Category \mathcal{O} : Methods

- ► The functors Hom and Ext
- ▶ A duality functor $M \mapsto M^{\wedge}$ on \mathcal{O}
- Reflection groups, dominant and antidominant weights
- Tensoring Verma modules with finite dimensional modules
- "Standard" filtrations having Verma modules as subquotients
- lacktriangle Projectivė objects in ${\cal O}$ and BGG reciprocity
- "Contravariant" forms on modules

1. Hom and Ext

Hom is left exact:

$$\begin{array}{l} 0 \to A \to B \to C \to 0 \text{ exact} \\ \Longrightarrow \ 0 \to \operatorname{Hom}(X,A) \to \operatorname{Hom}(X,B) \to \operatorname{Hom}(X,C) \text{ exact}, \end{array}$$

but not necessarily right exact.

1. Hom and Ext

Hom is left exact:

$$\begin{array}{l} 0 \to A \to B \to C \to 0 \text{ exact} \\ \Longrightarrow \ 0 \to \operatorname{Hom}(X,A) \to \operatorname{Hom}(X,B) \to \operatorname{Hom}(X,C) \text{ exact}, \end{array}$$

but not necessarily right exact.

This leads to right derived functors of Hom : Ext^n (See Chapter 6)

1. Hom and Ext

Hom is left exact:

$$\begin{array}{l} 0 \to A \to B \to C \to 0 \text{ exact} \\ \Longrightarrow \ 0 \to \operatorname{Hom}(X,A) \to \operatorname{Hom}(X,B) \to \operatorname{Hom}(X,C) \text{ exact}, \end{array}$$

but not necessarily right exact.

This leads to right derived functors of $Hom: Ext^n$ (See Chapter 6)

$$Hom = Ext^0,$$
 $Ext := Ext^1$

Ext

We have

$$\operatorname{Ext}_{U(\mathfrak{g})}(A,B)\cong \left(0 \to B \to E \to A \to 0 \text{ (SES) } | E \in \operatorname{Mod}_{U(\mathfrak{g})} \right)/\sim$$

Ext

We have

$$\operatorname{Ext}_{U(\mathfrak{g})}(A,B) \cong \left(0 \to B \to E \to A \to 0 \text{ (SES) } | E \in \operatorname{Mod}_{U(\mathfrak{g})} \right) / \sim$$
with $(0 \to B \to E \to A \to 0) \sim (0 \to B \to E' \to A \to 0)$ if
$$0 \longrightarrow B \longrightarrow E \longrightarrow A \longrightarrow 0$$

$$\parallel \qquad \qquad \parallel \qquad \qquad \parallel$$

$$0 \longrightarrow B \longrightarrow E' \longrightarrow A \longrightarrow 0$$

commutes.

Ext

We have

$$\operatorname{Ext}_{U(\mathfrak{g})}(A,B) \cong \left(0 \to B \to E \to A \to 0 \text{ (SES) } | E \in \operatorname{Mod}_{U(\mathfrak{g})} \right) / \sim$$
with $(0 \to B \to E \to A \to 0) \sim (0 \to B \to E' \to A \to 0)$ if
$$0 \longrightarrow B \longrightarrow E \longrightarrow A \longrightarrow 0$$

$$\parallel \qquad \qquad \parallel \qquad \qquad \parallel$$

$$0 \longrightarrow B \longrightarrow E' \longrightarrow A \longrightarrow 0$$

commutes.

The class of split exact sequences

$$[0 \to B \to A \oplus B \to A \to 0]_{\sim}$$

is the 0 element

Proposition

Let $\lambda, \mu \in \mathfrak{h}^*$.

(a) If M is a highest weight module of weight μ , $\lambda \not< \mu$, then $\operatorname{Ext}_{\mathcal{O}}(M(\lambda), M) = 0$. In particular,

$$\operatorname{Ext}_{\mathcal{O}}(M(\lambda),L(\lambda)) = 0 = \operatorname{Ext}_{\mathcal{O}}(M(\lambda),M(\lambda))$$

$$0 \to M \to [] \to M(\lambda) \to 0 \text{ in } 0$$

$$\text{Look at preinagl of a vector of weight } h \to M(\lambda)$$

$$=) \text{ it will be maximal vector in } []_{\lambda}$$

$$=) \text{ It will generate a symbological of } []_{\lambda}$$

Proposition

Let $\lambda, \mu \in \mathfrak{h}^*$.

