
Category O: Methods

I The functors Hom and Ext

I A duality functor M 7! M_
on O

I Reflection groups, dominant and antidominant weights

I Tensoring Verma modules with finite dimensional modules

I “Standard” filtrations having Verma modules as subquotients

I Projective objects in O and BGG reciprocity

I “Contravariant” forms on modules
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6. Projectives in O

Definition
P is projective if Hom(P, ·) is exact.

Equivalently, P is projective if

M N

P

8⇡

9 
8�

commutes.

Definition
A category C has enough projectives if for all M 2 C there exists
a projective P 2 C and an epimorphism P ! M .
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Injectives in O

Definition
Q is injective if Hom(·, Q) is exact

In O the existence of enough projectives implies the existence of

enough injectives, thanks to the duality functor.

Therefore we just focus on projectives.
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Enough Projectives in O

Proposition

(a) Suppose � 2 h⇤ is dominant in W[�] · �. Then M(�) is
projective in O.

(b) If P 2 O is projective and dimL < 1, then P ⌦ L is
projective in O.
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Enough Projectives in O

Theorem
Category O has enough projectives.
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Remark

Corollary
Suppose � 2 h⇤, n 2 N.
If µ := �+ n⇢ 2 h⇤ is dominant, then the projective
P := M(µ)⌦ L(n⇢) has standard filtration with subquotient
M(µ+ ⌫), where ⌫ runs over the weights of L(n⇢), counting
multiplicity.

In particular, M(�) occurs just once and µ+ ⌫ � �.
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Indecomposable projectives

Definition
An epimorphism ⇡ : P ! M is essential if no proper submodule
of P is mapped onto M .

Definition
⇡ : PM ! M is a projective cover of M 2 C if ⇡ is an essential
epimorphism.

O is an artinian module category with enough projectives:

All M 2 O have a projective cover ⇡ : PM ! M

PM is unique up to isomorphism.
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Indecomposable projectives

For all � 2 h⇤ we denote a fixed projective cover of L(�) by

⇡� : P (�) ! L(�)

Proposition

I P (�) has ker⇡� as its unique maximal submodule.

I P (�) is indecomposable.

I P (�) is a projective cover of M(�).
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Properties of P (�)

Theorem

(a) In O, every indecomposable projective module is isomorphic
to a P (�)

(b) The number of indecomposables isomorphic to P (�) in the
decomposition of a projective module P 2 O is equal to
dimHomO(P,L(�)).

(c) For all M 2 O, dimHomO(P (�),M) = [M : L(�)].
In particular, dimEndO P (�) = [P (�) : L(�)].
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Indecomposable Injectives

Definition
The injective hull of L(�) ⇠= L(�)_ is Q(�) := P (�)_.

Corollary
The indecomposable injectives in O are the modules Q(�)
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Standard filtrations of Projectives

Theorem

I Each projective module in O has a standard filtration.

I The multiplicity (P (�) : M(µ)) is nonzero only if µ � �.

I (P (�) : M(�)) = 1
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Standard filtrations of Projectives

Corollary
Each projective module P 2 O is determined up to isomorphism by
its formal character, i.e.,

chP = chP 0 implies P ⇠= P 0.
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BGG Reciprocity

For all � 2 h⇤ we now have three indecomposable modules:

P (�) ⇣ M(�) ⇣ L(�)

The Verma modules have a less obvious obvious categorical

meaning, but they play an intermediate role.

Theorem (BGG Reciprocity)

For all �, µ 2 h⇤ we have

(P (�) : M(µ)) = [M(µ) : L(�)](= [M(µ)_ : L(�)]).
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Fine points to be investigated

I How de we best describe the socle or radical series of P (�)?

I For which � is P (�) self dual (P (�) ⇠= Q(�))?

I What is the structure of the algebra EndO P (�)?
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sl(2,C) example
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sl(2,C) example
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Indecomposable modules for sl(2,C)

Proposition
Let g = sl(2,C) and {�, µ} be a linkage class of integral weights
with � � 0, µ = ��� 2 and � = ��. Every indecomposable
module in O� is isomorphic to one of the following five modules.

L(�), L(µ) = M(µ), M(�) = P (�), M(�)_ = Q(�), P (µ) = Q(µ).
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