References

Note: Series Series (Series Series Se

Representations of Semisimple Lie Algebras in the BGG Category \mathcal{O} Graduate Studies in Mathematics 94 American Mathematical Society, Providence, RI (2008)

🍆 James E. Humphreys

Introduction to Lie Algebras and Representation Theory Springer-Verlag, New York (1972)

📎 Luc Frappat, Antonino Sciarrino, Paul Sorba Dictionary on Lie algebras and superalgebras. Academic Press, San Diego, CA (2000)

Wikipedia

some pictures

Lie algebra

Definition.

A vector space L over a field \mathbb{F} , with a bracket operation

$$L \times L \to L \colon (x,y) \mapsto [x,y]$$

is called a **Lie algebra** over \mathbb{F} if the following axioms are satisfied: (L1) The bracket operation is bilinear (L2) [x, x] = 0 for all $x \in L$ (L3) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 $(x, y, z \in L)$

Notations: Humphreys: [xy] = [x, y] adjoint repr. (ad x)(y) = [x, y]

Assumptions:

 ${\mathbb F}$ algebraically closed field of characteristic 0 such as ${\mathbb C}$

L finite-dimensional

Example

 $\mathfrak{sl}(2,\mathbb{C})$ with basis (h,x,y)

$$[h, x] = 2x$$
 $[h, y] = -2y$ $[x, y] = h$

matrix realization

$$h := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \qquad x := \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \qquad y := \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

bracket is commutator

Semisimple Lie algebra

- Lie Algebras (L.A.)
- $\mathbf{2}$ Abelian L.A.
- 3 Nilpotent L.A.
- 4 Solvable L.A.5 Simple L.A.
- 6 Semi-simple L.A.

arbitrary Lie algebra is semi-direct sum of *solvable* and *semisimple*

L solvable if $L^{(n)} = 0$ where $L^{(i)} = [L^{(i-1)}, L^{(i-1)}]$

Rad L = radical of L, unique maximal solvable ideal

L semisimple if Rad L = 0 Ex: L / Rad L is semisimple

L nilpotent if $L^n = 0$ where $L^i = [L, L^{i-1}]$

Semisimple Lie algebra

Killing form

$$(x, y) := \mathsf{Tr}(\mathsf{ad} x \mathsf{ad} y)$$

symmetric bilinear form

associative ([x, y], z) = (x, [y, z])

L is semisimple if and only if Killing form is nondegenerate

$$\{x \in L \mid (x, y) = 0 \text{ for all } y \in L\} = 0$$

semisimple Lie algebras decompose uniquely into a direct sum of simple ideals, which are classified by their (irreducible) root system

$$A_{\ell}, B_{\ell}, C_{\ell}, D_{\ell}, E_6, E_7, E_8, F_4, G_2$$

Notations

 ${\mathfrak g}$ semisimple Lie algebra

- $\mathfrak{h}\subset\mathfrak{g}$ Cartan algebra, maximal abelian subalgebra
- $\ell = \mathsf{dim}\, \mathfrak{h} \quad \text{ rank of } \mathfrak{g}$

for $\alpha \in \mathfrak{h}^*$: $\mathfrak{g}_{\alpha} = \{x \in \mathfrak{g} \mid [h, x] = \alpha(h)x \text{ for all } h \in \mathfrak{h}\}$

if \mathfrak{g}_{α} nonzero (and 1-dimensional), then $\alpha \in \mathfrak{h}^*$ root

root system $\Phi \subset \mathfrak{h}^*$ all roots

$$\mathfrak{g} = \mathfrak{h} \oplus \bigoplus_{lpha \in \mathbf{\Phi}} \mathfrak{g}_{lpha}$$

Root system

 $\Phi^{+} \subset \Phi \text{ positive system } |\Phi^{+}| = m$ $\Delta \text{ simple system } |\Delta| = \ell$ $\mathfrak{g} = \mathfrak{n}^{-} \oplus \mathfrak{h} \oplus \mathfrak{n}$ $\mathfrak{n}^{-} = \bigoplus_{\alpha < 0} \mathfrak{g}_{\alpha} \qquad \mathfrak{n} = \bigoplus_{\alpha > 0} \mathfrak{g}_{\alpha}$

Borel subalgebra $\mathfrak{b}=\mathfrak{h}\oplus\mathfrak{n}$ maximally solvable

