Category \mathcal{O} : Methods

- The functors Hom and Ext
- A duality functor $M \mapsto M^{\vee}$ on \mathcal{O}
- Reflection groups, dominant and antidominant weights
- Tensoring Verma modules with finite dimensional modules
- "Standard" filtrations having Verma modules as subquotients
- Projective objects in \mathcal{O} and BGG reciprocity
- "Contravariant" forms on modules

3. The Reflection group $W_{[\lambda]}$

Known conditions for $L(\mu)$ to be a possible composition factor of $M(\lambda)$:
(1) $\mu \leq \lambda$.
(2) $\mu=w \cdot \lambda$ for some $w \in W$.

3. The Reflection group $W_{[\lambda]}$

Known conditions for $L(\mu)$ to be a possible composition factor of $M(\lambda)$:
(1) $\mu \leq \lambda$.
(2) $\mu=w \cdot \lambda$ for some $w \in W$.

Condition (2) can be optimized.

3. The Reflection group $W_{[\lambda]}$

Known conditions for $L(\mu)$ to be a possible composition factor of $M(\lambda)$:
(1) $\mu \leq \lambda$.
(2) $\mu=w \cdot \lambda$ for some $w \in W$.

Condition (2) can be optimized.
Define

$$
\begin{aligned}
\Phi_{[\lambda]} & :=\left\{\alpha \in \Phi \mid\left\langle\lambda, \alpha^{\vee}\right\rangle \in \mathbb{Z}\right\} \\
W_{[\lambda]} & :=\left\{w \in W \mid w \lambda-\lambda \in \Lambda_{r}\right\}
\end{aligned}
$$

3. The Reflection group $W_{[\lambda]}$

Known conditions for $L(\mu)$ to be a possible composition factor of $M(\lambda)$:
(1) $\mu \leq \lambda$.
(2) $\mu=w \cdot \lambda$ for some $w \in W$.

Condition (2) can be optimized.
Define

$$
\begin{aligned}
\Phi_{[\lambda]} & :=\left\{\alpha \in \Phi \mid\left\langle\lambda, \alpha^{\vee}\right\rangle \in \mathbb{Z}\right\} \\
W_{[\lambda]} & :=\left\{w \in W \mid w \lambda-\lambda \in \Lambda_{r}\right\}
\end{aligned}
$$

Then we can replace (2) with
(2) $\mu=w \cdot \lambda$ for some $w \in W_{[\lambda]}$.

Remarks

- $\Phi_{[\lambda]}=\Phi_{[\mu]}$ and $W_{[\lambda]}=W_{[\mu]}$ whenever $\lambda \equiv \mu \bmod \Lambda$

Remarks

- $\Phi_{[\lambda]}=\Phi_{[\mu]}$ and $W_{[\lambda]}=W_{[\mu]}$ whenever $\lambda \equiv \mu \bmod \Lambda$
- Since $\rho \in \Lambda$ we have

$$
\begin{aligned}
\Phi_{[\lambda]} & =\left\{\alpha \in \Phi \mid\left\langle\lambda+\rho, \alpha^{\vee}\right\rangle \in \mathbb{Z}\right\} \\
W_{[\lambda]} & =\left\{w \in W \mid w \cdot \lambda-\lambda \in \Lambda_{r}\right\}
\end{aligned}
$$

Remarks

- $\Phi_{[\lambda]}=\Phi_{[\mu]}$ and $W_{[\lambda]}=W_{[\mu]}$ whenever $\lambda \equiv \mu \bmod \Lambda$
- Since $\rho \in \Lambda$ we have

$$
\begin{aligned}
\Phi_{[\lambda]} & =\left\{\alpha \in \Phi \mid\left\langle\lambda+\rho, \alpha^{\vee}\right\rangle \in \mathbb{Z}\right\} \\
W_{[\lambda]} & =\left\{w \in W \mid w \cdot \lambda-\lambda \in \Lambda_{r}\right\}
\end{aligned}
$$

- $\Phi_{[\lambda]}=\Phi_{[\mu]}$ and $W_{[\lambda]}=W_{[\mu]}$ whenever $\mu \in W_{[\lambda]} \cdot \lambda$

