Chapter 2

We consider the subcategory of \mathcal{O} consisting of finite dimensional modules.

$$
M=\bigoplus_{\lambda \in \Lambda^{+}}[M: L(\lambda)] L(\lambda)
$$

Content:

- Kostant's Weight Multiplicity Theorem
- Weyl's Character Formula
- Weyl's Dimension Formula
- Concrete description of maximal submodule $N(\lambda)$ of $M(\lambda)$, when $\lambda \in \Lambda^{+}$.
- Related topics about finite dimensional modules in \mathcal{O}.

Approach

The BGG approach to Weyl's formulas:

- Think outside of subcategory of finite dimensional modules.
- Generalizes well to other algebraic situations f.x. Kac-Moody algebras.
From 1.16(3):

$$
\operatorname{ch} L(\lambda)=\sum_{w \in W} b(\lambda, w) \operatorname{ch} M(w \cdot \lambda)
$$

Calculations are done with the two functions:

$$
\begin{gathered}
p \in \mathcal{X}, \text { Kostant function } \\
q:=\prod_{\alpha>0}(e(\alpha / 2)-e(-\alpha / 2)) \in \mathcal{X} .
\end{gathered}
$$

Recall $e(\lambda) \in \mathcal{X}$ is given by $e(\lambda)(\mu):=\delta_{\lambda \mu}$, for all $\lambda, \mu \in \mathfrak{h}^{*}$.

Approach

From Proposition 1.16 we have $p=\operatorname{ch} M(0)$ and

$$
p * e(\lambda)=\operatorname{ch} M(\lambda), \quad\left(\lambda \in \mathfrak{h}^{*}\right)
$$

Lemma (2.3(B))

For any $w \in W, w q=(-1)^{\ell(w)} q$.

Lemma (2.3(C))

$$
q * \operatorname{ch} M(\lambda)=q * p * e(\lambda)=e(\lambda+\rho), \quad\left(\lambda \in \mathfrak{h}^{*}\right) .
$$

Weyl's Character Formula

Theorem (Weyl)

Let $\lambda \in \Lambda^{+}$, so $\operatorname{dim} L(\lambda)<\infty$. Then

$$
\begin{aligned}
q * \operatorname{ch} L(\lambda) & =\sum_{w \in W}(-1)^{\ell(w)} e(w \cdot \lambda+\rho) . \\
q & =\sum_{w \in W}(-1)^{\ell(w)} e(w \rho) .
\end{aligned}
$$

Proof'ish:
$q * \operatorname{ch} L(\lambda)=\sum_{w \in W} b(\lambda, w) q * \operatorname{ch} M(w \cdot \lambda)=\sum_{w \in W} b(\lambda, w) e(w \cdot \lambda+\rho)$.
ch $L(\lambda)$ is W invariant, $s_{\alpha} e(w \cdot \lambda+\rho)=e\left(s_{\alpha} w \cdot \lambda+\rho\right), s_{\alpha} q=-q$ and $b(\lambda, 1)=1$. So induction $\ell(w)$ proves $b(\lambda, w)=(-1)^{\ell(\lambda)}$.

Kostant's Weight Multiplicity Theorem

Corollary (Kostant)

If $\lambda \in \Lambda^{+}$and $\mu \leq \lambda$, then

$$
\operatorname{dim} L(\lambda)_{\mu}=\sum_{w \in W}(-1)^{\ell(w)} p(\mu-w \cdot \lambda)
$$

Proof'ish:

$$
\begin{aligned}
q * \operatorname{ch} L(\lambda) & =\sum_{\mu \leq \lambda} \sum_{w \in W}(-1)^{\ell(w)} \operatorname{dim} L(\lambda)_{\mu} e(\mu+w \rho) \\
& =\sum_{w \in W}(-1)^{\ell(w)} e(w \cdot \lambda+\rho) .
\end{aligned}
$$

Now $w \rho=\rho-\sum_{\alpha} c_{\alpha}(w) \alpha$. So we look for w^{\prime} s.t. $\sum_{\alpha} c_{\alpha}\left(w^{\prime}\right) \alpha=\mu-w \cdot \lambda$. This where $p(\mu-w \cdot \lambda)$ enters.

Weyl's dimension Formula

Theorem (Weyl)

$$
\operatorname{dim} L(\lambda)=\frac{\prod_{\alpha>0}\left\langle\lambda+\rho, \alpha^{v}\right\rangle}{\prod_{\alpha>0}\left\langle\rho, \alpha^{v}\right\rangle}, \quad\left(\lambda \in \Lambda^{+}\right)
$$

Proof'ish: Let \mathcal{Y} be the subring of \mathcal{X} generated by $e(\mu)$. Consider

$$
v: \mathcal{Y} \rightarrow \mathbb{Z}, \quad f \mapsto \sum_{\mu} f(\mu), \quad \operatorname{ch} L(\lambda) \mapsto \operatorname{dim} L(\lambda)
$$

Construct for each $\alpha>0$ a derivation

$$
\partial_{\alpha}: \mathcal{Y} \rightarrow \mathcal{X}_{0}, \quad \partial_{\alpha} e(\mu)=\left\langle\mu, \alpha^{v}\right\rangle e(\mu)
$$

Set $\partial:=\prod_{\alpha>0} \partial_{\alpha}$ and prove $v(\partial(q * \operatorname{ch} L(\lambda)))=v(\partial q) \operatorname{dim} L(\lambda)$.
$\operatorname{dim} L(\lambda)=\frac{\left.v\left(\partial \sum_{w \in W}(-1)^{\ell(w)} e(w \cdot \lambda+\rho)\right)\right)}{v(\partial q)}=\frac{\prod_{\alpha>0}\left\langle\lambda+\rho, \alpha^{v}\right\rangle}{\prod_{\alpha>0}\left\langle\rho, \alpha^{v}\right\rangle}$.

Maximal submodules

Theorem

If $\lambda \in \Lambda^{+}$, the maximal submodule $N(\lambda)$ of $M(\lambda)$ is the sum of the submodules $M\left(s_{\alpha} \cdot \lambda\right)$, for $\alpha \in \Delta$.

Proof'ish: Enumerate the simple roots $\Delta=\left\{\alpha_{1}, \ldots, \alpha_{\ell}\right\}$ and write $n_{i}:=\left\langle\lambda, \alpha_{i}^{v}\right\rangle$. We know that $M(\lambda)=U(\mathfrak{g}) / I$, where

$$
I=\text { Left ideal generated by } \mathfrak{n} \text { and } h-\lambda(h),(h \in \mathfrak{h})
$$

Set then $M=U(\mathfrak{g}) / J$, where

$$
J=\text { Left ideal generated by } I \text { and } y_{\alpha_{i}}^{n_{i}+1}, 1 \leq i \leq \ell
$$

- Note, J is the left ideal generated by the sum of $M\left(s_{\alpha} \cdot \lambda\right)$.
- Show that M is finite dimensional. This implies $M \cong L(\lambda)$.
- From Exercise 1.6, M is finite dimensional if $y_{\alpha_{i}}$ acts locally nilpotently on M for all $i \in\{1, \ldots, \ell\}$.

