Category \mathcal{O} : Methods

- ► The functors Hom and Ext
- $\blacktriangleright \ {\rm A \ duality \ functor} \ M \mapsto M^{\vee} \ {\rm on} \ {\mathcal O}$
- Reflection groups, dominant and antidominant weights
- Tensoring Verma modules with finite dimensional modules
- "Standard" filtrations having Verma modules as subquotients
- Projective objects in O and BGG reciprocity
- "Contravariant" forms on modules

Known conditions for $L(\mu)$ to be a possible composition factor of $M(\lambda)$:

(1) $\mu \leq \lambda$.

(2) $\mu = w \cdot \lambda$ for some $w \in W$.

Known conditions for $L(\mu)$ to be a possible composition factor of $M(\lambda)$:

(1) $\mu \leq \lambda$.

(2) $\mu = w \cdot \lambda$ for some $w \in W$.

Condition (2) can be optimized.

Known conditions for $L(\mu)$ to be a possible composition factor of $M(\lambda)$:

(1) $\mu \leq \lambda$. (2) $\mu = w \cdot \lambda$ for some $w \in W$.

Condition (2) can be optimized.

Define

$$\Phi_{[\lambda]} := \{ \alpha \in \Phi | \langle \lambda, \alpha^{\vee} \rangle \in \mathbb{Z} \}$$
$$W_{[\lambda]} := \{ w \in W | w\lambda - \lambda \in \Lambda_r \}$$

Known conditions for $L(\mu)$ to be a possible composition factor of $M(\lambda)$:

(1) $\mu \leq \lambda$.

(2) $\mu = w \cdot \lambda$ for some $w \in W$.

Condition (2) can be optimized.

Define

$$\Phi_{[\lambda]} := \{ \alpha \in \Phi | \langle \lambda, \alpha^{\vee} \rangle \in \mathbb{Z} \}$$
$$W_{[\lambda]} := \{ w \in W | w\lambda - \lambda \in \Lambda_r \}$$

Then we can replace (2) with (2) $\mu = w \cdot \lambda$ for some $w \in W_{[\lambda]}$.

harks

$$\begin{aligned} & \int \lambda \, \ell \, h^* \mid \langle \lambda, \chi^{\vee} \rangle \in \mathbb{Z} \, \forall \lambda \\ & \bullet \quad \Phi_{[\lambda]} = \Phi_{[\mu]} \text{ and } W_{[\lambda]} = W_{[\mu]} \text{ whenever } \lambda \equiv \mu \mod \Lambda \end{aligned}$$

X

▶ $\Phi_{[\lambda]} = \Phi_{[\mu]}$ and $W_{[\lambda]} = W_{[\mu]}$ whenever $\lambda \equiv \mu \mod \Lambda$ ▶ Since $\rho \in \Lambda$ we have

$$\Phi_{[\lambda]} = \{ \alpha \in \Phi | \langle \lambda + \rho, \alpha^{\vee} \rangle \in \mathbb{Z} \}$$
$$W_{[\lambda]} = \{ w \in W | w \cdot \lambda - \lambda \in \Lambda_r \}$$

▶ $\Phi_{[\lambda]} = \Phi_{[\mu]}$ and $W_{[\lambda]} = W_{[\mu]}$ whenever $\lambda \equiv \mu \mod \Lambda$ ▶ Since $\rho \in \Lambda$ we have

$$\Phi_{[\lambda]} = \{ \alpha \in \Phi | \langle \lambda + \rho, \alpha^{\vee} \rangle \in \mathbb{Z} \}$$
$$W_{[\lambda]} = \{ w \in W | w \cdot \lambda - \lambda \in \Lambda_r \}$$

 $\blacktriangleright \ \Phi_{[\lambda]} = \Phi_{[\mu]} \ \text{ and } \ W_{[\lambda]} = W_{[\mu]} \ \text{ whenever } \ \mu \in W_{[\lambda]} \cdot \lambda$

▶ $\Phi_{[\lambda]} = \Phi_{[\mu]}$ and $W_{[\lambda]} = W_{[\mu]}$ whenever $\lambda \equiv \mu \mod \Lambda$ ▶ Since $\rho \in \Lambda$ we have

$$\Phi_{[\lambda]} = \{ \alpha \in \Phi | \langle \lambda + \rho, \alpha^{\vee} \rangle \in \mathbb{Z} \}$$
$$W_{[\lambda]} = \{ w \in W | w \cdot \lambda - \lambda \in \Lambda_r \}$$

