References

© James E. Humphreys
Representations of Semisimple Lie Algebras in the BGG Category \mathcal{O} Graduate Studies in Mathematics 94
American Mathematical Society, Providence, RI (2008)

* James E. Humphreys

Introduction to Lie Algebras and Representation Theory Springer-Verlag, New York (1972)
Q Luc Frappat, Antonino Sciarrino, Paul Sorba
Dictionary on Lie algebras and superalgebras.
Academic Press, San Diego, CA (2000)
(3)

Wikipedia
some pictures

Lie algebra

Definition.
A vector space L over a field \mathbb{F}, with a bracket operation

$$
L \times L \rightarrow L:(x, y) \mapsto[x, y]
$$

is called a Lie algebra over \mathbb{F} if the following axioms are satisfied:
(L1) The bracket operation is bilinear
(L2) $[x, x]=0$ for all $x \in L$
(L3) $[x,[y, z]]+[y,[z, x]]+[z,[x, y]]=0 \quad(x, y, z \in L)$
Notations:
Humphreys: $[x y]=[x, y] \quad$ adjoint repr. $(\operatorname{ad} x)(y)=[x, y]$
Assumptions:
\mathbb{F} algebraically closed field of characteristic 0 such as \mathbb{C}
L finite-dimensional

Example

$\mathfrak{s l}(2, \mathbb{C})$ with basis (h, x, y)

$$
[h, x]=2 x \quad[h, y]=-2 y \quad[x, y]=h
$$

matrix realization

$$
\begin{aligned}
& h:=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
& t \text { is commutator }
\end{aligned}
$$

Semisimple Lie algebra


```
1 Lie Algebras (L.A.)
2 Abelian L.A.
3 Nilpotent L.A.
4 Solvable L.A.
5 Simple L.A.
Semi-simple L.A.
```

arbitrary Lie algebra is semi-direct sum of solvable and semisimple
L solvable if $L^{(n)}=0 \quad$ where $\quad L^{(i)}=\left[L^{(i-1)}, L^{(i-1)}\right]$
$\operatorname{Rad} L=$ radical of L, unique maximal solvable ideal
L semisimple if $\operatorname{Rad} L=0 \quad E x: L / \operatorname{Rad} L$ is semisimple
L nilpotent if $L^{n}=0 \quad$ where $\quad L^{i}=\left[L, L^{i-1}\right]$

Semisimple Lie algebra

Killing form

$$
(x, y):=\operatorname{Tr}(\operatorname{ad} x \operatorname{ad} y)
$$

symmetric bilinear form
associative $([x, y], z)=(x,[y, z])$
L is semisimple if and only if Killing form is nondegenerate

$$
\{x \in L \mid(x, y)=0 \text { for all } y \in L\}=0
$$

semisimple Lie algebras decompose uniquely into a direct sum of simple ideals, which are classified by their (irreducible) root system

$$
A_{\ell}, B_{\ell}, C_{\ell}, D_{\ell}, E_{6}, E_{7}, E_{8}, F_{4}, G_{2}
$$

Notations

\mathfrak{g} semisimple Lie algebra
$\mathfrak{h} \subset \mathfrak{g}$ Cartan algebra, maximal abelian subalgebra
$\ell=\operatorname{dimh} \quad$ rank of \mathfrak{g}
for $\alpha \in \mathfrak{h}^{*}: \quad \mathfrak{g}_{\alpha}=\{x \in \mathfrak{g} \mid[h, x]=\alpha(h) x$ for all $h \in \mathfrak{h}\}$
if \mathfrak{g}_{α} nonzero (and 1-dimensional), then $\alpha \in \mathfrak{h}^{*}$ root
root system $\Phi \subset \mathfrak{h}^{*}$ all roots

$$
\mathfrak{g}=\mathfrak{h} \oplus \bigoplus_{\alpha \in \Phi} \mathfrak{g}_{\alpha}
$$

Root system

$\Phi^{+} \subset \Phi$ positive system $\quad\left|\Phi^{+}\right|=m$
Δ simple system $\quad|\Delta|=\ell$
$\mathfrak{g}=\mathfrak{n}^{-} \oplus \mathfrak{h} \oplus \mathfrak{n}$

$$
\mathfrak{n}^{-}=\bigoplus_{\alpha<0} \mathfrak{g}_{\alpha} \quad \mathfrak{n}=\bigoplus_{\alpha>0} \mathfrak{g}_{\alpha}
$$

Borel subalgebra $\mathfrak{b}=\mathfrak{h} \oplus \mathfrak{n}$ maximally solvable