(a) If M is a highest weight module of weight μ , $\lambda \not< \mu$, then $\operatorname{Ext}_{\mathcal{O}}(M(\lambda),M)=0$. In particular,

$$\operatorname{Ext}_{\mathcal{O}}(M(\lambda),L(\lambda)) = 0 = \operatorname{Ext}_{\mathcal{O}}(M(\lambda),M(\lambda))$$

(b) If $\mu \leq \lambda$, then $\operatorname{Ext}_{\mathcal{O}}(M(\lambda), L(\mu)) = 0$

Proposition

Let $\lambda, \mu \in \mathfrak{h}^*$.

(a) If M is a highest weight module of weight μ , $\lambda \not< \mu$, then $\operatorname{Ext}_{\mathcal{O}}(M(\lambda), M) = 0$. In particular,

$$\operatorname{Ext}_{\mathcal{O}}(M(\lambda),L(\lambda)) = 0 = \operatorname{Ext}_{\mathcal{O}}(M(\lambda),M(\lambda))$$

- (b) If $\mu \leq \lambda$, then $\operatorname{Ext}_{\mathcal{O}}(M(\lambda), L(\mu)) = 0$
- (c) If $\mu < \lambda$ and $N(\lambda)$ is the maximal submodule of $M(\lambda)$, then

$$\operatorname{Hom}_{\mathcal{O}}(N(\lambda), L(\mu)) \cong \operatorname{Ext}_{\mathcal{O}}(L(\lambda), L(\mu))$$

Proposition

Let $\lambda, \mu \in \mathfrak{h}^*$.

(a) If M is a highest weight module of weight μ , $\lambda \not< \mu$, then $\operatorname{Ext}_{\mathcal{O}}(M(\lambda), M) = 0$. In particular,

$$\operatorname{Ext}_{\mathcal{O}}(M(\lambda),L(\lambda)) = 0 = \operatorname{Ext}_{\mathcal{O}}(M(\lambda),M(\lambda))$$

- (b) If $\mu \leq \lambda$, then $\operatorname{Ext}_{\mathcal{O}}(M(\lambda), L(\mu)) = 0$
- (c) If $\mu < \lambda$ and $N(\lambda)$ is the maximal submodule of $M(\lambda)$, then

$$\operatorname{Hom}_{\mathcal{O}}(N(\lambda), L(\mu)) \cong \operatorname{Ext}_{\mathcal{O}}(L(\lambda), L(\mu))$$

(d) $\operatorname{Ext}_{\mathcal{O}}(L(\lambda), L(\lambda)) = 0$

Proof $0 \rightarrow Hom((, D) \rightarrow Hom(B, D) \rightarrow Hom(A, D)$ \rightarrow Ext $(C,D) \rightarrow$ Ext $(B,D) \rightarrow$ Ext (A,D) $\longrightarrow \operatorname{Ext}^{2}(C, \Omega) \longrightarrow C$ $A = N(\lambda)$, $B = M(\lambda)$, $C = L(\lambda)$, $D = L(\mu)$ $(d) \quad M = \lambda \qquad \text{Hom} (N(\lambda), L(\lambda)) = 0$

$\operatorname{Ext}_{\mathcal{O}}$

Note that if we have

$$0 \to A \to B \to C \to 0$$
 (SES)

with $A,C\in\mathcal{O}$, then B is not necessarily in \mathcal{O} , i.e., $\mathrm{Ext}_{\mathcal{O}}\neq\mathrm{Ext}_{U(\mathfrak{g})}$

Note that if we have

$$0 \to A \to B \to C \to 0$$
 (SES)

with $A,C\in\mathcal{O}$, then B is not necessarily in \mathcal{O} , i.e., $\mathrm{Ext}_{\mathcal{O}}\neq\mathrm{Ext}_{U(\mathfrak{g})}$

Exercise. Let $\mathfrak{g} = \mathfrak{sl}(2,\mathbb{C})$, and identify $\lambda \in \mathfrak{h}^*$ with a scalar as usual. Let N be a 2-dimensional $U(\mathfrak{b})$ -module defined by letting x act as 0 and h act as $\begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$. Show that the induced $U(\mathfrak{g})$ -module $M := U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} N$ fits into an exact sequence which fails to split:

$$0 \to M(\lambda) \to M \to M(\lambda) \to 0$$
.