• $\Phi_{[\lambda]} = \Phi_{[\mu]}$ and $W_{[\lambda]} = W_{[\mu]}$ whenever $\mu \in W_{[\lambda]} \cdot \lambda$ • $\Lambda = \{\lambda \in \mathfrak{h}^* | \Phi_{[\lambda]} = \Phi\}$

▶ $\Phi_{[\lambda]} = \Phi_{[\mu]}$ and $W_{[\lambda]} = W_{[\mu]}$ whenever $\lambda \equiv \mu \mod \Lambda$ ▶ Since $\rho \in \Lambda$ we have

$$\Phi_{[\lambda]} = \{ \alpha \in \Phi | \langle \lambda + \rho, \alpha^{\vee} \rangle \in \mathbb{Z} \}$$
$$W_{[\lambda]} = \{ w \in W | w \cdot \lambda - \lambda \in \Lambda_r \}$$

• $\Phi_{[\lambda]} = \Phi_{[\mu]}$ and $W_{[\lambda]} = W_{[\mu]}$ whenever $\mu \in W_{[\lambda]} \cdot \lambda$ • $\Lambda = \{\lambda \in \mathfrak{h}^* | \Phi_{[\lambda]} = \Phi\}$ • $\Phi_{[\lambda]} = \{\alpha \in \Phi | s_\alpha \in W_{[\lambda]}\}$

Properties of the reflection group

Theorem Let $\lambda \in \mathfrak{h}^*$. (a) $\Phi_{[\lambda]}$ is a root system in its \mathbb{R} -span $E(\lambda) \subset E = \mathbb{R} \otimes_{\mathbb{Z}} \Lambda$

Properties of the reflection group

Theorem Let $\lambda \in \mathfrak{h}^*$. (a) $\Phi_{[\lambda]}$ is a root system in its \mathbb{R} -span $E(\lambda) \subset E = \mathbb{R} \otimes_{\mathbb{Z}} \Lambda$ (b) $W_{[\lambda]}$ is the Weyl group of $\Phi_{[\lambda]}$. In particular, it is generated by the s_{α} , with $\alpha \in \Phi_{[\lambda]}$. (a) $p_{\chi} \overline{P}_{[1]} = \overline{P}_{[1]} \forall \alpha \ell \overline{P}_{[1]}$ Note that $\forall \beta \in \overline{P}_{[\alpha]} : (n_{\alpha} \beta)^{V} = n_{\alpha} \beta^{V}$ $<\lambda(n_{x}\beta)^{V}>=<\lambda(n_{x}\beta^{V}>=<n_{x}\lambda\beta^{V}>$ $= \langle \lambda, \beta^{V} \rangle - \langle \lambda, \lambda^{V} \rangle \langle \lambda, \beta^{V} \rangle \in \mathbb{Z}$

Question:

Which weight is the optimal representative of the orbit $W_{[\lambda]} \cdot \lambda$?

Question:

Which weight is the optimal representative of the orbit $W_{[\lambda]} \cdot \lambda$?

Definition

 $\lambda \in \mathfrak{h}^*$ is antidominant if $\langle \lambda + \rho, \alpha^{\vee} \rangle \notin \mathbb{Z}^{>0}$ for all $\alpha \in \Phi^+$. $\lambda \in \mathfrak{h}^*$ is dominant if $\langle \lambda + \rho, \alpha^{\vee} \rangle \notin \mathbb{Z}^{<0}$ for all $\alpha \in \Phi^+$.

Question:

Which weight is the optimal representative of the orbit $W_{[\lambda]} \cdot \lambda$?

Definition

- $\lambda \in \mathfrak{h}^*$ is antidominant if $\langle \lambda + \rho, \alpha^{\vee} \rangle \notin \mathbb{Z}^{>0}$ for all $\alpha \in \Phi^+$.
- $\lambda \in \mathfrak{h}^*$ is dominant if $\langle \lambda + \rho, \alpha^{\vee} \rangle \not\in \mathbb{Z}^{<0}$ for all $\alpha \in \Phi^+$.

Warning: This differs from the usual notion of dominance in $\boldsymbol{\Lambda}.$

- Old: Set of dominant weights in Λ is Λ^+ .
- New: Set of dominant weights in Λ is $\Lambda^+ \rho$.

Question:

Which weight is the optimal representative of the orbit $W_{[\lambda]} \cdot \lambda$?

