Category O: Methods

» The functors Hom and Ext

» A duality functor M — MY on O

> Reflection groups, dominant and antidominant weights

» Tensoring Verma modules with finite dimensional modules

» “Standard” filtrations having Verma modules as subquotients
» Projective objects in O and BGG reciprocity

» “Contravariant” forms on modules



Indecomposable modules for s((2, C)

Proposition
Let g = sl(2,C) and {\, u} be a linkage class of integral weights
with A >0, p = —X—2 and x = x. Every indecomposable
module in O, is isomorphic to one of the following five modules.
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Projective generators

Let x = x) be a central character corresponding to the linkage
class of an antidominant weight A € h*.
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Projective generators

Let x = x) be a central character corresponding to the linkage
class of an antidominant weight A € h*.

Definition
P € O is a projective generator of O, if a large enough direct
sum P @ --- @ P covers any given M € O,.
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Projective generators

Let x = x) be a central character corresponding to the linkage
class of an antidominant weight A € h*.

Definition
P € O is a projective generator of O, if a large enough direct
sum P @ --- @ P covers any given M € O,.

Consider a projective module

P:=Pn,P(w-A), withalln, >0.

The sum is taken over coset representatives in W of the isotropy
group of .
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Projective generators

Let x = x) be a central character corresponding to the linkage
class of an antidominant weight A € h*.

Definition
P € O is a projective generator of O, if a large enough direct
sum P @ --- @ P covers any given M € O,.

Consider a projective module
P:=Pn,P(w-A), withalln, >0.
w
The sum is taken over coset representatives in W of the isotropy
group of .

P is a projective generator of O, and
A := Endp P is a finite dimension algebra.
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Property of Projective generators

Proposition
The functor Homep (P, -) defines a category equivalence between
O, and the categroy of finite dimensional right A-modules.
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7. Contravariant forms

Definition
A symmetric bilinear form (v,v")pr on M € Mody(g) is
contravariant if

(u-v,0")pr = (v,7(u) -0 )y forallu e U(g) and v,v' € M.
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Properties of contravariant forms

(a) (Mx, M,)n = 0 whenever \ # pu.
) (Do) = [y 2] 2 plll b
f)

)
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Properties of contravariant forms

(a) (Mx, M,)n = 0 whenever A # pu.

(b) If M = U(g) - vy has a nonzero contravariant form, then it is
uniquely determined up to a scalar multiple by (vA ,vj{)
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Properties of contravariant forms

(a) (Mx, M,)n = 0 whenever A # pu.
(b) If M = U(g) - vy has a nonzero contravariant form, then it is

uniquely determined up to a scalar multiple by (v;\r,vj)M

(c) (v@w, v @w) = (v,0")pr (w,w')pr, is a (non-degenerate)
contravariant form of M := M; ® M> if the forms on M; and
My are (non-degenerate) contravariant forms.
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Properties of contravariant forms

(a) (Mx, M,)n = 0 whenever A # pu.

(b) If M = U(g) - vy has a nonzero contravariant form, then it is

uniquely determined up to a scalar multiple by (v;\r,vj\r)M

(c) (v@w, v @w) = (v,0")pr (w,w')pr, is a (non-degenerate)
contravariant form of M := M; ® M> if the forms on M; and
My are (non-degenerate) contravariant forms.

(d) If N is a submodule of M, then the orthogonal space
N+t = {ve M|(v,v )y =0 forall v/ € N}

is also a submodule.
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Properties of contravariant forms

(a) (Mx, M,)n = 0 whenever A # pu.

(b) If M = U(g) - vy has a nonzero contravariant form, then it is
uniquely determined up to a scalar multiple by (v;\r,vj\r)M

(c) (v@w, v @w) = (v,0")pr (w,w')pr, is a (non-degenerate)
contravariant form of M := M; ® M> if the forms on M; and
My are (non-degenerate) contravariant forms.

(d) If N is a submodule of M, then the orthogonal space
N+t = {ve M|(v,v )y =0 forall v/ € N}

is also a submodule.

(e) If M € O has a contravariant form, then the MX for distinct
central characters x are orthogonal.
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Universal construction

We have a “universal construction” of contravariant forms
involving U(g).
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Universal construction

We have a “universal construction” of contravariant forms
involving U(g).

We define

» & : U(nT) — C, augmentation maps sending all nonconstant
PBW basis elements to 0.
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Universal construction

We have a “universal construction” of contravariant forms
involving U(g).

We define

» & : U(nT) — C, augmentation maps sending all nonconstant
PBW basis elements to 0.

> o= RidRet:U(g) XUM ) UM) @U(nT) = U(h)
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Universal construction

We have a “universal construction” of contravariant forms
involving U(g).

We define

» & : U(nT) — C, augmentation maps sending all nonconstant
PBW basis elements to 0.

> o= @idee :U(g) 2UM )G U(H) @ UnY) = Uh)
» The universal bilinear form on U(g),

Clu,u') = ¢(r(u)u)
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Properties of the Universal form

Proposition

> o(7(u)) = ¢(u) for all u.
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Properties of the Universal form

Proposition

> o(1(u)) = ¢(u) for all u.

» C(u,u’) is symmetric.

C(u/w) ;7((”@ m\) = %(”C(T(M W)) :ﬁﬂ((“w

z

=
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Properties of the Universal form

Proposition

> o(1(u)) = ¢(u) for all u.
» C(u,u) is symmetric.
> C(1,1) = 1.
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Properties of the Universal form

Proposition

> qb( (u)) = ¢(u) for all u.

C(u,u') is symmetr/c

c@1,1) =

C(u,u") is “contravariant”:
Cluou,u') = C(u, 7(uo)u')

for all ug,u,u’ € U(g).
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Induced C-valued form

All A € h* define a representation of b.
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Induced C-valued form

All A € h* define a representation of b.

=

All X induce an algebra homomorphism A\ : U(h) — C.
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Induced C-valued form

All X € b* define a representation of b.

=

All X induce an algebra homomorphism A\ : U(h) — C.

—

The linear map
¢r=Ao¢:U(g) > C

defines a C-valued symmetric bilinear form
CMu,u') = o (r(u)u)

on U(g).
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Corollary of the Universal construction

Theorem

Let M be a highest weight module of weight \ generated by a
maximal vector v.

There exists a (nonzero) contravariant form (v,v')y; on M, which
is uniquely determined up to scalar multiples by (v, v*)y;.
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Corollary of the Universal construction

Theorem

Let M be a highest weight module of weight \ generated by a
maximal vector v.

There exists a (nonzero) contravariant form (v,v')y; on M, which
is uniquely determined up to scalar multiples by (v, v*)y;.

Its radical is the unique maximal submodule of M.

In particular, the form is nondegenerate if and only if M = L(\).
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