chi_{\lambda}$ be a central character corresponding to the linkage class of an antidominant weight $\lambda \in \mathfrak{h}^{*}$.

Definition
$P \in \mathcal{O}$ is a projective generator of \mathcal{O}_{χ} if a large enough direct sum $P \oplus \cdots \oplus P$ covers any given $M \in \mathcal{O}_{\chi}$.

Projective generators

Let $\chi=\chi_{\lambda}$ be a central character corresponding to the linkage class of an antidominant weight $\lambda \in \mathfrak{h}^{*}$.

Definition
$P \in \mathcal{O}$ is a projective generator of \mathcal{O}_{χ} if a large enough direct sum $P \oplus \cdots \oplus P$ covers any given $M \in \mathcal{O}_{\chi}$.
Consider a projective module

$$
P:=\bigoplus_{w} n_{w} P(w \cdot \lambda), \quad \text { with all } n_{w}>0 .
$$

The sum is taken over coset representatives in W of the isotropy group of λ.

Projective generators

Let $\chi=\chi_{\lambda}$ be a central character corresponding to the linkage class of an antidominant weight $\lambda \in \mathfrak{h}^{*}$.

Definition
$P \in \mathcal{O}$ is a projective generator of \mathcal{O}_{χ} if a large enough direct sum $P \oplus \cdots \oplus P$ covers any given $M \in \mathcal{O}_{\chi}$.
Consider a projective module

$$
P:=\bigoplus_{w} n_{w} P(w \cdot \lambda), \quad \text { with all } n_{w}>0 .
$$

The sum is taken over coset representatives in W of the isotropy group of λ.
P is a projective generator of \mathcal{O}_{χ} and $A:=\operatorname{End}_{\mathcal{O}} P$ is a finite dimension algebra.

Property of Projective generators

Proposition

The functor $\operatorname{Hom}_{\mathcal{O}}(P, \cdot)$ defines a category equivalence between
\mathcal{O}_{χ} and the categroy of finite dimensional right A-modules.

7. Contravariant forms

Definition

A symmetric bilinear form $\left(v, v^{\prime}\right)_{M}$ on $M \in \operatorname{Mod}_{U(\mathfrak{g})}$ is contravariant if

$$
\left(u \cdot v, v^{\prime}\right)_{M}=\left(v, \tau(u) \cdot v^{\prime}\right)_{M} \quad \text { for all } u \in U(\mathfrak{g}) \text { and } v, v^{\prime} \in M .
$$

$$
\begin{aligned}
& \begin{array}{l}
\mathfrak{s l}(2, \mathbb{C}) \text { example } 力^{*}=C \\
\left(h v_{1}, v_{1}\right)=(t-21)\left(v_{i} v_{1}\right)
\end{array}\left\{\begin{array}{l}
h v_{1}=(\lambda-2 i) v_{l} \\
x r_{1}=(t-i+1) v_{l-1} \\
y v_{1}=(i+1) v_{i+1}
\end{array}\right. \\
& \left(h v_{i,}, v_{j}\right)=(t-22)\left(v_{i}, v_{j}\right) \\
& \left(r_{i}, h v_{j}\right)=(\lambda-2 y)\left(r_{i}, v_{1}\right) \Rightarrow\left(v_{i}, v_{j}\right)=0 \text { y } i \neq j \\
& \left(x v_{1,}, v_{1-1}\right)=(\lambda-i+1)\left(v_{(-1,}, v_{i-1}\right) \Rightarrow\left(v_{i}, v_{i}\right)=\frac{\lambda-i+1}{i}\left(v_{i-1}, v_{i-1}\right) \\
& \left(v_{i}, y r_{1-1}\right)=i\left(v_{i}, r_{i}\right) \\
& (-\lambda):=(-\lambda)(-\lambda+1) \ldots(-\lambda+i-1) \\
& \Rightarrow\left(v_{1}, u_{i}\right)=\frac{(-1)^{\prime}}{i!}(-\lambda)_{i}\left(v_{0}, v_{0}\right),\left(v_{0}, v_{0}\right)=\text { ambaneronalor contait } \\
& \lambda G N ;\left(v_{i}, r_{i}\right)=\binom{\lambda}{i}\left(\begin{array}{r}
v_{0}, v_{0}
\end{array}\right)
\end{aligned}
$$

