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Lie algebra

Definition.
A vector space L over a field F, with a bracket operation

L× L→ L : (x , y) 7→ [x , y ]

is called a Lie algebra over F if the following axioms are satisfied:

(L1) The bracket operation is bilinear

(L2) [x , x ] = 0 for all x ∈ L

(L3) [x , [y , z ]] + [y , [z , x ]] + [z , [x , y ]] = 0 (x , y , z ∈ L)

Notations:
Humphreys: [xy ] = [x , y ] adjoint repr. (ad x)(y) = [x , y ]

Assumptions:
F algebraically closed field of characteristic 0 such as C
L finite-dimensional



Example

sl(2,C) with basis (h, x , y)

[h, x ] = 2x [h, y ] = −2y [x , y ] = h

matrix realization

h :=

(
1 0
0 −1

)
x :=

(
0 1
0 0

)
y :=

(
0 0
1 0

)
bracket is commutator



Semisimple Lie algebra

arbitrary Lie algebra is semi-direct sum of solvable and semisimple

L solvable if L(n) = 0 where L(i) = [L(i−1), L(i−1)]

Rad L = radical of L, unique maximal solvable ideal

L semisimple if Rad L = 0 Ex: L/Rad L is semisimple

L nilpotent if Ln = 0 where Li = [L, Li−1]



Semisimple Lie algebra

Killing form
(x , y) := Tr(ad x ad y)

symmetric bilinear form

associative ([x , y ], z) = (x , [y , z ])

L is semisimple if and only if Killing form is nondegenerate

{x ∈ L | (x , y) = 0 for all y ∈ L} = 0

semisimple Lie algebras decompose uniquely into a direct sum of
simple ideals, which are classified by their (irreducible) root system

A`,B`,C`,D`,E6,E7,E8,F4,G2



Notations

g semisimple Lie algebra

h ⊂ g Cartan algebra, maximal abelian subalgebra

` = dim h rank of g

for α ∈ h∗ : gα = {x ∈ g | [h, x ] = α(h)x for all h ∈ h}

if gα nonzero (and 1-dimensional), then α ∈ h∗ root

root system Φ ⊂ h∗ all roots

g = h⊕
⊕
α∈Φ

gα



Root system

Φ+ ⊂ Φ positive system |Φ+| = m

∆ simple system |∆| = `

g = n− ⊕ h⊕ n

n− =
⊕
α<0

gα n =
⊕
α>0

gα

Borel subalgebra b = h⊕ n
maximally solvable

α

β

2π/3

Each α ∈ Φ+ determines subalgebra sα ∼= sl(2) with basis
(xα, yα, hα) normalized such that hα = [xα, yα] and α(hα) = 2

transpose map τ : g→ g standard anti-involution, interchanges
xα and yα for all α ∈ Φ+, and fixes h pointwise



Extra terminology

coroot α∨ := 2α/(α, α)

Cartan invariant 〈β, α∨〉 := 2(β, α)/(α, α) ∈ Z

dual root system Φ∨ := {α∨ | α ∈ Φ}

In the Killing form identification of h and h∗

〈β, α∨〉 = β(hα) for allβ ∈ Φ

root lattice Λr is Z-span of Φ

simple system ∆ forms Z-basis of Λr

each β ∈ Φ+ can be written uniquely, with all cα ∈ Z+, as

β =
∑
α∈∆

cαα the height of β is htβ =
∑
α∈∆

cα



Weyl Groups

root lattice Λr is stable under the action of the Weyl group W ,
the natural symmetry group attached to a root system Φ

finite subgroup of GL(h∗) generated by all reflections
sα : λ→ λ− 〈λ, α∨〉α for α ∈ Φ (or just a fixed simple system ∆)

Coxeter group, satisfies crystallographic restriction

`(w) = min{n | w = s1 · · · sn with si simple reflections }

The number of α ∈ Φ+ for which wα < 0 is precisely `(w)

There is a very useful way to partially order W : Bruhat ordering

w ′ < w =⇒ `(w ′) < `(w)