Remarks

- $\Phi_{[\lambda]}=\Phi_{[\mu]}$ and $W_{[\lambda]}=W_{[\mu]}$ whenever $\lambda \equiv \mu \bmod \Lambda$
- Since $\rho \in \Lambda$ we have

$$
\begin{aligned}
\Phi_{[\lambda]} & =\left\{\alpha \in \Phi \mid\left\langle\lambda+\rho, \alpha^{\vee}\right\rangle \in \mathbb{Z}\right\} \\
W_{[\lambda]} & =\left\{w \in W \mid w \cdot \lambda-\lambda \in \Lambda_{r}\right\}
\end{aligned}
$$

- $\Phi_{[\lambda]}=\Phi_{[\mu]}$ and $W_{[\lambda]}=W_{[\mu]}$ whenever $\mu \in W_{[\lambda]} \cdot \lambda$
- $\Lambda=\left\{\lambda \in \mathfrak{h}^{*} \mid \Phi_{[\lambda]}=\Phi\right\}$

Remarks

- $\Phi_{[\lambda]}=\Phi_{[\mu]}$ and $W_{[\lambda]}=W_{[\mu]}$ whenever $\lambda \equiv \mu \bmod \Lambda$
- Since $\rho \in \Lambda$ we have

$$
\begin{aligned}
\Phi_{[\lambda]} & =\left\{\alpha \in \Phi \mid\left\langle\lambda+\rho, \alpha^{\vee}\right\rangle \in \mathbb{Z}\right\} \\
W_{[\lambda]} & =\left\{w \in W \mid w \cdot \lambda-\lambda \in \Lambda_{r}\right\}
\end{aligned}
$$

- $\Phi_{[\lambda]}=\Phi_{[\mu]}$ and $W_{[\lambda]}=W_{[\mu]}$ whenever $\mu \in W_{[\lambda]} \cdot \lambda$
- $\Lambda=\left\{\lambda \in \mathfrak{h}^{*} \mid \Phi_{[\lambda]}=\Phi\right\}$
- $\Phi_{[\lambda]}=\left\{\alpha \in \Phi \mid s_{\alpha} \in W_{[\lambda]}\right\}$

Properties of the reflection group

Theorem
Let $\lambda \in \mathfrak{h}^{*}$.
(a) $\Phi_{[\lambda]}$ is a root system in its \mathbb{R}-span $E(\lambda) \subset E=\mathbb{R} \otimes_{\mathbb{Z}} \Lambda$

Properties of the reflection group
Theorem
Let $\lambda \in \mathfrak{h}^{*}$.
(a) $\Phi_{[\lambda]}$ is a root system in its \mathbb{R}-span $E(\lambda) \subset E=\mathbb{R} \otimes_{\mathbb{Z}} \Lambda$
(b) $W_{[\lambda]}$ is the Weyl group of $\Phi_{[\lambda]}$. In particular, it is generated by the s_{α}, with $\alpha \in \Phi_{[\lambda]}$.
(a) $n_{\alpha} \Phi_{\{\lambda]}=\Phi_{[\lambda]} \forall \alpha t \Phi_{[\mathcal{}}$

Woke that $\forall \beta \in \Phi_{[\lambda]}:\left(n_{\alpha} \beta\right)^{V}=n_{\alpha} \beta^{V}$

$$
\begin{aligned}
& \left\langle\lambda,\left(\rho_{\alpha} \beta^{v}\right)^{v}\right\rangle-\left\langle\lambda, \cap \alpha \beta^{v}\right\rangle=\left\langle\Omega \alpha \lambda, \beta^{v}\right\rangle \\
& ==\left\langle\lambda, \beta^{v}\right\rangle-\left\langle\lambda, \alpha^{v}\right\rangle\left\langle\alpha, \beta^{v}\right\rangle \in \mathbb{Z}
\end{aligned}
$$

Proof

(Anti)dominant weights

Question:
Which weight is the optimal representative of the orbit $W_{[\lambda]} \cdot \lambda$?