Properties of contravariant forms

(a) $\left(M_{\lambda}, M_{\mu}\right)_{M}=0$ whenever $\lambda \neq \mu$.
$\left(\right.$ (b) $\lambda(a)\left(v, v^{\prime}\right)=\left(h \cdot v, v^{\prime}\right)=\left(v, h \cdot v^{\prime}\right)=\mu(d)\left(v, v^{\prime}\right)$

Properties of contravariant forms
(a) $\left(M_{\lambda}, M_{\mu}\right)_{M}=0$ whenever $\lambda \neq \mu$.
(b) If $M=U(\mathfrak{g}) \cdot v_{\lambda}^{+}$has a nonzero contravariant form, then it is uniquely determined up to a scalar multiple by $\left(v_{\lambda}^{+}, v_{\lambda}^{+}\right)_{M}$
(t) w. log $v=u \cdot v_{\lambda}^{+}, v^{\prime}=u^{\prime} v_{\lambda}^{+} \in M_{\mu}$ with $v, n^{\prime} \in U\left(D^{-}\right)$

$$
\begin{gathered}
u, u^{\prime}: M_{\lambda} \rightarrow M_{\mu} \Rightarrow \tau(u) \tau\left(n^{\prime}\right) M_{\mu} \rightarrow M_{\lambda} \\
(v, v)=\left(h v_{\lambda}^{+}, u^{\prime} v_{\lambda}^{+}\right)=\left(v_{\lambda}, \tau(w) u^{\prime} v_{\lambda}^{+}\right)=C\left(v_{\lambda}, v_{\lambda}\right) \nmid o r
\end{gathered}
$$

Properties of contravariant forms

(a) $\left(M_{\lambda}, M_{\mu}\right)_{M}=0$ whenever $\lambda \neq \mu$.
(b) If $M=U(\mathfrak{g}) \cdot v_{\lambda}^{+}$has a nonzero contravariant form, then it is uniquely determined up to a scalar multiple by $\left(v_{\lambda}^{+}, v_{\lambda}^{+}\right)_{M}$
(c) $\left(v \otimes w, v^{\prime} \otimes w^{\prime}\right)_{M}:=\left(v, v^{\prime}\right)_{M_{1}}\left(w, w^{\prime}\right)_{M_{2}}$ is a (non-degenerate) contravariant form of $M:=M_{1} \otimes M_{2}$ if the forms on M_{1} and M_{2} are (non-degenerate) contravariant forms.

Properties of contravariant forms

(a) $\left(M_{\lambda}, M_{\mu}\right)_{M}=0$ whenever $\lambda \neq \mu$.
(b) If $M=U(\mathfrak{g}) \cdot v_{\lambda}^{+}$has a nonzero contravariant form, then it is uniquely determined up to a scalar multiple by $\left(v_{\lambda}^{+}, v_{\lambda}^{+}\right)_{M}$
(c) $\left(v \otimes w, v^{\prime} \otimes w^{\prime}\right)_{M}:=\left(v, v^{\prime}\right)_{M_{1}}\left(w, w^{\prime}\right)_{M_{2}}$ is a (non-degenerate) contravariant form of $M:=M_{1} \otimes M_{2}$ if the forms on M_{1} and M_{2} are (non-degenerate) contravariant forms.
(d) If N is a submodule of M, then the orthogonal space

$$
N^{\perp}:=\left\{v \in M \mid\left(v, v^{\prime}\right)_{M}=0 \text { for all } v^{\prime} \in N\right\}
$$

is also a submodule.