Definition

- $\lambda \in \mathfrak{h}^*$ is antidominant if $\langle \lambda + \rho, \alpha^{\vee} \rangle \notin \mathbb{Z}^{>0}$ for all $\alpha \in \Phi^+$.
- $\lambda \in \mathfrak{h}^*$ is dominant if $\langle \lambda + \rho, \alpha^{\vee} \rangle \not\in \mathbb{Z}^{<0}$ for all $\alpha \in \Phi^+$.
- Warning: This differs from the usual notion of dominance in Λ .
 - Old: Set of dominant weights in Λ is Λ^+ .
 - New: Set of dominant weights in Λ is $\Lambda^+ \rho$.

To avoid confusion we emphasize the antidominance case.

Theorem

Let $\Delta_{[\lambda]}$ be the simple system corresponding to the positive system $\Phi_{[\lambda]} \cap \Phi^+$ in $\Phi_{[\lambda]}$. The following are equivalent. (1) λ is antidominant $(\langle \lambda + \rho, \alpha^{\vee} \rangle \notin \mathbb{Z}^{>0}$ for all $\alpha \in \Phi^+$). (2) $\langle \lambda + \rho, \alpha^{\vee} \rangle \leq 0$ for all $\alpha \in \Delta_{[\lambda]}$. (3) $\lambda \leq s_{\alpha} \cdot \lambda$ for all $\alpha \in \Delta_{[\lambda]}$. (4) $\lambda \leq w \cdot \lambda$ for all $w \in W_{[\lambda]}$. (1) = (2)trivial $|(2) = (1) \times 6 \oplus 1$ and suppose $(1+1), \times 1 \to \mathbb{Z}$ $\exists \alpha \in \overline{\Phi} [\overline{\mu}] \cap \overline{\Psi}^{+} = \exists \alpha \cup \mathbb{Z} - \text{hear combination of } \Lambda [\overline{\mu}]$ $\stackrel{(2)}{=} \langle \lambda + \beta, \alpha^{\vee} \rangle \leq o = \exists \langle \lambda + \beta, \alpha^{\vee} \rangle \in \mathbb{Z}^{\leq o} = \exists (1)$

(1) λ is antidominant $(\langle \lambda + \rho, \alpha^{\vee} \rangle \notin \mathbb{Z}^{>0}$ for all $\alpha \in \Phi^+$). (2) $\langle \lambda + \rho, \alpha^{\vee} \rangle \leq 0$ for all $\alpha \in \Delta_{[\lambda]}$. (3) $\lambda \leq s_{\alpha} \cdot \lambda$ for all $\alpha \in \Delta_{[\lambda]}$. (4) $\lambda \leq w \cdot \lambda$ for all $w \in W_{[\lambda]}$. (2) = (3) $n_{\lambda} \cdot \lambda = n_{\lambda} (\lambda + p) - p = \lambda + p - \langle \lambda + p \rangle \lambda^{-1}$ ニ えー くみょりく うく (*) (4) = (2) (2) trivial (1) = (4)

(1) λ is antidominant $(\langle \lambda + \rho, \alpha^{\vee} \rangle \notin \mathbb{Z}^{>0}$ for all $\alpha \in \Phi^+$). (2) $\langle \lambda + \rho, \alpha^{\vee} \rangle \leq 0$ for all $\alpha \in \Delta_{[\lambda]}$. (3) $\lambda \leq s_{\alpha} \cdot \lambda$ for all $\alpha \in \Delta_{[\lambda]}$. (4) $\lambda \leq w \cdot \lambda$ for all $w \in W_{[\lambda]}$. (3) = (4) Interction on the length in $W_{[3]}$ relative to $\Delta_{[3]}$ l(w)=0 w=1 trevel, l(w)>0 [w=w'nx h Wp] AITH $\omega' \lambda - \omega \cdot \lambda = (\omega \rho_{2}) \cdot \chi - \omega \cdot \lambda = -(\lambda + \rho_{2} \vee \psi) \cdot \omega \times \xi \circ$

λ is antidominant ((λ + ρ, α[∨]) ∉ Z^{>0} for all α ∈ Φ⁺).
 (λ + ρ, α[∨]) ≤ 0 for all α ∈ Δ_[λ].
 λ ≤ s_α · λ for all α ∈ Δ_[λ].
 λ ≤ w · λ for all w ∈ W_[λ].

