Category \mathcal{O} : Methods

- ► The functors Hom and Ext
- A duality functor $M \mapsto M^{\vee}$ on \mathcal{O}
- Reflection groups, dominant and antidominant weights
- Tensoring Verma modules with finite dimensional modules
- "Standard" filtrations having Verma modules as subquotients
- Projective objects in O and BGG reciprocity
- "Contravariant" forms on modules

6. Projectives in $\ensuremath{\mathcal{O}}$

Definition

P is projective if $Hom(P, \cdot)$ is exact.

6. Projectives in $\ensuremath{\mathcal{O}}$

Definition

P is projective if $Hom(P, \cdot)$ is exact.

Equivalently, P is projective if

commutes.

6. Projectives in $\ensuremath{\mathcal{O}}$

Definition

P is projective if $Hom(P, \cdot)$ is exact.

Equivalently, P is projective if

commutes.

Definition

A category C has **enough projectives** if for all $M \in C$ there exists a projective $P \in C$ and an epimorphism $P \to M$.

Injectives in $\ensuremath{\mathcal{O}}$

Definition Q is injective if $Hom(\cdot, Q)$ is exact

Injectives in $\ensuremath{\mathcal{O}}$

Definition Q is injective if $Hom(\cdot, Q)$ is exact

In ${\cal O}$ the existence of enough projectives implies the existence of enough injectives, thanks to the duality functor.

Therefore we just focus on projectives.

Enough Projectives in \mathcal{O}

Proposition

(a) Suppose $\lambda \in \mathfrak{h}^*$ is dominant in $W_{[\lambda]} \cdot \lambda$. Then $M(\lambda)$ is projective in \mathcal{O} .

TP: Jy June Set X=X2 hie M(A) & Ox rehove M(A) ggien in (G) CN =) may assume MNEQ

 $v + \max \operatorname{vect} \operatorname{in} M(\lambda) =) \left(p(v+) \operatorname{max} \operatorname{vect} of \operatorname{veright} \lambda \operatorname{in} N \right)$ $T \operatorname{mvijletere} =) = v of \operatorname{veright} \lambda \operatorname{in} N \operatorname{n.t.} q(v+) = T(v)$ $M = T - \operatorname{mbroduble} of generated by v \operatorname{must} \operatorname{cotrue} - \operatorname{vox} \operatorname{veclor}$ $uf \operatorname{veright} p \to T : v = 0 =) \qquad M(\lambda) \longrightarrow M': v+ \to v'$ $\operatorname{hilded} b \lambda \qquad \operatorname{mversd} \operatorname{prop} of M(\lambda)$

Enough Projectives in ${\cal O}$

Proposition

(a) Suppose $\lambda \in \mathfrak{h}^*$ is dominant in $W_{[\lambda]} \cdot \lambda$. Then $M(\lambda)$ is projective in \mathcal{O} .

<

(b) If P ∈ O is projective and dim L < ∞, then P ⊗ L is projective in O.

$$T : Hon (P \otimes L, i) is exact (* \otimes \cdot \otimes is exact Hom (P \otimes L, M) \equiv Hom o (P, Hom (L, M)) \cong Hon (P, L^{(X)} \otimes M) Par Hon (P, i) exact become Pin projective$$

Proof

Enough Projectives in \mathcal{O} Theorem (*). Grubby of tending with verno modules Category O has enough projectives. · East goal : VIEH* find a projecture objen O mappingantul(I) $p = \lambda + np$ is downward for a large enough $\stackrel{(a)}{=} M(p)projecture$ $np \in \Lambda^{\pm} =) dm(L(np)) < \infty \stackrel{(b)}{=} p_{\pm}M(p) \otimes L(np)$ is projecture Connect neight of L(mp) is $-mp = w_{\sigma}(mp) \stackrel{(*)}{\Longrightarrow}$ P has quotient $\cong M(p - mp) = M(\lambda) \Longrightarrow M(\lambda)$ is quotient of a projection $M(\lambda) = M(\lambda)$ => L(A) is publicant of a projetore module

Proof

b Mt O. Imblection an length of M Assume l(M)>1 ⇒ J(SES) 0→L(A)→M→N→0 L(N) < l(M) = J Q: Q→N for some projective Q Projective property Highing Y: Q→M. Amue V is not mygethere => M = L(>) & N =) tak direct run of projective mopping ato L(A) and N

Remark

Corollary

Suppose $\lambda \in \mathfrak{h}^*$, $n \in \mathbb{N}$. If $\mu := \lambda + n\rho \in \mathfrak{h}^*$ is dominant, then the projective $P := M(\mu) \otimes L(n\rho)$ has standard filtration with subquotient $M(\mu + \nu)$, where ν runs over the weights of $L(n\rho)$, counting multiplicity.