Each $\alpha \in \Phi^{+}$determines subalgebra $\mathfrak{s}_{\alpha} \cong \mathfrak{s l}(2)$ with basis $\left(x_{\alpha}, y_{\alpha}, h_{\alpha}\right)$ normalized such that $h_{\alpha}=\left[x_{\alpha}, y_{\alpha}\right]$ and $\alpha\left(h_{\alpha}\right)=2$
transpose map $\tau: \mathfrak{g} \rightarrow \mathfrak{g}$ standard anti-involution, interchanges x_{α} and y_{α} for all $\alpha \in \Phi^{+}$, and fixes \mathfrak{h} pointwise

Extra terminology

coroot $\alpha^{\vee}:=2 \alpha /(\alpha, \alpha)$
Cartan invariant $\left\langle\beta, \alpha^{\vee}\right\rangle:=2(\beta, \alpha) /(\alpha, \alpha) \in \mathbb{Z}$
dual root system $\Phi^{\vee}:=\left\{\alpha^{\vee} \mid \alpha \in \Phi\right\}$
In the Killing form identification of \mathfrak{h} and \mathfrak{h}^{*}

$$
\left\langle\beta, \alpha^{\vee}\right\rangle=\beta\left(h_{\alpha}\right) \quad \text { for all } \beta \in \Phi
$$

root lattice Λ_{r} is \mathbb{Z}-span of Φ
simple system Δ forms \mathbb{Z}-basis of Λ_{r}
each $\beta \in \Phi^{+}$can be written uniquely, with all $c_{\alpha} \in \mathbb{Z}^{+}$, as

$$
\beta=\sum_{\alpha \in \Delta} c_{\alpha} \alpha \quad \text { the height of } \beta \text { is ht } \beta=\sum_{\alpha \in \Delta} c_{\alpha}
$$

Weyl Groups

root lattice Λ_{r} is stable under the action of the Weyl group W, the natural symmetry group attached to a root system Φ
finite subgroup of $\mathrm{GL}\left(\mathfrak{h}^{*}\right)$ generated by all reflections $s_{\alpha}: \lambda \rightarrow \lambda-\left\langle\lambda, \alpha^{\vee}\right\rangle \alpha$ for $\alpha \in \Phi$ (or just a fixed simple system Δ)

Coxeter group, satisfies crystallographic restriction
$\ell(w)=\min \left\{n \mid w=s_{1} \cdots s_{n}\right.$ with s_{i} simple reflections $\}$
The number of $\alpha \in \Phi^{+}$for which $w \alpha<0$ is precisely $\ell(w)$
There is a very useful way to partially order W : Bruhat ordering

$$
w^{\prime}<w \Longrightarrow \ell\left(w^{\prime}\right)<\ell(w)
$$

Integral Weights

integral weight lattice linked to the root system Φ

$$
\Lambda:=\left\{\lambda \in \mathfrak{h}^{*} \mid\left\langle\lambda, \alpha^{\vee}\right\rangle \in \mathbb{Z} \text { for all } \alpha \in \Phi\right\}
$$

lies in \mathbb{Q}-span of the roots
stable under action of W
free abelian group of rank ℓ
includes the root lattice Λ_{r} as a subgroup of finite index

For a fixed simple system $\Delta=\left\{\alpha_{1}, \ldots, \alpha_{\ell}\right\}$

natural partial ordering on Λ : $\mu \leq \lambda \Longleftrightarrow \lambda-\mu \in \mathbb{Z}^{+}$-span of Δ

Integral Weights

For a fixed simple system $\Delta=\left\{\alpha_{1}, \ldots, \alpha_{\ell}\right\}$
Λ has \mathbb{Z}-basis of fundamental weights
$\varpi_{1}, \ldots, \varpi_{\ell}$ with $\left\langle\varpi_{i}, \alpha_{j}^{\vee}\right\rangle=\delta_{i j}$
dominant integral weights

$$
\Lambda^{+}:=\mathbb{Z}^{+} \varpi_{1}+\cdots+\mathbb{Z}^{+} \varpi_{\ell}
$$

Given $\lambda \in \Lambda^{+}$, all $w \lambda \leq \lambda$ for $w \in W$

The number of dominant weights $\leq \lambda$ for a given $\lambda \in \Lambda^{+}$is finite
Weyl vector (for all $\alpha \in \Delta$)

$$
\rho:=\varpi_{1}+\cdots+\varpi_{\ell}=\frac{1}{2} \sum_{\alpha \in \Phi^{+}} \alpha \quad\left\langle\rho, \alpha^{\vee}\right\rangle=1 \quad s_{\alpha} \rho=\rho-\alpha
$$

Integral Weights

For a fixed simple system Δ
Weyl chamber
$C:=\left\{\lambda \in \mathfrak{h}^{*} \mid(\lambda, \alpha)>0\right.$ for all $\left.\alpha \in \Delta\right\}$
\bar{C} natural fundamental domain for the action of W
natural bijection with simple systems