(Anti)dominant weights

Question:
Which weight is the optimal representative of the orbit $W_{[\lambda]} \cdot \lambda$?
Definition
$\lambda \in \mathfrak{h}^{*}$ is antidominant if $\left\langle\lambda+\rho, \alpha^{\vee}\right\rangle \notin \mathbb{Z}^{>0}$ for all $\alpha \in \Phi^{+}$.
$\lambda \in \mathfrak{h}^{*}$ is dominant if $\left\langle\lambda+\rho, \alpha^{\vee}\right\rangle \notin \mathbb{Z}^{<0}$ for all $\alpha \in \Phi^{+}$.

(Anti)dominant weights

Question:
Which weight is the optimal representative of the orbit $W_{[\lambda]} \cdot \lambda$?

Definition

$\lambda \in \mathfrak{h}^{*}$ is antidominant if $\left\langle\lambda+\rho, \alpha^{\vee}\right\rangle \notin \mathbb{Z}^{>0}$ for all $\alpha \in \Phi^{+}$.
$\lambda \in \mathfrak{h}^{*}$ is dominant if $\left\langle\lambda+\rho, \alpha^{\vee}\right\rangle \notin \mathbb{Z}^{<0}$ for all $\alpha \in \Phi^{+}$.
Warning: This differs from the usual notion of dominance in Λ.

- Old: Set of dominant weights in Λ is Λ^{+}.
- New: Set of dominant weights in Λ is $\Lambda^{+}-\rho$.

(Anti)dominant weights

Question:
Which weight is the optimal representative of the orbit $W_{[\lambda]} \cdot \lambda$?
Definition
$\lambda \in \mathfrak{h}^{*}$ is antidominant if $\left\langle\lambda+\rho, \alpha^{\vee}\right\rangle \notin \mathbb{Z}^{>0}$ for all $\alpha \in \Phi^{+}$.
$\lambda \in \mathfrak{h}^{*}$ is dominant if $\left\langle\lambda+\rho, \alpha^{\vee}\right\rangle \notin \mathbb{Z}^{<0}$ for all $\alpha \in \Phi^{+}$.
Warning: This differs from the usual notion of dominance in Λ.

- Old: Set of dominant weights in Λ is Λ^{+}.
- New: Set of dominant weights in Λ is $\Lambda^{+}-\rho$.

To avoid confusion we emphasize the antidominance case.

Properties of Antidominant weights
Theorem
Let $\Delta_{[\lambda]}$ be the simple system corresponding to the positive system $\Phi_{[\lambda]} \cap \Phi^{+}$in $\Phi_{[\lambda]}$. The following are equivalent.
(1) λ is antidominant $\left(\left\langle\lambda+\rho, \alpha^{\vee}\right\rangle \notin \mathbb{Z}^{>0}\right.$ for all $\left.\alpha \in \Phi^{+}\right)$.
(2) $\left\langle\lambda+\rho, \alpha^{\vee}\right\rangle \leq 0$ for all $\alpha \in \Delta_{[\lambda]}$.
(3) $\lambda \leq s_{\alpha} \cdot \lambda$ for all $\alpha \in \Delta_{[\lambda]}$.
(4) $\lambda \leq w \cdot \lambda$ for all $w \in W_{[\lambda]}$.
$(1) \Rightarrow(2)$ trivial $\mid(2)=(1) \cdot \alpha \Phi^{+}$and suppose $\angle \lambda+p, \alpha v \in \mathbb{Z}$ $\Rightarrow \alpha \in \Phi[]^{2} \cap \Phi^{\lambda} \Rightarrow \alpha$ is \mathbb{Z}-hear combination of $\Delta[\lambda]$
(2)
$\stackrel{-}{-}\left\langle\lambda+\rho, \alpha^{v}\right\rangle \leqslant 0 \Rightarrow\left\langle\lambda+\rho, \alpha^{u}\right\rangle \in \mathbb{Z}^{00} \Rightarrow(1)$

Proof
(1) λ is antidominant $\left(\left\langle\lambda+\rho, \alpha^{\vee}\right\rangle \notin \mathbb{Z}^{>0}\right.$ for all $\left.\alpha \in \Phi^{+}\right)$.
(2) $\left\langle\lambda+\rho, \alpha^{\vee}\right\rangle \leq 0$ for all $\alpha \in \Delta_{[\lambda]}$.
(3) $\lambda \leq s_{\alpha} \cdot \lambda$ for all $\alpha \in \Delta_{[\lambda]}$.
(4) $\lambda \leq w \cdot \lambda$ for all $w \in W_{[\lambda]}$.