(Here M cannot lie in \mathcal{O} , thanks to part (a) of the proposition below.)

Exto

Note that if we have

$$0 \to A \to B \to C \to 0$$
 (SES)

with $A,C\in\mathcal{O}$, then B is not necessarily in \mathcal{O} , i.e., $\mathrm{Ext}_{\mathcal{O}}\neq\mathrm{Ext}_{U(\mathfrak{g})}$

Exercise. Let $\mathfrak{g} = \mathfrak{sl}(2,\mathbb{C})$, and identify $\lambda \in \mathfrak{h}^*$ with a scalar as usual. Let N be a 2-dimensional $U(\mathfrak{b})$ -module defined by letting x act as 0 and h act as $\begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$. Show that the induced $U(\mathfrak{g})$ -module $M := U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} N$ fits into an exact sequence which fails to split:

$$0 \to M(\lambda) \to M \to M(\lambda) \to 0$$
.

(Here M cannot lie in O, thanks to part (a) of the proposition below.)

Is M a highest weight module?

$$\mathfrak{sl}(2, \mathbb{C}) \text{ example} \\
\mathfrak{g} = \mathcal{N}(2, \mathbb{L}) = \{\chi, y, h\} \quad \mathcal{N} = \mathbb{C}^2 \text{ with} \\
\mathfrak{R}(k) = 0 \quad \mathcal{R}(k) = (\lambda + h) \\
\mathfrak{N} = \mathcal{N}(2, \mathbb{C}) \otimes_{(h)} \mathcal{N}, \quad \mathcal{N} = (\lambda + h) \\
\mathfrak{N} = \mathcal{N}(2, \mathbb{C}) \otimes_{(h)} \mathcal{N}, \quad \mathcal{N} = (\lambda + h) \\
\mathfrak{N} = (\lambda + h) \otimes_{(h)} \mathcal{N}, \quad \mathcal{N} = (\lambda + h) \otimes_{(h)} \mathcal{N} \otimes_{(h)} \mathcal{N$$

2. Duality in \mathcal{O}

For all $M \in \operatorname{Mod}_{U(\mathfrak{g})}$ we have $M^* \in \operatorname{Mod}_{U(\mathfrak{g})}$ with

$$(x \cdot f)(v) := -f(x \cdot v) \quad \forall v \in M, f \in M^*, x \in \mathfrak{g}.$$

However, $M \in \mathcal{O}$ does not imply $M^* \in \mathcal{O}$.

2. Duality in \mathcal{O}

For all $M \in \operatorname{Mod}_{U(\mathfrak{g})}$ we have $M^* \in \operatorname{Mod}_{U(\mathfrak{g})}$ with

$$(x \cdot f)(v) := -f(x \cdot v) \quad \forall v \in M, f \in M^*, x \in \mathfrak{g}.$$

However, $M \in \mathcal{O}$ does not imply $M^* \in \mathcal{O}$.

Recall the transpose map $\tau:\mathfrak{g}\to\mathfrak{g}$ which sends \mathfrak{g}_{α} to $\mathfrak{g}_{-\alpha}$ and fixes \mathfrak{h} .