Proposition

Any linkage class $W \cdot \lambda$ has at least 1 antidominant weight.

Proof: Suppose
$$\mu \in \mathbb{N}$$
 is minimal relative to standard
portial order. But $\exists x \in \overline{\Phi}^+: \leq \mu + p, x' > \in \mathbb{Z}^{20}$
=) $p_{x'} = \mu - \leq \mu + p, x' > x < \mu$ Finimulity

Proposition

Any linkage class $W \cdot \lambda$ has at least 1 antidominant weight.

Corollary

There exist a unique antidominant weight in $W_{[\lambda]} \cdot \lambda$.

Proposition

Any linkage class $W \cdot \lambda$ has at least 1 antidominant weight.

Corollary

There exist a unique antidominant weight in $W_{[\lambda]} \cdot \lambda$.

Corollary (Exercise)

If $\lambda \in \mathfrak{h}^*$ is antidominant, then $M(\lambda) = L(\lambda)$.

 $\mathfrak{sl}(2,\mathbb{C})$ example $<1, \chi' >= 2 \cdot \frac{\lambda \cdot \chi}{\chi \cdot \chi}$ $g = (n, y, k) + f^* = 0$ $\overline{P} = \{-2, 2\} \qquad \overline{P}_{[\lambda]} = \{\mathcal{A} \in \overline{P} \mid \langle \mathcal{A} , \mathcal{A}' \rangle \in \mathbb{Z} \}$ $= \overline{\Psi}_{[1]} = \overline{\Psi}_{1} + \overline{\Psi}_{1} + \overline{\Psi}_{2} = \overline{\Psi}_{1}$ ETH = Q Y X & Z $W_{[\lambda]} \cdot \lambda = \{\lambda, -\lambda - 2\} : \lambda \in \mathbb{Z}^{70} \Rightarrow -\lambda - 2$ antedormont 2 EZ^{<0} => 2 antidomenut -p = 1 $\exists artitoriant =) \exists \notin \mathbb{N} (=) \mathbb{M}(a) = L(a)$

4. Tensoring Verma modules with fin. dim. modules

Theorem

Let M be a finite dimensional $U(\mathfrak{g})$ -module. For all $\lambda \in \mathfrak{h}^*$, the tensor product $T := M(\lambda) \otimes M$ has a finite filtration with quotients isomorphic to $M(\lambda + \mu)$. Here μ ranges over the weights of M, each occurring dim M_{μ} times.

4. Tensoring Verma modules with fin. dim. modules

Theorem

Let M be a finite dimensional $U(\mathfrak{g})$ -module. For all $\lambda \in \mathfrak{h}^*$, the tensor product $T := M(\lambda) \otimes M$ has a finite filtration with quotients isomorphic to $M(\lambda + \mu)$. Here μ ranges over the weights of M, each occurring dim M_{μ} times.

Corollary

T has a submodule isomorphic to $M(\lambda+\mu)$ with μ any maximal weight of M.

T has a quotient isomorphic to $M(\lambda+\nu)$ with ν any minimal weight of M.

Proof Tenson identity: $(U(g) \otimes_{U(b)} L) \otimes M \cong U(g) \otimes_{U(b)} (L \otimes M)$ $\operatorname{Recall} : \mathbb{N} \to U(\mathfrak{g}) \not \approx_{\mathcal{V}_{(h)}} \mathbb{N} \text{ is } \operatorname{exocl} \left(\mathcal{Y} \dim \mathbb{N} < \infty \right)$ Set N = LOM and order the weight vector latin 5,..., In (weight $V_1, ..., V_n$) such that $i \leq j$ whenever $V_i \leq V_j$ => filtration O < N_ < ... < N_ = N , N_k = < V_k , v_n > induction on N => RHS has filtration with justions = Verno notules with weights - weights of N. Set L = Ez => LHS = M(x)&M = Tank din L&M=din M

Exercise

further theory. Let $\mathfrak{g} = \mathfrak{sl}(2, \mathbb{C})$ and identify \mathfrak{h}^* with \mathbb{C} . The reader should be able to describe for each $\lambda \in \mathbb{N}$ the decomposition of $M(0) \otimes L(\lambda)$ relative to central characters χ .

Definition

 $M \in \mathcal{O}$ has a standard filtration (Verma flag) if we have

$$0 = M_0 \subset M_1 \subset \cdots \subset M_n = M,$$

for which $M^i := M_i/M_{i-1}$ is isomorphic to a Verma module.