In particular, $M(\lambda)$ occurs just once and $\mu + \nu \geq \lambda$.

Definition

An epimorphism $\pi: P \to M$ is essential if no proper submodule of P is mapped onto M.

Definition

An epimorphism $\pi: P \to M$ is essential if no proper submodule of P is mapped onto M.

Definition

 $\pi: P_M \to M$ is a **projective cover** of $M \in C$ if π is an essential epimorphism.

Definition

An epimorphism $\pi: P \to M$ is essential if no proper submodule of P is mapped onto M.

Definition

 $\pi: P_M \to M$ is a **projective cover** of $M \in C$ if π is an essential epimorphism.

 $\ensuremath{\mathcal{O}}$ is an artinian module category with enough projectives:

All $M \in \mathcal{O}$ have a projective cover $\pi: P_M \to M$

Definition

An epimorphism $\pi: P \to M$ is essential if no proper submodule of P is mapped onto M.

Definition

 $\pi: P_M \to M \text{ is a projective cover of } M \in C \text{ if } \pi \text{ is an essential epimorphism.}$

 \mathcal{O} is an artinian module category with enough projectives:

```
All M \in \mathcal{O} have a projective cover \pi : P_M \to M
```

 P_M is unique up to isomorphism.

For all $\lambda \in \mathfrak{h}^*$ we denote a fixed projective cover of $L(\lambda)$ by

 $\pi_{\lambda}: P(\lambda) \to L(\lambda)$

For all $\lambda \in \mathfrak{h}^*$ we denote a fixed projective cover of $L(\lambda)$ by

 $\pi_{\lambda}: P(\lambda) \to L(\lambda)$

Proposition

• $P(\lambda)$ has ker π_{λ} as its unique maximal submodule.

For all $\lambda \in \mathfrak{h}^*$ we denote a fixed projective cover of $L(\lambda)$ by

 $\pi_{\lambda}: P(\lambda) \to L(\lambda)$

Proposition

P(λ) has ker π_λ as its unique maximal submodule.
P(λ) is indecomposable.

For all $\lambda \in \mathfrak{h}^*$ we denote a fixed projective cover of $L(\lambda)$ by

 $\pi_{\lambda}: P(\lambda) \to L(\lambda)$

Proposition

- $P(\lambda)$ has ker π_{λ} as its unique maximal submodule.
- \blacktriangleright $P(\lambda)$ is indecomposable.
- $P(\lambda)$ is a projective cover of $M(\lambda)$.

Properties of $P(\lambda)$

Theorem

(a) In O, every indecomposable projective module is isomorphic to a $P(\lambda)$ $P \in O$ indecenpoble projective =) $\exists ringle opolius L(\lambda) =$) $P(\lambda)^{\frac{n}{2}} = P(\lambda)^{\frac{n}{2}}$ $f \longrightarrow L(\lambda)$ n, esserted He yoy Alm 9- (2) Jy': P(2) - P with yoy' it y noyedire \square $P(\lambda) \geq P$

Properties of $P(\lambda)$

Theorem

(a) In \mathcal{O} , every indecomposable projective module is isomorphic to a $P(\lambda)$

(b) The number of indecomposables isomorphic to $P(\lambda)$ in the decomposition of a projective module $P \in \mathcal{O}$ is equal to $\dim \operatorname{Hom}_{\mathcal{O}}(P, L(\lambda)).$

$$P \in O \text{ particular} \stackrel{(N)}{\Longrightarrow} P = \bigoplus P(A;)$$

$$dem Ed (L(A)) = 1 \implies dim Hoon o (P, L(A)) = \# \text{ numeroused}$$

$$\text{non-ophic to } P(A)$$

Properties of $P(\lambda)$

Theorem

- (a) In \mathcal{O} , every indecomposable projective module is isomorphic to a $P(\lambda)$
- (b) The number of indecomposables isomorphic to P(λ) in the decomposition of a projective module P ∈ O is equal to dim Hom_O(P, L(λ)).
- (c) For all $M \in \mathcal{O}$, dim Hom $_{\mathcal{O}}(P(\lambda), M) = [M : L(\lambda)]$. In particular, dim End $_{\mathcal{O}} P(\lambda) = [P(\lambda) : L(\lambda)]$.