Redefine the action of $\mathfrak g$ on M^* as

$$(x \cdot f)(v) := f(\tau(x) \cdot v) \quad \forall v \in M, f \in M^*, x \in \mathfrak{g}.$$

The dual M^{\wedge}

Let $\mathcal{C} \subset \operatorname{Mod}_{U(\mathfrak{g})}$ be the category of weight modules with finite dimensional weight spaces. $(\mathcal{O} \subset \mathcal{C})$

For all
$$\lambda \in \mathfrak{h}^*$$
 we define $M_{\lambda}^* := (M_{\lambda})^* = (M^*)_{\lambda}$.

$$(M_{\lambda})^* = \{ f \in M^* \mid (k, f)|_{V} = 0 \ \forall \ V \in M_{\mu} \} \text{ with } \}$$

$$(M_{\lambda})^* = \{ f \in M^* \mid (k, f)|_{V} = \lambda(k) f(v) \ \forall \ V \in M_{\lambda} \}$$

$$(M_{\lambda})^* = \{ f \in M^* \mid (k, f)|_{V} = \lambda(k) f(v) \ \forall \ V \in M_{\lambda} \}$$

$$(M_{\lambda})^* = \{ f \in M^* \mid (k, f)|_{V} = \lambda(k) f(v) \ \forall \ V \in M_{\mu} \}$$

$$(M_{\lambda})^* = \{ f \in M^* \mid (k, f)|_{V} = \lambda(k) f(v) \ \forall \ V \in M_{\mu} \}$$

$$(M_{\lambda})^* = \{ f \in M^* \mid (k, f)|_{V} = \lambda(k) f(v) \ \forall \ V \in M_{\mu} \}$$

$$(M_{\lambda})^* = \{ f \in M^* \mid (k, f)|_{V} = \lambda(k) f(v) \ \forall \ V \in M_{\mu} \}$$

$$(M_{\lambda})^* = \{ f \in M^* \mid (k, f)|_{V} = \lambda(k) f(v) \ \forall \ V \in M_{\mu} \}$$

$$(M_{\lambda})^* = \{ f \in M^* \mid (k, f)|_{V} = \lambda(k) f(v) \ \forall \ V \in M_{\mu} \}$$

$$(M_{\lambda})^* = \{ f \in M^* \mid (k, f)|_{V} = \lambda(k) f(v) \ \forall \ V \in M_{\mu} \}$$

$$(M_{\lambda})^* = \{ f \in M^* \mid (k, f)|_{V} = \lambda(k) f(v) \ \forall \ V \in M_{\mu} \}$$

$$(M_{\lambda})^* = \{ f \in M^* \mid (k, f)|_{V} = \lambda(k) f(v) \ \forall \ V \in M_{\mu} \}$$

$$(M_{\lambda})^* = \{ f \in M^* \mid (k, f)|_{V} = \lambda(k) f(v) \ \forall \ V \in M_{\mu} \}$$

$$(M_{\lambda})^* = \{ f \in M^* \mid (k, f)|_{V} = \lambda(k) f(v) \ \forall \ V \in M_{\mu} \}$$

$$(M_{\lambda})^* = \{ f \in M^* \mid (k, f)|_{V} = \lambda(k) f(v) \ \forall \ V \in M_{\mu} \}$$

$$(M_{\lambda})^* = \{ f \in M^* \mid (k, f)|_{V} = \lambda(k) f(v) \ \forall \ V \in M_{\mu} \}$$

$$(M_{\lambda})^* = \{ f \in M^* \mid (k, f)|_{V} = \lambda(k) f(v) \ \forall \ V \in M_{\mu} \}$$

$$(M_{\lambda})^* = \{ f \in M^* \mid (k, f)|_{V} = \lambda(k) f(v) \ \forall \ V \in M_{\mu} \}$$

$$(M_{\lambda})^* = \{ f \in M^* \mid (k, f)|_{V} = \lambda(k) f(v) \ \forall \ V \in M_{\mu} \}$$

$$(M_{\lambda})^* = \{ f \in M^* \mid (k, f)|_{V} = \lambda(k) f(v) \ \forall \ V \in M_{\mu} \}$$

$$(M_{\lambda})^* = \{ f \in M^* \mid (k, f)|_{V} = \lambda(k) f(v) \ \forall \ V \in M_{\mu} \}$$

$$(M_{\lambda})^* = \{ f \in M^* \mid (k, f)|_{V} = \lambda(k) f(v) \ \forall \ V \in M_{\mu} \}$$