Each $\alpha \in \Phi^+$ determines subalgebra $\mathfrak{s}_{\alpha} \cong \mathfrak{sl}(2)$ with basis $(x_{\alpha}, y_{\alpha}, h_{\alpha})$ normalized such that $h_{\alpha} = [x_{\alpha}, y_{\alpha}]$ and $\alpha(h_{\alpha}) = 2$

transpose map $\tau: \mathfrak{g} \to \mathfrak{g}$ standard anti-involution, interchanges x_{α} and y_{α} for all $\alpha \in \Phi^+$, and fixes \mathfrak{h} pointwise

Extra terminology

coroot $\alpha^{\vee} := 2\alpha/(\alpha, \alpha)$ Cartan invariant $\langle \beta, \alpha^{\vee} \rangle := 2(\beta, \alpha)/(\alpha, \alpha) \in \mathbb{Z}$ dual root system $\Phi^{\vee} := \{\alpha^{\vee} \mid \alpha \in \Phi\}$

In the Killing form identification of $\mathfrak h$ and $\mathfrak h^*$

$$\langle \beta, \alpha^{\vee} \rangle = \beta(h_{\alpha}) \text{ for all } \beta \in \Phi$$

root lattice Λ_r is \mathbb{Z} -span of Φ

simple system Δ forms \mathbb{Z} -basis of Λ_r

each $\beta\in\Phi^+$ can be written uniquely, with all $c_lpha\in\mathbb{Z}^+$, as

$$\beta = \sum_{\alpha \in \Delta} c_{\alpha} \alpha$$
 the **height** of β is $ht\beta = \sum_{\alpha \in \Delta} c_{\alpha}$

Weyl Groups

root lattice Λ_r is stable under the action of the **Weyl group** W, the natural symmetry group attached to a root system Φ

finite subgroup of $GL(\mathfrak{h}^*)$ generated by all reflections $s_{\alpha} \colon \lambda \to \lambda - \langle \lambda, \alpha^{\vee} \rangle \alpha$ for $\alpha \in \Phi$ (or just a fixed simple system Δ)

Coxeter group, satisfies crystallographic restriction

 $\ell(w) = \min\{n \mid w = s_1 \cdots s_n \text{ with } s_i \text{ simple reflections } \}$

The number of $\alpha \in \Phi^+$ for which $w\alpha < 0$ is precisely $\ell(w)$

There is a very useful way to partially order W: Bruhat ordering

$$w' < w \implies \ell(w') < \ell(w)$$

Integral Weights

integral weight lattice linked to the root system $\boldsymbol{\Phi}$

$$\Lambda := \{\lambda \in \mathfrak{h}^* \mid \langle \lambda, \alpha^{\vee} \rangle \in \mathbb{Z} \text{ for all } \alpha \in \Phi\}$$

lies in \mathbb{Q} -span of the roots stable under action of Wfree abelian group of rank ℓ includes the root lattice Λ_r as a subgroup of finite index

For a fixed simple system $\Delta = \{\alpha_1, \dots, \alpha_\ell\}$

natural partial ordering on A: $\mu \leq \lambda \iff \lambda - \mu \in \mathbb{Z}^+$ -span of Δ

Integral Weights

For a fixed simple system $\Delta = \{\alpha_1, \dots, \alpha_\ell\}$

Λ has \mathbb{Z} -basis of **fundamental weights** $\varpi_1, \ldots, \varpi_\ell$ with $\langle \varpi_i, \alpha_j^{\lor} \rangle = \delta_{ij}$

dominant integral weights

$$\Lambda^+ := \mathbb{Z}^+ \varpi_1 + \cdots + \mathbb{Z}^+ \varpi_\ell$$

Given $\lambda \in \Lambda^+$, all $w\lambda \leq \lambda$ for $w \in W$

The number of dominant weights $\leq \lambda$ for a given $\lambda \in \Lambda^+$ is finite Weyl vector (for all $\alpha \in \Delta$)

$$\rho := \varpi_1 + \dots + \varpi_\ell = \frac{1}{2} \sum_{\alpha \in \Phi^+} \alpha \qquad \langle \rho, \alpha^{\vee} \rangle = 1 \qquad s_\alpha \rho = \rho - \alpha$$

Integral Weights

For a fixed simple system Δ

Weyl chamber

 $\mathcal{C} := \{\lambda \in \mathfrak{h}^* \mid (\lambda, \alpha) > 0 \text{ for all } \alpha \in \Delta\}$