Proof

Definition The injective hull of $L(\lambda) \cong L(\lambda)^{\vee}$ is $Q(\lambda) := P(\lambda)^{\vee}$.

Definition The injective hull of $L(\lambda) \cong L(\lambda)^{\vee}$ is $Q(\lambda) := P(\lambda)^{\vee}$.

Corollary

The indecomposable injectives in ${\mathcal O}$ are the modules $Q(\lambda)$

Theorem

Each projective module in O has a standard filtration.

Use contraction of (0): $P(\lambda)$ is lived number of $P = M_{V} \otimes L$ (crolled' Phys stadard fillration will $M(\lambda)$ occurring just once ab other $M(\nu)$ in filtration have $\nu > \lambda$ (? = P(1) & P') => P(1) wherits now type of fillration

Theorem

- ► Each projective module in *O* has a standard filtration.
- The multiplicity $(P(\lambda) : M(\mu))$ is nonzero only if $\mu \ge \lambda$.

Theorem 📋

- Each projective module in \mathcal{O} has a standard filtration.
- The multiplicity $(P(\lambda) : M(\mu))$ is nonzero only if $\mu \ge \lambda$.

 $\blacktriangleright \ (P(\lambda):M(\lambda))=1$

Proof

Corollary

Each projective module $P \in \mathcal{O}$ is determined up to isomorphism by its formal character, i.e.,

 $\operatorname{ch} P = \operatorname{ch} P'$ implies $P \cong P'$. Use (\mathcal{A}) : Punnighte determiner $d_{\lambda} \in \mathbb{N}$ $_{1}$ $P \cong \bigoplus d_{\lambda} P(\lambda)$ $TP: dP determine the <math>d_{\lambda}$ Exercise 1.16: $ch P = Z c_{y} ch M(y)$, $c_{y} \in \mathbb{Z}$ determined by P⇒ G EN. Let 2 be reisenal among wheight forwhich g >0
 ⇒ P(2) occars G temes in the decomposition => d₂ = G

Proof

BGG Reciprocity

For all $\lambda \in \mathfrak{h}^*$ we now have three indecomposable modules:

 $P(\lambda) \twoheadrightarrow M(\lambda) \twoheadrightarrow L(\lambda)$

BGG Reciprocity

For all $\lambda \in \mathfrak{h}^*$ we now have three indecomposable modules:

$$P(\lambda) \twoheadrightarrow M(\lambda) \twoheadrightarrow L(\lambda)$$

The Verma modules have a less obvious obvious categorical meaning, but they play an intermediate role.

BGG Reciprocity

For all $\lambda \in \mathfrak{h}^*$ we now have three indecomposable modules:

$$P(\lambda) \twoheadrightarrow M(\lambda) \twoheadrightarrow L(\lambda)$$

The Verma modules have a less obvious obvious categorical meaning, but they play an intermediate role.

Theorem (BGG Reciprocity)

For all $\lambda, \mu \in \mathfrak{h}^*$ we have

Proof Proof We prove : $[M(y)^{V}: L(\lambda)] \stackrel{(a)}{=} \dim \operatorname{Hom}_{\mathcal{O}}(P(\lambda), M(y)^{V})$ $(P(\lambda): M(y))^{(lb)} \dim \operatorname{Hom}_{\mathcal{O}}(P(\lambda), M(y)^{V})$ (a) (Δ) (b) $p(\lambda)$ has stadards filtration =) Use theorem 3.7

Fine points to be investigated

- How de we best describe the socle or radical series of $P(\lambda)$?
- For which λ is $P(\lambda)$ self dual $(P(\lambda) \cong Q(\lambda))$?
- What is the structure of the algebra $\operatorname{End}_{\mathcal{O}} P(\lambda)$?

set $\lambda 70 \implies \mu$ antidominant $\implies L(\mu) = M(\mu)$ 7 dominant = 7 M(3) = P(3)Prop 1.4: I marshal vert. of weight p in $M(\lambda)$ (Explicitly $V_{\lambda+1}$) $\Rightarrow M(\lambda)$ kon submodule $\cong L(\mu)$ All weight spaces in $M(\lambda)$ and $L(\mu)$ are 1-dimensional Composition vertex $M(\lambda)$: $1 \subset L(\mu) \subset M(\lambda)$ with $L(\lambda) \cong M(\lambda)$ $M(\lambda)' = p(\lambda) = Q(\lambda)$: $1 \subset L(\lambda) \subset Q(\lambda)$