$$
\begin{aligned}
&(2) \Leftrightarrow \Leftrightarrow(3) \\
& \rho_{\alpha} \cdot \lambda=\lambda_{\alpha}(\lambda+\rho)-\rho=\lambda+\rho-\left\langle\lambda+\rho, \alpha^{V}\right\rangle \alpha-\rho \\
&=\lambda-\langle\lambda+\rho, \alpha\rangle \alpha \quad(*) \\
&(4) \Rightarrow(2) \text { |rival } \mid(1) \Rightarrow(4)
\end{aligned}
$$

Proof
(1) λ is antidominant $\left(\left\langle\lambda+\rho, \alpha^{\vee}\right\rangle \notin \mathbb{Z}^{>0}\right.$ for all $\left.\alpha \in \Phi^{+}\right)$.
(2) $\left\langle\lambda+\rho, \alpha^{\vee}\right\rangle \leq 0$ for all $\alpha \in \Delta_{[\lambda]}$.
(3) $\lambda \leq s_{\alpha} \cdot \lambda$ for all $\alpha \in \Delta_{[\lambda]}$.
(4) $\lambda \leq w \cdot \lambda$ for all $w \in W_{[\lambda]}$.
$(3) \Rightarrow(4)$ Insertion an the length m W $[\lambda]$ relative to Sta] $l(w)=0 \quad w=1$ trivial, $l(w)>0^{\prime}\left(w=w^{\prime} D_{\alpha}\right.$ m $W[d]$

$$
\lambda-w \cdot \lambda=\underbrace{\left(\lambda-w^{\prime} \cdot \lambda\right)}_{\hat{0} \mid \mathrm{IH}}+\underbrace{\left(w^{\prime} \cdot \lambda-w^{\prime} \cdot \lambda\right)}
$$

$$
\alpha \in \Delta_{\square]}
$$

$$
l\left(w^{\prime}\right)=f(w)-1
$$

$w^{\prime} \lambda-w \cdot \lambda=(w \rho \alpha) \cdot \lambda-w \cdot \lambda \stackrel{(*)}{=}-\langle\lambda+\rho, \alpha V) \quad \frac{3(4)}{=} \omega^{\circ} \alpha \leqslant 0$

Proof

(1) λ is antidominant $\left(\left\langle\lambda+\rho, \alpha^{\vee}\right\rangle \notin \mathbb{Z}^{>0}\right.$ for all $\left.\alpha \in \Phi^{+}\right)$.
(2) $\left\langle\lambda+\rho, \alpha^{\vee}\right\rangle \leq 0$ for all $\alpha \in \Delta_{[\lambda]}$.
(3) $\lambda \leq s_{\alpha} \cdot \lambda$ for all $\alpha \in \Delta_{[\lambda]}$.
(4) $\lambda \leq w \cdot \lambda$ for all $w \in W_{[\lambda]}$.

Properties of Antidominant weights
Proposition
Any linkage class $W \cdot \lambda$ has at least 1 antidominant weight.
Proof: Suppose $\mu \in W . \lambda$ is minimal relative to stoppard partial order. But $\exists \alpha \in \Phi^{+}:\left\langle\mu+\rho, \alpha^{v}\right\rangle \in \mathbb{Z}^{70}$

Properties of Antidominant weights

Proposition

Any linkage class $W \cdot \lambda$ has at least 1 antidominant weight.
Corollary
There exist a unique antidominant weight in $W_{[\lambda]} \cdot \lambda$.

Properties of Antidominant weights

Proposition

Any linkage class $W \cdot \lambda$ has at least 1 antidominant weight.
Corollary
There exist a unique antidominant weight in $W_{[\lambda]} \cdot \lambda$.
Corollary (Exercise)
If $\lambda \in \mathfrak{h}^{*}$ is antidominant, then $M(\lambda)=L(\lambda)$.