$$(M_{\lambda})^* = \{ f \in M^* \mid (k, f)|_{V} = \lambda(k) f(v) \ \forall \ V \in M_{\mu} \}$$

$$(M_{\lambda})^* = \{ f \in M^* \mid (k, f)|_{V} = \lambda(k) f(v) \ \forall \ V \in M_{\mu} \}$$

$$(M_{\lambda})^* = \{ f \in M^* \mid (k, f)|_{V} = \lambda(k) f(v) \ \forall \ V \in M_{\mu} \}$$

$$(M_{\lambda})^* = \{ f \in M^* \mid (k, f)|_{V} = \lambda(k) f(v) \ \forall \ V \in M_{\mu} \}$$

$$(M_{\lambda})^* = \{ f \in M^* \mid (k, f)|_{V} = \lambda(k) f(v) \ \forall \ V \in M_{\mu} \}$$

$$(M_{\lambda})^* = \{ f \in M^* \mid (k, f)|_{V} = \lambda(k) f(v) \ \forall \ K \in M_{\mu} \}$$

$$(M_{\lambda})^* =$$

The dual M^{\wedge}

Let $\mathcal{C} \subset \operatorname{Mod}_{U(\mathfrak{g})}$ be the category of weight modules with finite dimensional weight spaces. $(\mathcal{O} \subset \mathcal{C})$

For all
$$\lambda \in \mathfrak{h}^*$$
 we define $M_{\lambda}^* := (M_{\lambda})^* = (M^*)_{\lambda}$.

The **dual** of M in \mathcal{C} is

$$M^{\wedge} := \bigoplus_{\lambda \in \mathfrak{h}^*} M_{\lambda}^*$$

Theorem

Theorem

 $M\mapsto M^{\wedge}$ is an exact contravariant functor on $\mathcal O$ and:

(a) It induces a self-equivalance on \mathcal{O} ($M^{\wedge \wedge} \cong M$)

Theorem

- (a) It induces a self-equivalance on \mathcal{O} $(M^{\wedge \wedge} \cong M)$
- (b) For all $M \in \mathcal{O}$ and central character χ , $(M^{\wedge})^{\chi} \cong (M^{\chi})^{\wedge}$. In particular, $M \in \mathcal{O}_{\chi}$ implies $M^{\wedge} \in \mathcal{O}_{\chi}$.

Theorem

- (a) It induces a self-equivalance on \mathcal{O} $(M^{\wedge \wedge} \cong M)$
- (b) For all $M \in \mathcal{O}$ and central character χ , $(M^{\wedge})^{\chi} \cong (M^{\chi})^{\wedge}$. In particular, $M \in \mathcal{O}_{\chi}$ implies $M^{\wedge} \in \mathcal{O}_{\chi}$.
- (c) If $M\in\mathcal{O}$ then $\operatorname{ch} M=\operatorname{ch} M^{\wedge}$ and define the same element of $K(\mathcal{O})$. In particular, $L(\lambda)^{\wedge}\cong L(\lambda)$.

Theorem

- (a) It induces a self-equivalance on \mathcal{O} $(M^{\wedge \wedge} \cong M)$
- (b) For all $M \in \mathcal{O}$ and central character χ , $(M^{\wedge})^{\chi} \cong (M^{\chi})^{\wedge}$. In particular, $M \in \mathcal{O}_{\chi}$ implies $M^{\wedge} \in \mathcal{O}_{\chi}$.
- (c) If $M \in \mathcal{O}$ then $\operatorname{ch} M = \operatorname{ch} M^{\wedge}$ and define the same element of $K(\mathcal{O})$. In particular, $L(\lambda)^{\wedge} \cong L(\lambda)$.
- (d) If $M, N \in \mathcal{O}$ then $(M \oplus N)^{\wedge} \cong M^{\wedge} \oplus N^{\wedge}$

