Category O: Methods

» The functors Hom and Ext

» A duality functor M — MY on O

> Reflection groups, dominant and antidominant weights

» Tensoring Verma modules with finite dimensional modules

» “Standard” filtrations having Verma modules as subquotients
» Projective objects in O and BGG reciprocity

» “Contravariant” forms on modules
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3. The Reflection group Wy
Known conditions for L() to be a possible composition factor of
M(N):
(1) p< A
(2) p=w- X for some w € W.
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3. The Reflection group Wy
Known conditions for L() to be a possible composition factor of
M(N):
(1) p< A
(2) p=w- X for some w € W.
Condition (2) can be optimized.

Define
‘I)[/\} = {Oé S (I" <)\,Oév> S Z}
Wiy = {w € WlwA =X € A}

Then we can replace (2) with

(2) p=w- A for some w € Wy,
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Remarks

> q)[)\] = (I)M and W[)\] = WM whenever \ = I mod A
» Since p € A we have

O ={ae® (A +p,a’) e}
W[,\}:{MEW’U)-)\—)\EAC}

> <I>[)\] = (I)M and W[)\] = WM whenever € W[,\} - A
> A={rebp P, =}

> CI)[)\] = {a € @‘Sa € W[)\}}


sam
Pencil


Properties of the reflection group

Theorem
Let \ € b*.

(a) @y is a root system in its R-span E(\) C E = R ®z A



Properties of the reflection group

Theorem
Let X € h*.
(a) @y is a root system in its R-span E(\) C E = R ®z A
(b) Wy is the Weyl group of ®y;.
In particular, it is generated by the s., with a € ®|y;.
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Which weight is the optimal representative of the orbit Wy - A?
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(Anti)dominant weights
Question:

Which weight is the optimal representative of the orbit Wy - A?

Definition
A € b* is antidominant if (\ + p,a") & Z”° for all o € 7.
A € b* is dominant if (A + p,a") & Z<° for all « € ®+.

Warning: This differs from the usual notion of dominance in A.
» Old: Set of dominant weights in A is A™.
» New: Set of dominant weights in A is AT — p.

To avoid confusion we emphasize the antidominance case.



Properties of Antidominant weights

Theorem

Let Apy be the simple system corresponding to the positive system
QN o in ®(y- The following are equivalent.

(1) X is antidominant ((\ + p,a") & Z>° for all o € V).
(2) (A +p,a¥) <0 forall € Apy.

(3) A< sa-Aforallae Ay
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A is antidominant (A + p,a") & Z>0 for all a € ).

(1)

(2) (A +p,a¥) <0foralla e Ay
(3) A< sa-Aforalla e Apy.

(4) A< w-Aforall we Wy
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Proof

1) Xis antidominant ((\ + p,aV) & Z>° for all a € ®).
2) (A +p,a¥) <0forall ae Ay

3) A< sq-Aforall € Apy.

4) A< w- A forall we Wy
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1) Xis antidominant ((\ + p,aV) & Z>° for all a € ®).
2) (A +p,a¥) <0forall ae Ay,

3) A< sq-Aforall € Apy.
4) A< w- A forall we Wy
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Properties of Antidominant weights

Proposition
Any linkage class W - A\ has at least 1 antidominant weight.
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Proposition
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Corollary
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Properties of Antidominant weights

Proposition
Any linkage class W - X\ has at least 1 antidominant weight.

Corollary
There exist a unique antidominant weight in W) - A.

Corollary (Exercise)
If X € b* is antidominant, then M(\) = L(\).
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4. Tensoring Verma modules with fin. dim. modules

Theorem

Let M be a finite dimensional U (g)-module.

For all X\ € b*, the tensor product T := M(\) ® M has a finite
filtration with quotients isomorphic to M (X + p).

Here 1 ranges over the weights of M, each occurring dim M,
times.

12



4. Tensoring Verma modules with fin. dim. modules

Theorem

Let M be a finite dimensional U (g)-module.

For all X\ € b*, the tensor product T := M(\) ® M has a finite
filtration with quotients isomorphic to M (X + p).

Here 1 ranges over the weights of M, each occurring dim M,
times.

Corollary

T has a submodule isomorphic to M (X + u) with u any maximal
weight of M.

T has a quotient isomorphic to M (X + v) with v any minimal
weight of M.
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Exercise

further theory. Let g = s[(2,C) and identify h* with C. The reader should
be able to describe for each A € N the decomposition of M (0)® L(X) relative
to central characters x.
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5. Standard filtrations

Definition
M € O has a standard filtration (Verma flag) if we have

O=MycCcM;C---CM,=M,

for which M := M;/M;_1 is isomorphic to a Verma module.
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5. Standard filtrations

Definition
M € O has a standard filtration (Verma flag) if we have

O=MycCcM;C---CM,=M,

for which M := M;/M;_1 is isomorphic to a Verma module.

The filtration length n is well defined.
Denote the multiplicity of a M () in a standard filtration of M by
(M : M(X))

Not to be confused with the multiplicity of L(\) in a
Jordan-Holder series of M:

[M : L(N)]

15


sam
Pencil


Properties of standard filtrations

Proposition
Suppose M € O has a standard filtration.

(a) If X is maximal among the weights of M, then M (\) C M
and M /M (X) has a standard filtration.
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Properties of standard filtrations

Proposition
Suppose M € O has a standard filtration.

(a) If X is maximal among the weights of M, then M (\) C M
and M /M (X) has a standard filtration.

(b) If M = M'® M" in O, then M' and M" have standard
filtrations.

16
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Properties of standard filtrations

Proposition
Suppose M € O has a standard filtration.

(a) If X is maximal among the weights of M, then M (\) C M
and M /M (X) has a standard filtration.

(b) If M = M'® M" in O, then M' and M" have standard
filtrations.

(c) M is free as a U(n™)-module.

16
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Characterization using standard filtrations

Theorem
If M € O has a standard filtration, then for all A € h*™ we have

(M : M(X)) = dim Home (M, M (X))

18
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