Proof
$\mathfrak{s l}(2, \mathbb{C})$ example

$$
\begin{aligned}
& g=(n, y, k) t^{*}=C \\
& \left\langle\lambda\left\langle{ }^{v}\right\rangle=2 \cdot \frac{\lambda \cdot \alpha}{\alpha \cdot \alpha}\right. \\
& \Phi=\{-2,2\} \quad \Phi_{[\overrightarrow{ }]}=\left\{\alpha \in \Phi \mid<\phi \alpha^{v}>\in \mathbb{Z}\right\} \\
& \Rightarrow \Phi_{[\lambda]}=\Phi \text { if } \lambda t \mathbb{Z}(=\Delta) \\
& \Phi_{[x]}=\phi \quad \psi \lambda \notin \mathbb{Z} \\
& W_{[\lambda]} \cdot \lambda=\{\lambda,-\lambda-2\} \div \lambda \in \mathbb{Z}^{70} \Rightarrow-\lambda-2 \text { antedorment } \\
& \lambda \in \mathbb{Z}^{<0} \Rightarrow \lambda \text { antidomisaut } \\
& -p=1 \\
& \lambda \text { autiborinat } \Rightarrow \lambda \notin \mathbb{N} \Leftrightarrow M(\lambda)=L(\lambda)
\end{aligned}
$$

4. Tensoring Verma modules with fin. dim. modules

Theorem
Let M be a finite dimensional $U(\mathfrak{g})$-module. For all $\lambda \in \mathfrak{h}^{*}$, the tensor product $T:=M(\lambda) \otimes M$ has a finite filtration with quotients isomorphic to $M(\lambda+\mu)$. Here μ ranges over the weights of M, each occurring $\operatorname{dim} M_{\mu}$ times.

4. Tensoring Verma modules with fin. dim. modules

Theorem
Let M be a finite dimensional $U(\mathfrak{g})$-module. For all $\lambda \in \mathfrak{h}^{*}$, the tensor product $T:=M(\lambda) \otimes M$ has a finite filtration with quotients isomorphic to $M(\lambda+\mu)$. Here μ ranges over the weights of M, each occurring $\operatorname{dim} M_{\mu}$ times.

Corollary
T has a submodule isomorphic to $M(\lambda+\mu)$ with μ any maximal weight of M.
T has a quotient isomorphic to $M(\lambda+\nu)$ with ν any minimal weight of M.

Proof
Termar ibentily: $\left(U(\rho) \otimes U_{(b)} L\right) \otimes M \cong U(\rho) \otimes_{(b)}(L Q M)$
Recall $: N \rightarrow U(\rho) U_{(\cdot)} N$ is $\operatorname{exoct}(y \operatorname{din} N<\infty)$
Set $N:=L \otimes M$ and orber the weight vection lasis v_{1}, \ldots, v_{n} (weíflo ν_{1}, \ldots, ν_{n}) such that $i \leq j$ whemever $V_{i} \leqslant V_{j}$ \Rightarrow filbration $o \subset N_{n} \subset \ldots \subset N_{1}=N, N_{l}=\left\langle v_{l}, \ldots, r_{n}\right\rangle$ indectionom din $N \Rightarrow$ RHS has filtration with quations = Verma notules with uegth = weights of N.
SHt $L=K_{\lambda} \Rightarrow L H S=M(\lambda) \otimes M=F a+k \operatorname{din} L \otimes M=\operatorname{dim} M$ weaghts, $N=L \Delta M=$ weiglos of $M+$ weight λ off x_{x}

Proof

Exercise

further theory. Let $\mathfrak{g}=\mathfrak{s l}(2, \mathbb{C})$ and identify \mathfrak{h}^{*} with \mathbb{C}. The reader should be able to describe for each $\lambda \in \mathbf{N}$ the decomposition of $M(0) \otimes L(\lambda)$ relative to central characters χ.

5. Standard filtrations

Definition

$M \in \mathcal{O}$ has a standard filtration (Verma flag) if we have

$$
0=M_{0} \subset M_{1} \subset \cdots \subset M_{n}=M
$$

for which $M^{i}:=M_{i} / M_{i-1}$ is isomorphic to a Verma module.

5. Standard filtrations

Definition

$M \in \mathcal{O}$ has a standard filtration (Verma flag) if we have

$$
0=M_{0} \subset M_{1} \subset \cdots \subset M_{n}=M
$$

for which $M^{i}:=M_{i} / M_{i-1}$ is isomorphic to a Verma module.
The filtration length n is well defined.