 $\mathfrak{sl}(2,\mathbb{C})$ example $P(\mathbf{p})$ (\Box): Skowle filtration with $M(\mu) = L(\mu)$ as top quatient (\Box): Skowle filtration with $M(\mu) = L(\mu)$ as top quatient (\Box): Skowle filtration with $M(\mu) = L(\mu)$ as top quatient (\Box): Skowle filtration with $M(\mu) = L(\mu)$ as top quatient (\Box): Skowle filtration with $M(\mu) = L(\mu)$ as top quatient (\Box): Skowle filtration with $M(\mu) = L(\mu)$ as top quatient (\Box): Skowle filtration with $M(\mu) = L(\mu)$ as top quatient (\Box): Skowle filtration with $M(\mu) = L(\mu)$ as top quatient (\Box): Skowle filtration with $M(\mu) = L(\mu)$ as top quatient (\Box): Skowle filtration with $M(\mu) = L(\mu)$ as top quatient (\Box): Skowle filtration with $M(\mu) = L(\mu)$ as top quatient (\Box): Skowle filtration with $M(\mu) = L(\mu)$ as top quatient (\Box): Skowle filtration with $M(\mu) = L(\mu)$ as top quatient (\Box): Skowle filtration with $M(\mu) = L(\mu)$ as top quatient (\Box): Skowle filtration with $M(\mu) = L(\mu)$ as top quatient (\Box): Skowle filtration with $M(\mu) = M(\mu)$ as top quatient (\Box): Skowle filtration with $M(\mu) = M(\mu)$ as top quatient (\Box): Skowle filtration with $M(\mu) = M(\mu)$ as top quatient (\Box): Skowle filtration with $M(\mu) = M(\mu)$ as top quatient (\Box): Skowle filtration with $M(\mu) = M(\mu)$ as top quatient (\Box): Skowle filtration with $M(\mu) = M(\mu)$ as top quatient (\Box): Skowle filtration with $M(\mu) = M(\mu)$ as top quatient (\Box): Skowle filtration with $M(\mu) = M(\mu)$ as top quatient (\Box): Skowle filtration with $M(\mu) = M(\mu)$ as top quatient (\Box): Skowle filtration with $M(\mu) = M(\mu)$ as top quatient (\Box): Skowle filtration with $M(\mu) = M(\mu)$ as top quatient (\Box): Skowle filtration with $M(\mu) = M(\mu)$ as top quatient (\Box): Skowle filtration with $M(\mu) = M(\mu)$ as top quatient (\Box): Skowle filtration with $M(\mu) = M(\mu)$ as top quatient (\Box): Skowle filtration with $M(\mu) = M(\mu)$ as top quatient (\Box): Skowle filtration with $M(\mu) = M(\mu)$ as top quatient (\Box): Skowle filtration with $M(\mu) = M(\mu)$ as top quatient (\Box): Skowle filtration with $M(\mu) = M(\mu)$ as top quatient (\Box): Skowle filtration with M $W(y) \cong \underset{M_{i}}{\overset{M_{i}}{\longrightarrow}} \forall i < \infty$ $B G G - \operatorname{neciprocity}: (P(\mu): M(\lambda)) = [M(\lambda): L(\mu)] = 7$ $S C M(\lambda) \subset P(\lambda) \quad \text{with} \quad L(\mu) = \frac{P(\mu)}{M(\lambda)}$ $O \to M(\lambda) \to P(\mu) \to M(\mu) \to O \text{ is non-plit}$ P(p) = Q(p)

Indecomposable modules for $\mathfrak{sl}(2,\mathbb{C})$

Proposition

Let $\mathfrak{g} = \mathfrak{sl}(2, \mathbb{C})$ and $\{\lambda, \mu\}$ be a linkage class of integral weights with $\lambda \geq 0$, $\mu = -\lambda - 2$ and $\chi = \chi_{\lambda}$. Every indecomposable module in \mathcal{O}_{χ} is isomorphic to one of the following five modules.

$$L(\lambda), \quad L(\mu) = M(\mu), \quad M(\lambda) = P(\lambda), \quad M(\lambda)^{\vee} = Q(\lambda), \quad P(\mu) = Q(\mu).$$