Category O: Methods

» The functors Hom and Ext

» A duality functor M — MY on O

> Reflection groups, dominant and antidominant weights

» Tensoring Verma modules with finite dimensional modules

» “Standard” filtrations having Verma modules as subquotients
» Projective objects in O and BGG reciprocity

» “Contravariant” forms on modules
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Definition
A category C has enough projectives if for all M € C there exists
a projective P € C and an epimorphism P — M.
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Injectives in O

Definition
Q is injective if Hom(-, Q) is exact

In O the existence of enough projectives implies the existence of
enough injectives, thanks to the duality functor.

Therefore we just focus on projectives.



Enough Projectives in O

Proposition

(a) Suppose A € b* is dominant in Wy - . Then M () is
prOJect/ve in O.
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Enough Projectives in O

Proposition

(a) Suppose A € b* is dominant in Wy - . Then M () is
projective in O.

(b) If P € O is projective and dim L < oo, then P ® L is
projective in O.
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Enough Projectives in (’)
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Theorem ||
Category O has enough projectives.
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Remark

Corollary

Suppose A € h*, n € IN.

If w:= X+ np € b* is dominant, then the projective

P := M(u) ® L(np) has standard filtration with subquotient
M (p + v), where v runs over the weights of L(np), counting
multiplicity. —

In particular, M (\) occurs just once and p+ v > \.
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Indecomposable projectives

Definition
An epimorphism w : P — M is essential if no proper submodule
of P is mapped onto M.
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Indecomposable projectives

Definition
An epimorphism w : P — M is essential if no proper submodule
of P is mapped onto M.

Definition

m: Py — M is a projective cover of M € C' if w is an essential
epimorphism.ji{ fm v

O is an artinian module category with enough projectives:

All M € O have a projective cover w: Pyy — M

Py is unique up to isomorphism.
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Indecomposable projectives

For all A € b* we denote a fixed projective cover of L(\) by

7 P(A\) = L(\)
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Indecomposable projectives

For all A € b* we denote a fixed projective cover of L(\) by

7 P(A\) = L(\)

Proposition

» P(\) has kermy as its unique maximal submodule.
» P(\) is indecomposable.
» P(\) is a projective cover of M ().
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Properties of P(\)

Theorem

(a) In O, every indecomposable projective module is isomorphic
%%a P(X)

Pe @/WWW )JWMWUN
/ P L) > EERR =S

9 WWW ) ‘ JV ?A\/ﬂ) MMV J
RV o


sam
Pencil

sam
Pencil

sam
Pencil

sam
Pencil

sam
Pencil


Properties of P(\)

Theorem

(a) In O, every indecomposable projective module is isomorphic
toa P(\)

- (b) The number of indecomposables isomorphic to P(\) in the
decomposition of a projective module P € O is equal to
dim Homp (P, L(
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Properties of P(\)

Theorem

(a) In O, every indecomposable projective module is isomorphic
toa P(\)

(b) The number of indecomposables isomorphic to P(\) in the
decomposition of a projective module P € O is equal to
dim Homp (P, L(X)).

(c) Forall M € O, dim Homp(P(\), M) = [M : L(\)].

In particular, dim Endp P(\) = [P(\) : L(N)].
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Indecomposable Injectives

Definition
The injective hull of L(\) = L(\)Y is Q(\) := P(\)Y.



Indecomposable Injectives

Definition
The injective hull of L(\) = L(\)Y is Q(\) := P(\)Y.

Corollary
The indecomposable injectives in O are the modules Q(\)
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Standard filtrations of Projectives

Theorem

» FEach projective module in O has a standard filtration.
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Standard filtrations of Projectives

Theorem

» FEach projective module in O has a standard filtration.
» The multiplicity (P(\) : M(w)) is nonzero only if > \.
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Standard filtrations of Projectives

Theorem/ | |
» FEach projective module in O has a standard filtration.
» The multiplicity (P(\) : M(w)) is nonzero only if > \.
> (P(A):M(N) =1
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Standard filtrations of Projectives

Corollary

Each projective module P € O is determined up to isomorphism by
its formal character, i.e.,
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BGG Reciprocity

For all A € b* we now have three indecomposable modules:

PO = M(\) — L(\)
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BGG Reciprocity

For all A € b* we now have three indecomposable modules:
P(X) - M(A) — L(A)

The Verma modules have a less obvious obvious categorical
meaning, but they play an intermediate role.
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BGG Reciprocity
For all A € b* we now have three indecomposable modules:
P(X) - M(A) — L(A)

The Verma modules have a less obvious obvious categorical
meaning, but they play an intermediate role.

Theorem (BGG Reciprocity)
For all A\, ix € b* we have
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Fine points to be investigated

» How de we best describe the socle or radical series of P(A)?
» For which A is P(A) self dual (P(\) =2 Q()N))?

» What is the structure of the algebra Endp P(\)?
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Indecomposable modules for s((2, C)

Proposition
Let g = sl(2,C) and {\, u} be a linkage class of integral weights
with A >0, p = —X—2 and x = x. Every indecomposable
module in O, is isomorphic to one of the following five modules.
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