5. Standard filtrations

Definition

$M \in \mathcal{O}$ has a standard filtration (Verma flag) if we have

$$
0=M_{0} \subset M_{1} \subset \cdots \subset M_{n}=M
$$

for which $M^{i}:=M_{i} / M_{i-1}$ is isomorphic to a Verma module.
The filtration length n is well defined.
Denote the multiplicity of a $M(\lambda)$ in a standard filtration of M by

$$
(M: M(\lambda))
$$

5. Standard filtrations

Definition

$M \in \mathcal{O}$ has a standard filtration (Verma flag) if we have

$$
0=M_{0} \subset M_{1} \subset \cdots \subset M_{n}=M
$$

for which $M^{i}:=M_{i} / M_{i-1}$ is isomorphic to a Verma module.
The filtration length n is well defined.
Denote the multiplicity of a $M(\lambda)$ in a standard filtration of M by

$$
(M: M(\lambda))
$$

Not to be confused with the multiplicity of $L(\lambda)$ in a Jordan-Hölder series of M :

$$
[M: L(\lambda)]
$$

Properties of standard filtrations

Proposition

Suppose $M \in \mathcal{O}$ has a standard filtration.
(a) If λ is maximal among the weights of M, then $M(\lambda) \subset M$ and $M / M(\lambda)$ has a standard filtration.

Properties of standard filtrations

Proposition

Suppose $M \in \mathcal{O}$ has a standard filtration.
(a) If λ is maximal among the weights of M, then $M(\lambda) \subset M$ and $M / M(\lambda)$ has a standard filtration.
(b) If $M=M^{\prime} \oplus M^{\prime \prime}$ in \mathcal{O}, then M^{\prime} and $M^{\prime \prime}$ have standard filtrations.

Properties of standard filtrations

Proposition

Suppose $M \in \mathcal{O}$ has a standard filtration.
(a) If λ is maximal among the weights of M, then $M(\lambda) \subset M$ and $M / M(\lambda)$ has a standard filtration.
(b) If $M=M^{\prime} \oplus M^{\prime \prime}$ in \mathcal{O}, then M^{\prime} and $M^{\prime \prime}$ have standard filtrations.
(c) M is free as a $U\left(\mathfrak{n}^{-}\right)$-module.

Proof
Unweorsel propgicity)
(i) By esseraptran $J v_{\lambda}^{+} \in M \Rightarrow J \varphi \cdot M(\lambda) \rightarrow M$

TP. Q un ingective Let a be the rnollest udex ruch thots

$$
\begin{aligned}
& \phi(M(t)) \subset M_{1} \Rightarrow \psi \cdot M(\lambda) \rightarrow M_{i} \mu_{1-1} \text { is nomsero }
\end{aligned}
$$

$\Rightarrow \psi$ is isomorphsm $\Rightarrow \varphi$ infective $\Rightarrow M(\lambda) C M$

$$
\left.M(\lambda) \cap M_{i-1}=\operatorname{ken} \psi=0 \Rightarrow 0 \rightarrow M_{i-1} \rightarrow M / M \lambda\right) \rightarrow M_{i} \rightarrow 0
$$

Characterization using standard filtrations

Theorem
If $M \in \mathcal{O}$ has a standard filtration, then for all $\lambda \in \mathfrak{h}^{*}$ we have

$$
(M: M(\lambda))=\operatorname{dim} \operatorname{Hom}_{\mathcal{O}}\left(M, M(\lambda)^{\vee}\right)
$$

Proof
Enductiona filtrotian length (33(c))

$$
\begin{aligned}
& \text { Enduction a filtrotian lenth }(33(l)) \\
& l=1 \cdot(\mu(\mu) M(t))=\delta_{\lambda \mu}=\operatorname{dnom} \sigma(\mu(\mu), M(N))
\end{aligned}
$$

Indention Nep $O \rightarrow N \rightarrow \mu \rightarrow M(\mu) \rightarrow 0 \Rightarrow$

$$
\begin{aligned}
& \Rightarrow \operatorname{din} \operatorname{Han}\left(\mu, M(\lambda)^{V}\right)=(N, M(\lambda))+\delta_{\lambda \mu} \\
& =(M: M(t))
\end{aligned}
$$

