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Lie algebra

Definition.
A vector space L over a field IF, with a bracket operation

LxL—L:(xy)—[x,y]

is called a Lie algebra over F if the following axioms are satisfied:
(L1) The bracket operation is bilinear

(L2) [x,x] =0forall x € L

(L3) Iy, 2l + Iy, [z Xl + [z, ¥l =0 (x,y,z€ L)

Notations:
Humphreys: [xy] = [x, y] adjoint repr. (ad x)(y) = [x, y]

Assumptions:
F algebraically closed field of characteristic 0 such as C

L finite-dimensional



Example

s[(2,C) with basis (h, x,y)

[hx]=2x  [hyl==-2y [xy]=

matrix realization

()

bracket is commutator
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Semisimple Lie algebra

Lie Algebras (L.A.)
Abelian L.A.
Nilpotent L.A.
Solvable L.A.
Simple L.A.
Semi-simple L.A.
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arbitrary Lie algebra is semi-direct sum of solvable and semisimple
L solvable if L(") =0 where L0) = [LG=1) (=1

Rad L = radical of L, unique maximal solvable ideal

L semisimple if Rad L =0 Ex: L/Rad L is semisimple

L nilpotent if L" =0 where Li =L, L]



Semisimple Lie algebra

Killing form
(x,y) :=Tr(adxady)

symmetric bilinear form
associative ([x,y],z) = (x, [y, z])
L is semisimple if and only if Killing form is nondegenerate

{xelL|(x,y)=0forallye L} =0

semisimple Lie algebras decompose uniquely into a direct sum of
simple ideals, which are classified by their (irreducible) root system
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Notations

g semisimple Lie algebra

b C g Cartan algebra, maximal abelian subalgebra
f=dimbh rank of g

foraeb*: go={xecg][hx]=a(h)xforall hebh}
if go nonzero (and 1-dimensional), then a € h* root

root system ® C h* all roots

g:h@@ga

acd



Root system
®t C ® positive system  |®T| =m B

A simple system |A] =/

2n/3
=n &hodn
=@o 1=Do - -
a<0 a>0

Borel subalgebra b= dn
maximally solvable

Each a € & determines subalgebra s, = s[(2) with basis
(Xas Yas ho) normalized such that hy, = [Xa, Ya] and a(hy) = 2

transpose map 7: g — g standard anti-involution, interchanges
Xq and y, for all @ € 7, and fixes b pointwise



Extra terminology

coroot o' := 2a/(a, @)
Cartan invariant (3,a") :=2(53,a)/(a,a) € Z
dual root system ¢V := {aV | a € O}

In the Killing form identification of h and h*
(B,") = B(hy) forall3 c®

root lattice A, is Z-span of ¢

simple system A forms Z-basis of A,

each 3 € ®T can be written uniquely, with all ¢, € ZT, as

=3 ca  theheightof fishtf = c,

aEA aEA



Weyl Groups

root lattice A, is stable under the action of the Weyl group W,
the natural symmetry group attached to a root system ¢

finite subgroup of GL(h*) generated by all reflections
Sa: A= A — (N, a¥)a for a € ® (or just a fixed simple system A)

Coxeter group, satisfies crystallographic restriction

l(w) =min{n| w = s1---s, with s; simple reflections }

The number of a € ®* for which wa < 0 is precisely ¢(w)

There is a very useful way to partially order W: Bruhat ordering

w<w = Uw) < {(w)



Integral Weights

integral weight lattice linked to the root system ¢
AN:={xeb* | {\a’)eZforall acd}

lies in Q-span of the roots

stable under action of W
free abelian group of rank /¢

includes the root lattice A,
as a subgroup of finite index

For a fixed simple system A = {ag,..., a0}

natural partial orderingon A: <\ <= X\ — p € Z"-span of A



Integral Weights

For a fixed simple system A = {a1,..., a0}

N\ has Z-basis of fundamental weights 2

w1, ..., With va,ay> ::5U

dominant integral weights

N =Z w1+ +Z oy

Given A € AT, all wh < \ for w e W

The number of dominant weights < X for a given A € A* is finite

Wey!l vector (for all @ € A)

1
p::wl—i-”-—i—wz:EZa (p,a’y =1 Safp=p—Q
aEdt



Integral Weights

For a fixed simple system A

az

Weyl chamber
C:={Aebh"| (N, a)>0forallac A}

C natural fundamental domain for the
action of W

natural bijection with simple systems

Lemma for 7.9

AeC < A>shforallae A < A>wlforallwe W



Universal Enveloping Algebras

U(L) is associative algebra with 1 generated by L

for x € L
adx: U(L) — U(L): u v xu — ux

noetherian, no zero-divisors, PBW
semisimple Lie algebrag=n"®hdn
y{l .. y;;f)"hil e hzfxfl .. .X,sqm

basis element in standard PBW ordering

U(g) = @ Ug),  U(g)y = span{monomial | v ="> (ti—r)a;}

VE/\r



Center

Z(g) center of U(g)
acts by scalars, sometimes even on infinite dimensional modules
(no Schur's Lemma)

Structure: polynomial algebra in ¢ indeterminates (see Chapter 1)
Casimir: special element Z(g) using nondegeneracy Killing form
for g = 5[(2): h? + 2xy + 2yx = h® + 2h + 4yx

T extends to anti-automorphism of U(g)
fixes Z(g) pointwise (using properties of the Harish-Chandra
homomorphism, see Chapter 1)



Representations

representations of g or U(g), not necessarily finite dimensional

category Mod U(g) of all (left) U(g)-modules

O is well-behaved subcategory of Mod U(g) (see Chapter 1)

A € h* is a weight of M € Mod U(g) if weight space relative to
My :={veM|h-v=XAh)vforall he h} #0

multiplicity of A in M is dim M,

notation M(M) :={\ € h* | M) # 0}

M is a weight module if it is direct sum of its weight spaces
i.e. h acts semisimply on M



Finite Dimensional Modules

Weyl's Complete Reducibility Theorem

Every finite dimensional U(g)-module is isomorphic to a direct sum
of simple modules, with uniquely determined multiplicities.

When dim M < co, M is always a weight module

elements of h act via semisimple matrices

elements of n or n™ act via nilpotent matrices
The set (M) of weights is W-invariant, with dim My = dim M,

All weights of M are integral



Simple finite dim. modules for s[(2)

s[(2,C) with basis (h, x,y)
[h’X]:2X [h,y]:—2y [Xay]:h

weights A € h* < C

root lattice A, + 27

integral weight lattice A < Z

simple modules L(\) <» A € AT dominant integral weights

basis vg,...,vy and set v_1 =0 = vy
h-vi=(A—=2i)y
x-vi=A—i+1)vj_
yvi=({+1)vi