Integral Weights

integral weight lattice linked to the root system Φ

Λ := {λ ∈ h∗ | 〈λ, α∨〉 ∈ Z for all α ∈ Φ}

lies in Q-span of the roots

stable under action of W

free abelian group of rank `

includes the root lattice Λr

as a subgroup of finite index

For a fixed simple system ∆ = {α1, . . . , α`}

natural partial ordering on Λ: µ ≤ λ ⇐⇒ λ− µ ∈ Z+-span of ∆



Integral Weights

For a fixed simple system ∆ = {α1, . . . , α`}

Λ has Z-basis of fundamental weights

$1, . . . , $` with 〈$i , α
∨
j 〉 = δij

dominant integral weights

Λ+ := Z+$1 + · · ·+ Z+$`

Given λ ∈ Λ+, all wλ ≤ λ for w ∈W

The number of dominant weights ≤ λ for a given λ ∈ Λ+ is finite

Weyl vector (for all α ∈ ∆)

ρ := $1 + · · ·+$` =
1

2

∑
α∈Φ+

α 〈ρ, α∨〉 = 1 sαρ = ρ− α



Integral Weights

For a fixed simple system ∆

Weyl chamber

C := {λ ∈ h∗ | (λ, α) > 0 for all α ∈ ∆}

C natural fundamental domain for the
action of W

natural bijection with simple systems

Lemma for 7.9

λ ∈ C ⇐⇒ λ ≥ sαλ for all α ∈ ∆ ⇐⇒ λ ≥ wλ for all w ∈W



Universal Enveloping Algebras

U(L) is associative algebra with 1 generated by L

for x ∈ L
ad x : U(L)→ U(L) : u 7→ xu − ux

noetherian, no zero-divisors, PBW

semisimple Lie algebra g = n− ⊕ h⊕ n

y r1
1 · · · y

rm
m hs1

1 · · · h
s`
` x

t1
1 · · · x

tm
m

basis element in standard PBW ordering

U(g) =
⊕
ν∈Λr

U(g)ν U(g)ν = span{monomial | ν =
∑

(ti−ri )αi}



Center

Z (g) center of U(g)

acts by scalars, sometimes even on infinite dimensional modules
(no Schur’s Lemma)

Structure: polynomial algebra in ` indeterminates (see Chapter 1)

Casimir: special element Z (g) using nondegeneracy Killing form

for g = sl(2): h2 + 2xy + 2yx = h2 + 2h + 4yx

τ extends to anti-automorphism of U(g)
fixes Z (g) pointwise (using properties of the Harish-Chandra
homomorphism, see Chapter 1)



Representations

representations of g or U(g), not necessarily finite dimensional

category ModU(g) of all (left) U(g)-modules

O is well-behaved subcategory of ModU(g) (see Chapter 1)

λ ∈ h∗ is a weight of M ∈ ModU(g) if weight space relative to h

Mλ := {v ∈ M | h · v = λ(h)v for all h ∈ h} 6= 0

multiplicity of λ in M is dimMλ

notation Π(M) := {λ ∈ h∗ | Mλ 6= 0}

M is a weight module if it is direct sum of its weight spaces
i.e. h acts semisimply on M



Finite Dimensional Modules

Weyl’s Complete Reducibility Theorem

Every finite dimensional U(g)-module is isomorphic to a direct sum
of simple modules, with uniquely determined multiplicities.

When dimM <∞, M is always a weight module

elements of h act via semisimple matrices

elements of n or n− act via nilpotent matrices

The set Π(M) of weights is W -invariant, with dimMλ = dimMwλ

All weights of M are integral



Simple finite dim. modules for sl(2)

sl(2,C) with basis (h, x , y)

[h, x ] = 2x [h, y ] = −2y [x , y ] = h

weights λ ∈ h∗ ↔ C

root lattice Λr ↔ 2Z

integral weight lattice Λ↔ Z

simple modules L(λ)↔ λ ∈ Λ+ dominant integral weights

basis v0, . . . , vλ and set v−1 = 0 = vλ+1

h · vi = (λ− 2i)vi

x · vi = (λ− i + 1)vi−1

y · vi = (i + 1)vi+1