Theorem

- (a) It induces a self-equivalance on \mathcal{O} $(M^{\wedge \wedge} \cong M)$
- (b) For all $M \in \mathcal{O}$ and central character χ , $(M^{\wedge})^{\chi} \cong (M^{\chi})^{\wedge}$. In particular, $M \in \mathcal{O}_{\chi}$ implies $M^{\wedge} \in \mathcal{O}_{\chi}$.
- (c) If $M \in \mathcal{O}$ then $\operatorname{ch} M = \operatorname{ch} M^{\wedge}$ and define the same element of $K(\mathcal{O})$. In particular, $L(\lambda)^{\wedge} \cong L(\lambda)$.
- (d) If $M, N \in \mathcal{O}$ then $(M \oplus N)^{\wedge} \cong M^{\wedge} \oplus N^{\wedge}$
- (e) For all $M, N \in \mathcal{O}$, $\operatorname{Ext}_{\mathcal{O}}(M, N) \cong \operatorname{Ext}_{\mathcal{O}}(N^{\wedge}, M^{\wedge})$. In particular, $\operatorname{Ext}_{\mathcal{O}}(L(\lambda), L(\mu)) \cong \operatorname{Ext}_{\mathcal{O}}(L(\mu), L(\lambda))$.

Proof

Theorem

Let $\lambda, \mu \in \mathfrak{h}^*$.

(a) $L(\lambda)^{\wedge} \cong L(\lambda)$.

(a)
$$(L(\lambda)^{\vee})^{\vee} \cong L(\lambda)$$
 nimple $= L(\lambda)^{\vee}$ nimple $= L(\lambda)^{\vee}$ simple $= L(\lambda)^{\vee} = L(\lambda)^{\vee}$ is λ

Theorem

Let $\lambda, \mu \in \mathfrak{h}^*$.

- (a) $L(\lambda)^{\wedge} \cong L(\lambda)$.
- (b) $M(\lambda)^{\wedge}$ has $L(\lambda)$ as its unique simple submodule. Its other composition factors $L(\mu)$ satisfy $\mu < \lambda$.

$$0 \rightarrow N(\lambda) \rightarrow M(\lambda) \rightarrow L(\lambda) \rightarrow 0$$

$$=) 0 \rightarrow L(\lambda)^{V} \rightarrow M(\lambda)^{V} \rightarrow N(\lambda)^{V} \rightarrow 0$$

$$LAM(\lambda) = LAM(\lambda)^{V}$$

Theorem

 $\mathbb{A} = \mathcal{A} : \mathbb{A} \times \mathbb{A} \times$

Let $\lambda, \mu \in \mathfrak{h}^*$.

Ez 1.3

- (a) $L(\lambda)^{\wedge} \cong L(\lambda)$.
- (b) $M(\lambda)^{\wedge}$ has $L(\lambda)$ as its unique simple submodule. Its other composition factors $L(\mu)$ satisfy $\mu < \lambda$.
- (c) dim $\operatorname{Hom}_{\mathcal{O}}(M(\mu), M(\lambda)^{\wedge}) = \delta_{\lambda\mu}$.

Let $f: M(\mu) \rightarrow M(\lambda)$ be a nonzero hom. $\Rightarrow im(f) = \text{ higher weight note } f \text{ neight } \mu$ $(b) =) im(f) contain submodule <math>\cong L(\lambda) \cong L(\lambda) = 1 \mu 7/\lambda$ (b) also implies $\mu \leq \lambda = \mu = 1$

Theorem

Let $\lambda, \mu \in \mathfrak{h}^*$.

- (a) $L(\lambda)^{\wedge} \cong L(\lambda)$.
- (b) $M(\lambda)^{\wedge}$ has $L(\lambda)$ as its unique simple submodule. Its other composition factors $L(\mu)$ satisfy $\mu < \lambda$.
- (c) dim $\operatorname{Hom}_{\mathcal{O}}(M(\mu), M(\lambda)^{\wedge}) = \delta_{\lambda\mu}$.
- (d) $\operatorname{Ext}_{\mathcal{O}}(M(\mu), M(\lambda)^{\wedge}) = 0$

TP
$$O \rightarrow M(A)^{V} \rightarrow M \rightarrow M(\mu) \rightarrow 0$$
 replits

If $\mu \not\in \lambda$: universal property of Verna modules: relation $\mu \in \lambda$: $O \rightarrow M(\mu)^{V} \rightarrow M(\lambda) \rightarrow 0$

proof