Properties of contravariant forms

(a) $\left(M_{\lambda}, M_{\mu}\right)_{M}=0$ whenever $\lambda \neq \mu$.
(b) If $M=U(\mathfrak{g}) \cdot v_{\lambda}^{+}$has a nonzero contravariant form, then it is uniquely determined up to a scalar multiple by $\left(v_{\lambda}^{+}, v_{\lambda}^{+}\right)_{M}$
(c) $\left(v \otimes w, v^{\prime} \otimes w^{\prime}\right)_{M}:=\left(v, v^{\prime}\right)_{M_{1}}\left(w, w^{\prime}\right)_{M_{2}}$ is a (non-degenerate) contravariant form of $M:=M_{1} \otimes M_{2}$ if the forms on M_{1} and M_{2} are (non-degenerate) contravariant forms.
(d) If N is a submodule of M, then the orthogonal space

$$
N^{\perp}:=\left\{v \in M \mid\left(v, v^{\prime}\right)_{M}=0 \text { for all } v^{\prime} \in N\right\}
$$

is also a submodule.
(e) If $M \in \mathcal{O}$ has a contravariant form, then the M^{χ} for distinct central characters χ are orthogonal.

Proof
(e) Let x_{1}, x_{2} be distenct: TP $\forall \lambda_{t}^{t}:\left(M_{x}^{x_{1}}, M_{\lambda}^{x_{2}}\right)=0$

Foc $z \in Z(\rho)$ nt. $x_{1}(z)=c_{1} \neq c_{2}=X_{2}(z)$
Suppore forst $v, w \in M$ are elegenvectors of 2

$$
c_{1}(v, w)=(z \cdot v, w)=(v, z \cdot w)=c_{2}(v, w)
$$

Er gheral $\forall v_{i} \in M_{\lambda}^{\lambda_{i}}-\exists$ minimal $e_{i} \in \mathbb{Z}^{+}:\left(z-c_{i}\right) v_{i}=0$ Che induction on $e_{1}+e_{2}$

Universal construction

We have a "universal construction" of contravariant forms involving $U(\mathfrak{g})$.

Universal construction

We have a "universal construction" of contravariant forms involving $U(\mathfrak{g})$.

We define

- $\epsilon^{ \pm}: U\left(\mathfrak{n}^{ \pm}\right) \rightarrow \mathbb{C}$, augmentation maps sending all nonconstant PBW basis elements to 0 .

Universal construction

We have a "universal construction" of contravariant forms involving $U(\mathfrak{g})$.

We define

- $\epsilon^{ \pm}: U\left(\mathfrak{n}^{ \pm}\right) \rightarrow \mathbb{C}$, augmentation maps sending all nonconstant PBW basis elements to 0 .
- $\phi:=\epsilon^{-} \otimes \mathrm{id} \otimes \epsilon^{+}: U(\mathfrak{g}) \cong U\left(\mathfrak{n}^{-}\right) \oplus U(\mathfrak{h}) \oplus U\left(\mathfrak{n}^{+}\right) \rightarrow U(\mathfrak{h})$

Universal construction

We have a "universal construction" of contravariant forms involving $U(\mathfrak{g})$.

We define

- $\epsilon^{ \pm}: U\left(\mathfrak{n}^{ \pm}\right) \rightarrow \mathbb{C}$, augmentation maps sending all nonconstant PBW basis elements to 0 .
- $\phi:=\epsilon^{-} \otimes \mathrm{id} \otimes \epsilon^{+}: U(\mathfrak{g}) \cong U\left(\mathfrak{n}^{-}\right) \oplus U(\mathfrak{h}) \oplus U\left(\mathfrak{n}^{+}\right) \rightarrow U(\mathfrak{h})$
- The universal bilinear form on $U(\mathfrak{g})$,

$$
C\left(u, u^{\prime}\right):=\phi\left(\tau(u) u^{\prime}\right)
$$

Properties of the Universal form

Proposition

- $\phi(\tau(u))=\phi(u)$ for all u.

Properties of the Universal form
Proposition

- $\phi(\tau(u))=\phi(u)$ for all u.
- $C\left(u, u^{\prime}\right)$ is symmetric.

