We consider the subcategory of $\ensuremath{\mathcal{O}}$ consisting of finite dimensional modules.

$$M = \bigoplus_{\lambda \in \Lambda^+} [M : L(\lambda)]L(\lambda).$$

Content:

- Kostant's Weight Multiplicity Theorem
- Weyl's Character Formula
- Weyl's Dimension Formula
- Concrete description of maximal submodule N(λ) of M(λ), when λ ∈ Λ⁺.
- \bullet Related topics about finite dimensional modules in $\mathcal{O}.$

Approach

The BGG approach to Weyl's formulas:

- Think outside of subcategory of finite dimensional modules.
- Generalizes well to other algebraic situations f.x. Kac-Moody algebras.

From 1.16(3):

$$\mathsf{ch} L(\lambda) = \sum_{w \in W} b(\lambda, w) \mathsf{ch} M(w \cdot \lambda).$$

Calculations are done with the two functions:

 $p \in \mathcal{X}, \,\,$ Kostant function

$$q := \prod_{\alpha>0} (e(\alpha/2) - e(-\alpha/2)) \in \mathcal{X}.$$

Recall $e(\lambda) \in \mathcal{X}$ is given by $e(\lambda)(\mu) := \delta_{\lambda\mu}$, for all $\lambda, \mu \in \mathfrak{h}^*$.

From Proposition 1.16 we have $p = \operatorname{ch} M(0)$ and

$$p*e(\lambda)=\operatorname{ch} M(\lambda), \quad (\lambda\in \mathfrak{h}^*).$$

Lemma (2.3(B)) For any $w \in W$, $wq = (-1)^{\ell(w)}q$.

Lemma (2.3(C))

$$q* \operatorname{ch} M(\lambda) = q*p*e(\lambda) = e(\lambda+
ho), \quad (\lambda\in\mathfrak{h}^*).$$

Weyl's Character Formula

Theorem (Weyl)

Let $\lambda \in \Lambda^+$, so dim $L(\lambda) < \infty$. Then

$$q* \mathsf{ch} L(\lambda) = \sum_{w \in W} (-1)^{\ell(w)} e(w \cdot \lambda + \rho).$$

$$q = \sum_{w \in W} (-1)^{\ell(w)} e(w\rho).$$

Proof'ish:

$$q* \operatorname{ch} L(\lambda) = \sum_{w \in W} b(\lambda, w) q* \operatorname{ch} M(w \cdot \lambda) = \sum_{w \in W} b(\lambda, w) e(w \cdot \lambda + \rho).$$

ch $L(\lambda)$ is W invariant, $s_{\alpha}e(w \cdot \lambda + \rho) = e(s_{\alpha}w \cdot \lambda + \rho)$, $s_{\alpha}q = -q$ and $b(\lambda, 1) = 1$. So induction $\ell(w)$ proves $b(\lambda, w) = (-1)^{\ell(\lambda)}$.

Kostant's Weight Multiplicity Theorem

Corollary (Kostant)

If $\lambda \in \Lambda^+$ and $\mu \leq \lambda$, then

$$\dim L(\lambda)_{\mu} = \sum_{w \in W} (-1)^{\ell(w)} p(\mu - w \cdot \lambda).$$

Proof'ish:

$$q * \operatorname{ch} L(\lambda) = \sum_{\mu \leq \lambda} \sum_{w \in W} (-1)^{\ell(w)} \operatorname{dim} L(\lambda)_{\mu} e(\mu + w\rho)$$
$$= \sum_{w \in W} (-1)^{\ell(w)} e(w \cdot \lambda + \rho).$$

Now $w\rho = \rho - \sum_{\alpha} c_{\alpha}(w)\alpha$. So we look for w' s.t. $\sum_{\alpha} c_{\alpha}(w')\alpha = \mu - w \cdot \lambda$. This where $p(\mu - w \cdot \lambda)$ enters.

Weyl's dimension Formula

Theorem (Weyl)

$$\dim L(\lambda) = \frac{\prod_{\alpha > 0} \langle \lambda + \rho, \alpha^{\nu} \rangle}{\prod_{\alpha > 0} \langle \rho, \alpha^{\nu} \rangle}, \quad (\lambda \in \Lambda^+).$$

Proof'ish: Let \mathcal{Y} be the subring of \mathcal{X} generated by $e(\mu)$. Consider

$$v:\mathcal{Y}
ightarrow\mathbb{Z},\quad f\mapsto \sum_{\mu}f(\mu),\quad \mathsf{ch}\, L(\lambda)\mapsto \mathsf{dim}\, L(\lambda).$$

Construct for each $\alpha > 0$ a derivation

$$\partial_{\alpha}: \mathcal{Y} \to \mathcal{X}_{0}, \quad \partial_{\alpha} e(\mu) = \langle \mu, \alpha^{\nu} \rangle e(\mu).$$

Set $\partial := \prod_{\alpha > 0} \partial_{\alpha}$ and prove $v(\partial(q * \operatorname{ch} L(\lambda))) = v(\partial q) \dim L(\lambda)$.

$$\dim L(\lambda) = \frac{\nu(\partial \sum_{w \in W} (-1)^{\ell(w)} e(w \cdot \lambda + \rho)))}{\nu(\partial q)} = \frac{\prod_{\alpha > 0} \langle \lambda + \rho, \alpha^{\nu} \rangle}{\prod_{\alpha > 0} \langle \rho, \alpha^{\nu} \rangle}$$

Maximal submodules

Theorem

If $\lambda \in \Lambda^+$, the maximal submodule $N(\lambda)$ of $M(\lambda)$ is the sum of the submodules $M(s_{\alpha} \cdot \lambda)$, for $\alpha \in \Delta$.

Proof'ish: Enumerate the simple roots $\Delta = \{\alpha_1, \ldots, \alpha_\ell\}$ and write $n_i := \langle \lambda, \alpha_i^v \rangle$. We know that $M(\lambda) = U(\mathfrak{g})/I$, where

I = Left ideal generated by \mathfrak{n} and $h - \lambda(h)$, $(h \in \mathfrak{h})$.

Set then $M = U(\mathfrak{g})/J$, where

J = Left ideal generated by I and $y_{\alpha_i}^{n_i+1}$, $1 \le i \le \ell$.

- Note, J is the left ideal generated by the sum of $M(s_{\alpha} \cdot \lambda)$.
- Show that M is finite dimensional. This implies $M \cong L(\lambda)$.
- From Exercise 1.6, M is finite dimensional if y_{αi} acts locally nilpotently on M for all i ∈ {1,..., ℓ}.