Definition

 $M \in \mathcal{O}$ has a standard filtration (Verma flag) if we have

$$0 = M_0 \subset M_1 \subset \cdots \subset M_n = M,$$

for which $M^i := M_i/M_{i-1}$ is isomorphic to a Verma module. The filtration length n is well defined.

Definition

 $M \in \mathcal{O}$ has a standard filtration (Verma flag) if we have

$$0 = M_0 \subset M_1 \subset \cdots \subset M_n = M,$$

for which $M^i := M_i/M_{i-1}$ is isomorphic to a Verma module. The filtration length n is well defined.

Denote the multiplicity of a $M(\lambda)$ in a standard filtration of M by

 $(M:M(\lambda))$

Definition

 $M \in \mathcal{O}$ has a standard filtration (Verma flag) if we have

.

$$0 = M_0 \subset M_1 \subset \cdots \subset M_n = M,$$

for which $M^i := M_i/M_{i-1}$ is isomorphic to a Verma module. The filtration length n is well defined.

Denote the multiplicity of a $M(\lambda)$ in a standard filtration of M by

 $(M:M(\lambda))$

Not to be confused with the multiplicity of $L(\lambda)$ in a Jordan-Hölder series of M:

$$[M:L(\lambda)]$$

Properties of standard filtrations

Proposition

Suppose $M \in \mathcal{O}$ has a standard filtration.

(a) If λ is maximal among the weights of M, then $M(\lambda) \subset M$ and $M/M(\lambda)$ has a standard filtration.

Properties of standard filtrations

Proposition

Suppose $M \in \mathcal{O}$ has a standard filtration.

- (a) If λ is maximal among the weights of M, then $M(\lambda) \subset M$ and $M/M(\lambda)$ has a standard filtration.
- (b) If $M = M' \oplus M''$ in \mathcal{O} , then M' and M'' have standard filtrations.

(b) Induction on the

Properties of standard filtrations

Proposition

Suppose $M \in \mathcal{O}$ has a standard filtration.

- (a) If λ is maximal among the weights of M, then $M(\lambda) \subset M$ and $M/M(\lambda)$ has a standard filtration.
- (b) If $M = M' \oplus M''$ in \mathcal{O} , then M' and M'' have standard filtrations.
- (c) M is free as a $U(\mathfrak{n}^-)$ -module.

Proof
(i) By essemption
$$\exists v_{2}^{+} (M \Longrightarrow) \exists \varphi \cdot M(\lambda) \rightarrow M$$

 $TP \cdot \varphi$ is injecture $\exists x_{1}^{+} (M \Longrightarrow) \exists \varphi \cdot M(\lambda) \rightarrow M$
 $P(M(\lambda)) \subset M_{n} \Longrightarrow) \forall M(\lambda) \rightarrow M'_{n-1}$ is nonzero
 $hrt M' = M'_{N-1} \cong M(p) \Longrightarrow \lambda \leq \mu$ (Inversel) $\exists = \mu$
 $\Rightarrow \gamma$ is isomorphism $=$) φ injecture $\Rightarrow M(\lambda) \subset M$
 $M(\lambda) \cap M_{1-1} = \ker \gamma = 0 \Rightarrow 0 \rightarrow M_{1-1} \rightarrow M_{M(\lambda)} \rightarrow M_{n} \rightarrow 0$
 $i = \pi M(\mu) = 0$

Characterization using standard filtrations

Theorem If $M \in \mathcal{O}$ has a standard filtration, then for all $\lambda \in \mathfrak{h}^*$ we have

 $(M: M(\lambda)) = \dim \operatorname{Hom}_{\mathcal{O}} (M, M(\lambda)^{\vee})$

$$\begin{aligned} & \text{Induction on fillrolian length } (B3(c)) \\ & l = 1 \cdot (M(\mu \mid M(\lambda))) = 5_{\lambda,\mu} - d_{\mu} \text{ them } \sigma(M(\mu), M(\lambda)^{\vee}) \\ & \text{Induction step} \cdot \circ \longrightarrow N \longrightarrow M \longrightarrow M(\mu) \longrightarrow \circ =) \\ & O \longrightarrow Hom \sigma(M(\mu), M(\lambda)^{\vee}) \longrightarrow Hom \sigma(N, M(\lambda)) \longrightarrow Hom \sigma(N, M(\lambda)^{\vee}) \longrightarrow$$

e