Lemma for 7.9
$\lambda \in \bar{C} \Longleftrightarrow \lambda \geq s_{\alpha} \lambda$ for all $\alpha \in \Delta \Longleftrightarrow \lambda \geq w \lambda$ for all $w \in W$

Universal Enveloping Algebras

$U(L)$ is associative algebra with 1 generated by L
for $x \in L$

$$
\operatorname{ad} x: U(L) \rightarrow U(L): u \mapsto x u-u x
$$

noetherian, no zero-divisors, PBW
semisimple Lie algebra $\mathfrak{g}=\mathfrak{n}^{-} \oplus \mathfrak{h} \oplus \mathfrak{n}$

$$
y_{1}^{r_{1}} \cdots y_{m}^{r_{m}} h_{1}^{s_{1}} \cdots h_{\ell}^{s_{\ell}} x_{1}^{t_{1}} \cdots x_{m}^{t_{m}}
$$

basis element in standard PBW ordering

$$
U(\mathfrak{g})=\bigoplus_{\nu \in \Lambda} U(\mathfrak{g})_{\nu} \quad U(\mathfrak{g})_{\nu}=\operatorname{span}\left\{\text { monomial } \mid \nu=\sum\left(t_{i}-r_{i}\right) \alpha_{i}\right\}
$$

Center

$Z(\mathfrak{g})$ center of $U(\mathfrak{g})$
acts by scalars, sometimes even on infinite dimensional modules (no Schur's Lemma)
Structure: polynomial algebra in ℓ indeterminates (see Chapter 1)
Casimir: special element $Z(\mathfrak{g})$ using nondegeneracy Killing form for $\mathfrak{g}=\mathfrak{s l}(2): h^{2}+2 x y+2 y x=h^{2}+2 h+4 y x$
τ extends to anti-automorphism of $U(\mathfrak{g})$ fixes $Z(\mathfrak{g})$ pointwise (using properties of the Harish-Chandra homomorphism, see Chapter 1)

Representations

representations of \mathfrak{g} or $U(\mathfrak{g})$, not necessarily finite dimensional category $\operatorname{Mod} U(\mathfrak{g})$ of all (left) $U(\mathfrak{g})$-modules
\mathcal{O} is well-behaved subcategory of $\operatorname{Mod} U(\mathfrak{g})$ (see Chapter 1)
$\lambda \in \mathfrak{h}^{*}$ is a weight of $M \in \operatorname{Mod} U(\mathfrak{g})$ if weight space relative to \mathfrak{h}

$$
M_{\lambda}:=\{v \in M \mid h \cdot v=\lambda(h) v \text { for all } h \in \mathfrak{h}\} \neq 0
$$

multiplicity of λ in M is $\operatorname{dim} M_{\lambda}$
notation $\Pi(M):=\left\{\lambda \in \mathfrak{h}^{*} \mid M_{\lambda} \neq 0\right\}$
M is a weight module if it is direct sum of its weight spaces
i.e. \mathfrak{h} acts semisimply on M

Finite Dimensional Modules

Weyl's Complete Reducibility Theorem

Every finite dimensional $U(\mathfrak{g})$-module is isomorphic to a direct sum of simple modules, with uniquely determined multiplicities.

When $\operatorname{dim} M<\infty, M$ is always a weight module elements of \mathfrak{h} act via semisimple matrices elements of \mathfrak{n} or \mathfrak{n}^{-}act via nilpotent matrices

The set $\Pi(M)$ of weights is W-invariant, with $\operatorname{dim} M_{\lambda}=\operatorname{dim} M_{w \lambda}$
All weights of M are integral

Simple finite dim. modules for $\mathfrak{s l}(2)$

$\mathfrak{s l}(2, \mathbb{C})$ with basis (h, x, y)

$$
[h, x]=2 x \quad[h, y]=-2 y \quad[x, y]=h
$$

weights $\lambda \in \mathfrak{h}^{*} \leftrightarrow \mathbb{C}$
root lattice $\Lambda_{r} \leftrightarrow 2 \mathbb{Z}$
integral weight lattice $\Lambda \leftrightarrow \mathbb{Z}$
simple modules $L(\lambda) \leftrightarrow \lambda \in \Lambda^{+}$dominant integral weights basis $v_{0}, \ldots, v_{\lambda}$ and set $v_{-1}=0=v_{\lambda+1}$

$$
\begin{aligned}
h \cdot v_{i} & =(\lambda-2 i) v_{i} \\
x \cdot v_{i} & =(\lambda-i+1) v_{i-1} \\
y \cdot v_{i} & =(i+1) v_{i+1}
\end{aligned}
$$