Properties of the Universal form

Proposition

- $\phi(\tau(u))=\phi(u)$ for all u.
- $C\left(u, u^{\prime}\right)$ is symmetric.
- $C(1,1)=1$.

Properties of the Universal form

Proposition

- $\phi(\tau(u))=\phi(u)$ for all u.
- $C\left(u, u^{\prime}\right)$ is symmetric.
- $C(1,1)=1$.
- $C\left(u, u^{\prime}\right)$ is "contravariant":

$$
C\left(u_{0} u, u^{\prime}\right)=C\left(u, \tau\left(u_{0}\right) u^{\prime}\right)
$$

for all $u_{0}, u, u^{\prime} \in U(\mathfrak{g})$.

Induced \mathbb{C}-valued form

All $\lambda \in \mathfrak{h}^{*}$ define a representation of \mathfrak{h}.

Induced \mathbb{C}-valued form

All $\lambda \in \mathfrak{h}^{*}$ define a representation of \mathfrak{h}.
\Longrightarrow
All λ induce an algebra homomorphism $\lambda: U(\mathfrak{h}) \rightarrow \mathbb{C}$.

Induced \mathbb{C}-valued form

All $\lambda \in \mathfrak{h}^{*}$ define a representation of \mathfrak{h}.

All λ induce an algebra homomorphism $\lambda: U(\mathfrak{h}) \rightarrow \mathbb{C}$. \Longrightarrow

The linear map

$$
\phi_{\lambda}:=\lambda \circ \phi: U(\mathfrak{g}) \rightarrow \mathbb{C}
$$

defines a \mathbb{C}-valued symmetric bilinear form

$$
C^{\lambda}\left(u, u^{\prime}\right):=\phi_{\lambda}\left(\tau(u) u^{\prime}\right)
$$

on $U(\mathfrak{g})$.

Corollary of the Universal construction

Theorem
Let M be a highest weight module of weight λ generated by a maximal vector v^{+}.

There exists a (nonzero) contravariant form $\left(v, v^{\prime}\right)_{M}$ on M, which is uniquely determined up to scalar multiples by $\left(v^{+}, v^{+}\right)_{M}$.

Corollary of the Universal construction

Theorem
Let M be a highest weight module of weight λ generated by a maximal vector v^{+}.

There exists a (nonzero) contravariant form $\left(v, v^{\prime}\right)_{M}$ on M, which is uniquely determined up to scalar multiples by $\left(v^{+}, v^{+}\right)_{M}$.

Its radical is the unique maximal submodule of M.
In particular, the form is nondegenerate if and only if $M \cong L(\lambda)$.

Proof
$\mu^{\prime}=\sum_{\mu \neq 1} M_{\mu}, \quad N \subset M^{\prime}$ unique matinal mblorduble of μ
Note that: For ut U(g): $u \cdot v^{t} \equiv \varphi_{0}(m) v^{+}\left(\operatorname{lowat} \cdot M^{\prime}\right)$

$$
\begin{aligned}
& u \cdot v^{+} \in N \Leftrightarrow U(g) u \cdot v^{+} \subset N \Leftrightarrow \varphi_{j}(U(g) u)=0 \\
& \Leftrightarrow C^{\lambda}(U(g), u)=O C \Rightarrow u \text { is in nobical of } C^{\lambda}
\end{aligned}
$$

Inparticialer $\forall u_{p} u_{2} \in U\left(n^{n}\right): u_{1} v^{+}=u_{2} v^{+} \Rightarrow u_{1}-u_{2}$ in rodiual d d c^{d}
$\Rightarrow\left(v, v^{\prime}\right)_{M}:=C^{\lambda}\left(u, u^{\prime}\right)$ with $\left.u, u^{\prime} \in\left(U^{2}\right)^{\prime}\right)$ nt.
$v=u \cdot v^{t}, v^{\prime}=u^{\prime} v+$ well defined
N is rabical of $(,,)_{n},(i,)_{\mu}$ inherits colravarione of C