 \overline{C} natural fundamental domain for the action of W

natural bijection with simple systems

Lemma for 7.9

$$\lambda \in \overline{\mathcal{C}} \iff \lambda \geq \mathbf{s}_{\alpha} \lambda \text{ for all } \alpha \in \Delta \iff \lambda \geq w \lambda \text{ for all } w \in W$$

Universal Enveloping Algebras

U(L) is associative algebra with 1 generated by Lfor $x \in L$ ad $x: U(L) \rightarrow U(L): u \mapsto xu - ux$

noetherian, no zero-divisors, PBW

semisimple Lie algebra $\mathfrak{g}=\mathfrak{n}^-\oplus\mathfrak{h}\oplus\mathfrak{n}$

$$y_1^{r_1}\cdots y_m^{r_m}h_1^{s_1}\cdots h_\ell^{s_\ell}x_1^{t_1}\cdots x_m^{t_m}$$

basis element in standard PBW ordering

$$U(\mathfrak{g}) = \bigoplus_{\nu \in \Lambda_r} U(\mathfrak{g})_{\nu} \qquad U(\mathfrak{g})_{\nu} = \operatorname{span}\{\operatorname{monomial} \mid \nu = \sum (t_i - r_i)\alpha_i\}$$

Center

 $Z(\mathfrak{g})$ center of $U(\mathfrak{g})$

acts by scalars, sometimes even on infinite dimensional modules (no Schur's Lemma)

Structure: polynomial algebra in ℓ indeterminates (see Chapter 1)

Casimir: special element $Z(\mathfrak{g})$ using nondegeneracy Killing form for $\mathfrak{g} = \mathfrak{sl}(2)$: $h^2 + 2xy + 2yx = h^2 + 2h + 4yx$

 τ extends to anti-automorphism of $U(\mathfrak{g})$ fixes $Z(\mathfrak{g})$ pointwise (using properties of the Harish-Chandra homomorphism, see Chapter 1)

Representations

representations of \mathfrak{g} or $U(\mathfrak{g})$, not necessarily finite dimensional category Mod $U(\mathfrak{g})$ of all (left) $U(\mathfrak{g})$ -modules

 \mathcal{O} is well-behaved subcategory of Mod $U(\mathfrak{g})$ (see Chapter 1)

 $\lambda \in \mathfrak{h}^*$ is a weight of $M \in \text{Mod } U(\mathfrak{g})$ if weight space relative to \mathfrak{h}

$$M_{\lambda} := \{ v \in M \mid h \cdot v = \lambda(h) v \text{ for all } h \in \mathfrak{h} \}
eq 0$$

multiplicity of λ in M is dim M_{λ}

notation $\Pi(M) := \{\lambda \in \mathfrak{h}^* \mid M_\lambda \neq 0\}$

M is a **weight module** if it is direct sum of its weight spaces i.e. \mathfrak{h} acts semisimply on M

Finite Dimensional Modules

Weyl's Complete Reducibility Theorem

Every finite dimensional $U(\mathfrak{g})$ -module is isomorphic to a direct sum of simple modules, with uniquely determined multiplicities.

When dim $M < \infty$, M is always a weight module

elements of $\mathfrak h$ act via semisimple matrices

elements of $\mathfrak n$ or $\mathfrak n^-$ act via nilpotent matrices

The set $\Pi(M)$ of weights is *W*-invariant, with dim $M_{\lambda} = \dim M_{w\lambda}$

All weights of M are integral

Simple finite dim. modules for $\mathfrak{sl}(2)$

$$\mathfrak{sl}(2,\mathbb{C}) \text{ with basis } (h, x, y)$$

$$[h, x] = 2x \qquad [h, y] = -2y \qquad [x, y] = h$$
weights $\lambda \in \mathfrak{h}^* \leftrightarrow \mathbb{C}$
root lattice $\Lambda_r \leftrightarrow 2\mathbb{Z}$
integral weight lattice $\Lambda \leftrightarrow \mathbb{Z}$
simple modules $L(\lambda) \leftrightarrow \lambda \in \Lambda^+$ dominant integral weights
basis v_0, \dots, v_λ and set $v_{-1} = 0 = v_{\lambda+1}$

$$h \cdot v_i = (\lambda - 2i)v_i$$
 $x \cdot v_i = (\lambda - i + 1)v_{i-1}$

$$y \cdot v_i = (i+1)v_{i+1}$$